The Origin of Matter

Cosmic Energy Budget

- Dark Matter: 27%
- Baryons: 5%
- Dark Energy: 68%
Explaining the origin, identity, and relative fractions of the cosmic energy budget is one of the most compelling motivations for physics beyond the Standard Model.
Symmetries & Cosmic History
Symmetries & Cosmic History

EW Symmetry Breaking: Higgs

Standard Model Universe

QCD: q+g → n,p…
QCD: n+p → nuclei
Astro: stars, galaxies,…
Symmetries & Cosmic History

EW Symmetry Breaking: Higgs

Standard Model Universe

QCD: $q+g \rightarrow n,p…$

QCD: $n+p \rightarrow$ nuclei

Astro: stars, galaxies,…
What is the nature of the EW phase transition?

EW Symmetry Breaking: Higgs

Standard Model Universe

QCD: $q+g \rightarrow n,p…$

QCD: $n+p \rightarrow$ nuclei

Astro: stars, galaxies,..
Symmetries & Cosmic History

What is the nature of the EW phase transition? → Origin of matter?

EW Symmetry Breaking: Higgs

Standard Model Universe

QCD: $q+g \rightarrow n,p,\ldots$

QCD: $n+p \rightarrow$ nuclei

Astro: stars, galaxies,..
Symmetries & Cosmic History

EW Symmetry Breaking: Higgs

New Forces?

Standard Model Universe

QCD: $q+g \rightarrow n,p$...

QCD: $n+p \rightarrow$ nuclei

Astro: stars, galaxies,..
What is the Origin of Matter

\[Y_B = \frac{n_B}{S_\gamma} = (9.29 \pm 0.34) \times 10^{-11} \]
What is the Origin of Matter

\[Y_B = \frac{n_B}{s_\gamma} = (9.29 \pm 0.34) \times 10^{-11} \]
What is the Origin of Matter

EW Baryogenesis: testable w/ EDMs + colliders

Leptogenesis: less testable, look for ingredients w/ νs

\[Y_B = \frac{n_B}{S_\gamma} = (9.29 \pm 0.34) \times 10^{-11} \]
What is the Origin of Matter

EW Baryogenesis: testable w/ EDMs + colliders

Leptogenesis: less testable, look for ingredients w/ \(\nu \)

Other Scenarios:
- GUT baryogenesis
- Affleck-Dine
- Asymmetric DM
- Post sphaleron…

\[
Y_B = \frac{n_B}{S_\gamma} = (9.29 \pm 0.34) \times 10^{-11}
\]
What is the Origin of Matter

EW Baryogenesis: testable w/ EDMs + colliders

Leptogenesis: less testable, look for ingredients w/ \(\nu \)

Other Scenarios:
- GUT baryogenesis
- Affleck-Dine
- Asymmetric DM
- Post sphaleron…

\[Y_B = \frac{n_B}{S_\gamma} = (9.29 \pm 0.34) \times 10^{-11} \]
Symmetries & the Origin of Matter

EW Baryogenesis: testable with EDMs + colliders

Leptogenesis: less testable, look for ingredients withνs

Can new TeV scale physics explain the abundance of matter?
If so, how will we know?

\[Y_B = \frac{n_B}{s_\gamma} = (9.29 \pm 0.34) \times 10^{-11} \]
Questions for This Workshop

• What happened ~ 10ps after the Big Bang?
Questions for This Workshop

• What happened ~ 10ps after the Big Bang?
• Single step (cross over) transition?
• More d.o.f. with a richer pattern of EWSB?
 • Single or multiple steps?
 • First or second order?
 • Coupled to origin of matter?
Questions for This Workshop

- What happened ~ 10ps after the Big Bang?
- Single step (cross over) transition?
- More d.o.f. with a richer pattern of EWSB?
 - Single or multiple steps?
 - First or second order?
 - Coupled to origin of matter?
- What are collider signatures that could provide clues?
 - Modified Higgs properties (production, decays)
 - New states
Recent Developments:

• **BICEP2 CMB B-mode observation** → **Evidence for primordial gravitational radiation associated with inflation**

• **Discovery of BEH-like boson** → **Paradigm of symmetry-breaking in particle physics driven by a fundamental scalar likely correct**

• **Non-observation (so far) of physics beyond the Standard Model at the LHC**
Recent Results

• Discovery of BEH-like scalar at the LHC

• Non-observation (so far) of sub-TeV particles at LHC
Recent Results

• Discovery of BEH-like scalar at the LHC
 • Idea of ϕ-driven spontaneous EW symmetry breaking is likely correct

• Non-observation (so far) of sub-TeV particles at LHC
Recent Results

• Discovery of BEH-like scalar at the LHC
 • Idea of ϕ-driven spontaneous EW symmetry breaking is likely correct

• Non-observation (so far) of sub-TeV particles at LHC
 • Sub-TeV BSM spectrum is compressed
 • Sub-TeV BSM is purely EW or Higgs portal
 • BSM physics lies at very different mass scale
Outline

• Portals & the Early Universe
• Why the Higgs Portal
• Scalar Fields in Particle Physics & Cosmology
• General Considerations
• Illustrative Higgs Portals: Simplest Extensions
I. Portals & Early Universe

Standard Model

“Hidden Sector”: DM, early universe dynamics (EWPT)…
Portals

Two approaches:

• Specific model (MSSM….)
• “Model independent”
Model Independent Portals

- Vector portal ("dark photons"
- Neutrino portal
- Axion portal
- Higgs portal
- Higher dimensional op’s portal
Model Independent Portals

• Vector portal ("dark photons"…)
• Neutrino portal
• Axion portal
• Higgs portal
• Higher dimensional op’s portal
Model Independent Portals

- Vector portal (“dark photons”…)
- Neutrino portal
- Axion portal
- Higgs portal
- Higher dimensional op’s portal
Higgs Portal: DM

\[\mathcal{O}_4 = \lambda_{\phi H} \; \phi^\dagger \phi \; H^\dagger H \]

- Renormalizable
- \(Z_2\) symmetric
- Dimensionless coupling
- \(\phi\) (DM): singlet or charged under \(SU(2)_L \times U(1)_Y\)
Higgs Portal: Phase Transitions

\[\mathcal{O}_4 = \lambda_{\phi_H} \phi^\dagger \phi \ H^\dagger H \]

- Renormalizable ✔
- \(Z_2\) symmetric ✗
- Dimensionless coupling ✗
- \(\phi\) (DM): singlet or charged under \(SU(2)_L \times U(1)_Y\)
Higgs Portal: Higher Dim Op’s

\[O_5 = \frac{\lambda_{\chi H}}{\Lambda} \bar{\chi} \chi H^\dagger H \]

+...

- Renormalizable \times
- \(\mathbb{Z}_2 \) symmetric \checkmark
- Dimensionless coupling \times
- \(\chi \) (DM): singlet or charged under \(SU(2)_L \times U(1)_Y \)
II. Why the Higgs Portal?
Stable EW Vacuum?

Preserving EW Min

\[V_{\text{EFF}} \]

EW vacuum

top loops

\[
\beta_\lambda = \frac{1}{16\pi^2} \left(4\lambda^2 - 36y_t^4 + 12\lambda y_t^2 - 9\lambda g^2 - 3\lambda g'^2 + \frac{9}{4}g'^4 + \frac{9}{2}g^2g'^2 + \frac{27}{4}g^4 \right) \]

sets \(m_H \)

top loops
Stable EW Vacuum?

Preserving EW Min

"Funnel plot"

\[V_{\text{EFF}} \]

\(\phi \)

top loops

EW vacuum

perturbativity

\[\beta_\lambda = \frac{1}{16\pi^2} \left(4\lambda^2 - 36y_t^4 + 12\lambda y_t^2 - 9\lambda g^2 - 3\lambda g'^2 + \frac{9}{4}g'^4 + \frac{9}{2}g^2 g'^2 + \frac{27}{4}g^4 \right) \]

sets \(m_H \)

top loops
Stable EW Vacuum?

Preserving EW Min: V_{eff} (EW vacuum) and top loops.

“Funnel plot”: perturbativity.

$\beta_\lambda = \frac{1}{16\pi^2} \left(4\lambda^2 \right) - 36y_t^4 + 12\lambda y_t^2 - 9\lambda g^2 - 3\lambda g'^2 + \frac{9}{4}g'^4 + \frac{9}{2}g^2 g'^2 + \frac{27}{4}g^4$

sets m_H, top loops.
Stable EW Vacuum?

Preserving EW Min

“Funnel plot”

V_{EFF}

EW vacuum

top loops

naïve stability scale Λ

$perturbativity$

$\beta_\lambda = \frac{1}{16\pi^2} \left(4\lambda^2 - 36y_t^4 + 12\lambda y_t^2 - 9\lambda g^2 - 3\lambda g'^2 + \frac{9}{4}g'^4 + \frac{9}{2}g^2g'^2 + \frac{27}{4}g^4 \right)$

sets m_H

top loops

SM stability & pert’vity

m_H

SM unstable above ~ $10^8 - 10^{15}$ TeV
Stable EW Vacuum?

Preserving EW Min

“Funnel plot”

V_{eff}

EW vacuum

top loops

naïve stability scale Λ

perturbativity

$\beta_\lambda = \frac{1}{16\pi^2} \left(4\lambda^2 - 36y_t^4 + 12\lambda y_t^2 - 9\lambda g^2 - 3\lambda g'^2 + \frac{9}{4}g'^4 + \frac{9}{2}g^2g'^2 + \frac{27}{4}g^4 \right)$

sets m_H

top loops

Higgs portal interactions → more robust stability?

SM stability & pert’vity

M_W

Λ

$\sim 10^8 - 10^{13}$ TeV

SM unstable above
What is the BSM Energy Scale Λ?

BSM: $\mathcal{O}_{BSM} = c / \Lambda^2 \rightarrow \Lambda \sim 10 \text{ TeV}$

EWPO: data favor a "light" SM-like Higgs scalar

$\sim 10^{-3}$ agreement with EWPO

LHC: so far no sub-TeV BSM physics

Higgs Portal: new low scale d.o.f.?
III. Scalar Fields in Particle Physics & Cosmology

φ
Scalar Fields in Cosmology

What role do scalar fields play (if any) in the physics of the early universe?
Scalar Fields in Cosmology

<table>
<thead>
<tr>
<th>Problem</th>
<th>Theory</th>
<th>Exp’t</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Inflation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Dark Energy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Dark Matter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Phase transitions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Scalar Fields in Cosmology

<table>
<thead>
<tr>
<th>Problem</th>
<th>Theory</th>
<th>Exp’t</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Inflation</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>• Dark Energy</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>• Dark Matter</td>
<td>✔️</td>
<td></td>
</tr>
<tr>
<td>• Phase transitions</td>
<td>✔️</td>
<td></td>
</tr>
</tbody>
</table>
Scalar Fields in Cosmology

<table>
<thead>
<tr>
<th>Problem</th>
<th>Theory</th>
<th>Exp’t</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Inflation</td>
<td>✔</td>
<td>?</td>
</tr>
<tr>
<td>• Dark Energy</td>
<td>✔</td>
<td>?</td>
</tr>
<tr>
<td>• Dark Matter</td>
<td>✔</td>
<td>?</td>
</tr>
<tr>
<td>• Phase transitions</td>
<td>✔</td>
<td>?</td>
</tr>
</tbody>
</table>
Scalar Fields in Cosmology

<table>
<thead>
<tr>
<th>Problem</th>
<th>Theory</th>
<th>Exp’t</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Inflation</td>
<td>✔</td>
<td>?</td>
</tr>
<tr>
<td>• Dark Energy</td>
<td>✔</td>
<td>?</td>
</tr>
<tr>
<td>• Dark Matter</td>
<td>✔</td>
<td>?</td>
</tr>
<tr>
<td>• Phase transitions</td>
<td>✔</td>
<td>?</td>
</tr>
</tbody>
</table>

• Could experimental discovery of additional scalars point to early universe scalar field dynamics?

• Are there signatures in modified Higgs properties, new states, or EW precision tests?
Scalar Fields in Cosmology

<table>
<thead>
<tr>
<th>Problem</th>
<th>Theory</th>
<th>Exp’t</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Inflation</td>
<td>✔️</td>
<td>?</td>
</tr>
<tr>
<td>• Dark Energy</td>
<td>✔️</td>
<td>?</td>
</tr>
<tr>
<td>• Dark Matter</td>
<td>✔️</td>
<td>?</td>
</tr>
<tr>
<td>• Phase transitions</td>
<td>✔️</td>
<td>?</td>
</tr>
</tbody>
</table>

Focus of this talk, but perhaps part of larger role of scalar fields in early universe
IV. General Considerations
Thermal DM: $\Omega_{CDM} \ & \sigma_{SI}$

Thermal DM: WIMP

Direct detection: Spin-indep DM-nucleus scattering
Thermal DM: $\Omega_{CDM} \& \sigma_{SI}$

Thermal DM: WIMP

\[\Omega h^2 \approx 0.1 \times \left(\frac{(\sigma v)_{\text{freeze}}}{3 \times 10^{-26} \text{ cm}^3 \text{s}^{-1}} \right)^{-1} \]

freeze out \rightarrow \Omega x h^2

\[x = M_x / T \]

CDMS 2013
K McCarthy APS '13

WIMP-nucleon cross-section [cm2]

WIMP Mass [GeV/c2]

hep-ex:0695502
EWPT & EW Baryogenesis
EW Phase Transition: New Scalars & CPV
EW Phase Transition: New Scalars & CPV

Increasing m_h
EW Phase Transition: New Scalars & CPV

Increasing m_h

New scalars
EW Phase Transition: New Scalars & CPV

Increasing m_h → *New scalars*

“Strong” 1st order EWPT

Baryogenesis

Gravity Waves

Scalar DM

LHC Searches
EW Phase Transition: New Scalars & CPV

- **Increasing** m_h
- **New scalars**

Baryogenesis
- Gravity Waves
- Scalar DM
- LHC Searches

- "Strong" **1st order EWPT**
- Bubble nucleation

EWSB
EW Phase Transition: New Scalars & CPV

- **1st order EWPT**
 - Bubble nucleation

- **1st order** vs **2nd order**

- **Increasing** m_h
 - New scalars

- **Baryogenesis**
- **Gravity Waves**
- **Scalar DM**
- **LHC Searches**

- Y_B : CPV & EW sphalerons

- **EWSB**
EW Phase Transition: New Scalars & CPV

- Increasing m_h
- New scalars

Baryogenesis
- Gravity Waves
- Scalar DM
- LHC Searches

- "Strong" 1st order EWPT
- Bubble nucleation

- Y_B: CPV & EW sphalerons
- EWSB

- BSM
EW Phase Transition: New Scalars & CPV

Increasing m_h → **New scalars**

Baryogenesis
- Gravity Waves
- Scalar DM
- LHC Searches

"Strong" 1st order EWPT → Bubble nucleation

Y_B diffuses into interiors → EWSB

1st order EWPT

2nd order
EW Phase Transition: New Scalars & CPV

- **1st order**
 - New Scalars
 - Y$_B$ initial: diffuses into interiors
 - EWSB

- **2nd order**
 - Increasing m_h
 - EWSB

Baryogenesis
- Gravity Waves
- Scalar DM
- LHC Searches

Gravity Waves

Quench
- EW sph

Strong
- 1st order EWPT
- Bubble nucleation

Preserve
EW Phase Transition: New Scalars & CPV

- 1st order
- 2nd order

Increasing m_h

- New scalars

Baryogenesis
- Gravity Waves
- Scalar DM
- LHC Searches

“Strong” 1st order EWPT

- Preserve $Y_B^{initial}$
- Bubble nucleation

- Quench EW sph
- Y_B : diffuses into interiors

- EWSB
EW Phase Transition: Gravity waves

- **1st order**
- **2nd order**

“Strong” 1st order EWPT

- Detonation & turbulence
- Bubble nucleation

EW Spectra:

- ΔQ
- Δt_{EW}

GW Spectra:

$F(\phi)$
EW Phase Transition: New Scalars & CPV

Increasing m_h

New scalars

Baryogenesis
Gravity Waves
Scalar DM
LHC Searches

"Strong"
1st order EWPT

Preserve $Y_B^{initial}$
Bubble nucleation

Quench EW sph
Y_B: diffuses into interiors
EWSB
Electroweak Phase Transition
EW Phase Transition: St’d Model

Lattice: Endpoint

<table>
<thead>
<tr>
<th>Lattice</th>
<th>Authors</th>
<th>M_h^C (GeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4D Isotropic</td>
<td>[76]</td>
<td>80 ± 7</td>
</tr>
<tr>
<td>4D Anisotropic</td>
<td>[74]</td>
<td>72.4 ± 1.7</td>
</tr>
<tr>
<td>3D Isotropic</td>
<td>[72]</td>
<td>72.3 ± 0.7</td>
</tr>
<tr>
<td>3D Isotropic</td>
<td>[70]</td>
<td>72.4 ± 0.9</td>
</tr>
</tbody>
</table>

Increasing m_h

S’td Model: 1st order EWPT requires light Higgs
EW Phase Transition: New Scalars

Increasing m_h

New scalars

MSSM: Light RH stops

PT: Carena et al,…

Lattice: Laine, Rummukainen

Decreasing RH stop mass

CCB Vac

EWPT

1^{st} order

2^{nd} order
EW Phase Transition: MSSM

- Increasing m_h
- New scalars

MSSM: Light RH stops

Carena et al 2008: Higgs phase metastable
EW Phase Transition: MSSM

1st order 2nd order

Increasing m_h → New scalars

MSSM: Light RH stops

Carena et al 2008: Higgs phase metastable
EW Phase Transition: MSSM

- Increasing m_h
- New scalars
- **MSSM: Light RH stops**
 - Carena et al 2008: Higgs phase metastable

1st order

2nd order
EW Phase Transition: Higgs Portal

Increasing m_h → 1st order

New scalars

$$\mathcal{O}_4 = \lambda_{\phi H} \phi \phi H^\dagger H + \ldots$$
EW Phase Transition: Higgs Portal

- **Increasing** m_h
- **New scalars**

$$\mathcal{O}_4 = \lambda_{\phi H} \phi \phi^{\dagger} H^{\dagger} H + \ldots$$

- Renormalizable
- ϕ: singlet or charged under $SU(2)_L \times U(1)_Y$
- Generic features of full theory (NMSSM, GUTS...)
- More robust vacuum stability
- Novel patterns of SSB
EW Phase Transition: Higgs Portal

- 1st order
- 2nd order

Increasing m_h → New scalars

\[O_4 = \lambda_{\phi H} \phi^\dagger \phi H^\dagger H + \ldots \]

- Renormalizable
- ϕ: singlet or charged under $SU(2)_L \times U(1)_Y$
- Generic features of full theory (NMSSM, GUTS…)
- More robust vacuum stability
- Novel patterns of SSB
Higgs Portal: Simple Scalar Extensions

<table>
<thead>
<tr>
<th>Extension</th>
<th>DOF</th>
<th>EWPT</th>
<th>DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real singlet</td>
<td>1</td>
<td>✔</td>
<td>×</td>
</tr>
<tr>
<td>Real singlet</td>
<td>1</td>
<td>✗</td>
<td>✔</td>
</tr>
<tr>
<td>Complex Singlet</td>
<td>2</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Real Triplet</td>
<td>3</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

May be low-energy remnants of UV complete theory & illustrative of generic features
May be low-energy remnants of UV complete theory & illustrative of generic features (NMSSM, GUTs, Hidden Valley....)

Higgs Portal: Simple Scalar Extensions

<table>
<thead>
<tr>
<th>Extension</th>
<th>DOF</th>
<th>EWPT</th>
<th>DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real singlet</td>
<td>1</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Real singlet</td>
<td>1</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Complex Singlet</td>
<td>2</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Real Triplet</td>
<td>3</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
Higgs Portal: Simple Scalar Extensions

<table>
<thead>
<tr>
<th>Extension</th>
<th>DOF</th>
<th>EWPT</th>
<th>DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real singlet</td>
<td>1</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>Real singlet</td>
<td>1</td>
<td>✗</td>
<td>✓</td>
</tr>
<tr>
<td>Complex Singlet</td>
<td>2</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Real Triplet</td>
<td>3</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

May be low-energy remnants of UV complete theory & illustrative of generic features (NMSSM, GUTs, Hidden Valley....)
The Simplest Extension

Simplest extension of the SM scalar sector: add one real scalar S (SM singlet)

$$V_{HS} = \frac{a_1}{2} \left(H^\dagger H \right) S + \frac{a_2}{2} \left(H^\dagger H \right) S^2$$

EWPT: $a_{1,2} \neq 0$ & $\langle S \rangle \neq 0$

DM: $a_1 = 0$ & $\langle S \rangle = 0$

O’Connel, R-M, Wise; Profumo, R-M, Shaugnessy; Barger, Langacker, McCaskey, R-M Shaugnessy; He, Li, Li, Tandean, Tsai; Petraki & Kusenko; Gonderinger, Li, Patel, R-M; Cline, Laporte, Yamashita; Ham, Jeong, Oh; Espinosa, Quiros; Konstandin & Ashoorioon…
The Simplest Extension, Cont’d

Mass matrix

\[M^2 = \begin{pmatrix} \mu_h^2 & \mu_{hs}/2 \\ \mu_{hs}/2 & \mu_s^2 \end{pmatrix} \]

\begin{align*}
\mu_h^2 & \equiv \frac{\partial^2 V}{\partial h^2} = 2\lambda_0 v_0^2 \\
\mu_s^2 & \equiv \frac{\partial^2 V}{\partial s^2} = b_3 x_0 + 2b_4 v_0^2 - \frac{a_1 v_0^2}{4x_0} \\
\mu_{hs}^2 & \equiv \frac{\partial^2 V}{\partial h \partial s} = (a_1 + 2a_2 x_0) v_0 \\
\end{align*}

\[
(h_1) = \begin{pmatrix} \sin \theta & \cos \theta \end{pmatrix} (h) \\
(h_2) = \begin{pmatrix} \cos \theta & -\sin \theta \end{pmatrix} (s)
\]

\[
\tan \theta = \frac{y}{1 + \sqrt{1 + y^2}}, \quad y \equiv \frac{\mu_{hs}^2}{\mu_h^2 - \mu_s^2}
\]

\[
m_{1,2}^2 = \frac{\mu_h^2 + \mu_s^2}{2} \pm \frac{\mu_h^2 - \mu_s^2}{2} \sqrt{1 + y^2}
\]

\(x_0 = <S> \)
The Simplest Extension, Cont’d

Mass matrix

\[
\begin{align*}
\mu_h^2 & \equiv \frac{\partial^2 V}{\partial h^2} = 2\bar{\lambda}_0 v_0^2 \\
\mu_s^2 & \equiv \frac{\partial^2 V}{\partial s^2} = b_3 x_0 + 2b_4 x_0^2 - \frac{a_1 v_0^2}{4x_0} \\
\mu_{hs}^2 & \equiv \frac{\partial^2 V}{\partial h \partial s} = (a_1 + 2a_2 x_0) v_0 \\
\tan \theta & = \frac{y}{1 + \sqrt{1 + y^2}}, \quad y \equiv \frac{\mu_{hs}^2}{\mu_h^2 - \mu_s^2} \\
m_{1,2}^2 & = \frac{\mu_h^2 + \mu_s^2}{2} \pm \frac{\mu_h^2 - \mu_s^2}{2} \sqrt{1 + y^2}
\end{align*}
\]

New topologies
The Simplest Extension, Cont’d

Mass matrix

Mass matrix

$\mu_h^2 \equiv \frac{\partial^2 V}{\partial h^2} = 2\lambda_0 v_0^2$

$\mu_s^2 \equiv \frac{\partial^2 V}{\partial s^2} = b_3 x_0 + 2 b_4 x_0^2 - \frac{a_1 v_0^2}{4 x_0}$

$\mu_{hs}^2 \equiv \frac{\partial^2 V}{\partial h \partial s} = (a_1 + 2 a_2 x_0) v_0$

$\tan \theta = \frac{y}{1 + \sqrt{1 + y^2}}$, \quad y \equiv \frac{\mu_{hs}^2}{\mu_h^2 - \mu_s^2}$

Stable S (dark matter)

• Tree-level Z_2 symmetry: $a_1=0$ to prevent s-h mixing and one-loop $s \rightarrow hh$

• $x_0 = 0$ to prevent h-s mixing & $s \rightarrow hh$
The Simplest Extension

DM Scenario

\[V_{HS} = \]

\[+ \frac{\alpha_2}{2} \left(H \dagger H \right) S^2 \]
The Simplest Extension

DM Scenario

\[V_{HS} = - \frac{a_2}{2} \left(H^\dagger H \right) S^2 \]

\[\Omega_{DM} & \sigma_{SI} \]

Signal Reduction Factor

Production

Decay

DM Scenario
DM Phenomenology

Relic Density

He, Li, Li, Tandean, Tsai

Direct Detection

He, Li, Li, Tandean, Tsai

Barger, Langacker, McCaskey, R-M, Shaugnessy
New Scalars EW Vacuum Stability

Preserving EW Min

“Funnel plot”

\[V_{\text{eff}} \]

EW vacuum

top loops

naïve stability scale \(\Lambda \)

[Diagram showing EW vacuum, top loops, and naive stability scale.]

[Graph showing "Funnel plot" with perturbativity and SM stability & pert'vity.]

\[\beta_\lambda = \frac{1}{16\pi^2} \left(4\lambda^2 + 12a_2^2 - 36y_t^4 + 12\lambda y_t^2 - 9\lambda g^2 - 3\lambda g'^2 + \frac{9}{4}g'^4 + \frac{9}{2}g^2g'^2 + \frac{27}{4}g^4 \right) \]

[Equation for DM-H coupling and top loops.]

Gonderinger, Li, Patel, R-M; Gonderinger, Lim, R-M
New Scalars EW Vacuum Stability

Preserving EW Min

“Funnel plot”

SM stability & pert’vity

m_H

SM + singlet: stable but non-pertur’tive

V_{eff}

EW vacuum

top loops

naïve stability scale Λ

$\beta_\lambda = \frac{1}{16\pi^2} \left(4\lambda^2 + 12a_2^2 - 36y_t^4 + 12\lambda y_t^2 - 9\lambda g^2 - 3\lambda g'^2 + \frac{9}{4}g'^4 + \frac{9}{2}g^2g'^2 + \frac{27}{4}g^4 \right)$

DM-H coupling

top loops

Gonderinger, Li, Patel, R-M; Gonderinger, Lim, R-M
LHC & Higgs Phenomenology

LHC discovery potential

Signal Reduction Factor

\[\xi_i^2 = \frac{V_{ij}^2 \text{BF}(H_j \rightarrow X_{SM})}{\text{BF}(h_{SM} \rightarrow X_{SM})} \]

Production \hspace{5cm} Decay
LHC & Higgs Phenomenology

LHC discovery potential

Signal Reduction Factor

$$\xi^2_i = V_{1j}^2 \frac{\text{BF}(H_j \rightarrow X_{SM})}{\text{BF}(h_{SM} \rightarrow X_{SM})}$$

Production → Decay

$$V_{1j} < 1: \text{mixed states } h_j$$

New decays: $$h_2 \rightarrow h_1 h_1$$
LHC & Higgs Phenomenology

LHC discovery potential

Signal Reduction Factor

\[
\xi_i^2 = V_{ij}^2 \frac{BF(H_j \to X_{SM})}{BF(h_{SM} \to X_{SM})}
\]

Production \quad Decay

\(V_{1j} < 1: \text{mixed states } h_j\) \quad \text{New decays: } h_2 \rightarrow h_1 h_1

Dark matter: no mixing \rightarrow states are \(h,S\)

New decays \(h \rightarrow SS \) (invisible!) possible
LHC & Higgs Phenomenology

LHC discovery potential

Invisible decays

Signal Reduction Factor

$$\xi_i^2 = V_{ij}^2 \frac{\text{BF}(H_j \rightarrow X_{SM})}{\text{BF}(h_{SM} \rightarrow X_{SM})}$$

Production

Decay

He, Li, Li, Tandean, Tsai

Invis search

CMS 30 fb\(^{-1}\)

ATLAS, CMS @ 30 fb\(^{-1}\)
LHC & Higgs Phenomenology

LHC discovery potential

Invisible decays

Signal Reduction Factor

\[\xi_i^2 = \frac{V_{1j}^2}{\text{BF}(h_{SM} \rightarrow X_{SM})} \frac{\text{BF}(H_j \rightarrow X_{SM})}{\text{BF}(h_{SM} \rightarrow X_{SM})} \]

Production \quad \text{Decay}

He, Li, Li, Tandean, Tsai

Dijet azimuthal distribution

Look for azimuthal shape change of primary jets (Eboli & Zeppenfeld ‘00)
LHC & Higgs Phenomenology

LHC discovery potential

Invisible decays

Signal Reduction Factor

\[\xi_i^2 = \frac{V_{ij}^2 \text{BF}(H_j \to X_{SM})}{\text{BF}(h_{SM} \to X_{SM})} \]

Production
Decay

See Ketevi Assamagan & Jianming Qian Talks

Dijet azimuthal distribution

Look for azimuthal shape change of primary jets (Eboli & Zeppenfeld ’00)
Real Singlet: EWPT

\[V_{HS} = \frac{a_1}{2} \left(H^\dagger H \right) S + \frac{a_2}{2} \left(H^\dagger H \right) S^2 \]

Stable S (dark matter?)

Tree-level Z

\[a_1 = b_3 = 0 \] to prevent s-h mixing and one-loop s

\[x = 0 \] to prevent h-s mixing

EWPT: Signal Reduction Factor

Production

Decay
Real Singlet: EWPT

$$V_{HS} = \frac{a_1}{2} \left(H^\dagger H \right) S + \frac{a_2}{2} \left(H^\dagger H \right) S^2$$

- Raise barrier
- Lower T_C
Real Singlet: EWPT

Low energy phenomenology

\[V_{HS} = \frac{a_1}{2} (H^\dagger H) S + \frac{a_2}{2} (H^\dagger H) S^2 \]

- Raise barrier
- Lower \(T_C \)
- Mixing
- Modified BRs

Two mixed (singlet-doublet) states w/ reduced SM branching ratios
EWPT & LHC Phenomenology

Signatures

$m_2 > 2 m_1$

Scan: EWPT-viable model parameters

Light: all models
Black: LEP allowed

$m_1 > 2 m_2$

Profumo, R-M,
Shaughnessy ‘07
EWPT & LHC Phenomenology

Signatures

Light: all models
Black: LEP allowed
Scan: EWPT-viable model parameters
LHC exotic final states: 4b-jets, γγ + 2 b-jets...

Profumo, R-M, Shaugnessy ‘07
MWPT & LHC Phenomenology

Signatures

\[m_2 > 2 m_1 \]

\[m_1 > 2 m_2 \]

Light: all models
Black: LEP allowed

Scan: EWPT-viable model parameters

LHC: reduced BR(h → SM)

Signal Reduction Factor

\[\xi_i^2 = \frac{V_{iJ}^2 \text{BF}(H_j \rightarrow X_{SM})}{\text{BF}(h_{SM} \rightarrow X_{SM})} \]

Production

Decay

Profumo, R-M, Shaugnessy ‘07
EWPT: Resonant Di-Higgs Production

Signatures

$m_2 = 270$ GeV “un-boosted”
$m_2 = 370$ GeV “boosted”

$bb\tau^+\tau^- : \text{discovery with } \sim 100 \text{ fb}^{-1} \text{ in } \tau_{lep} \tau_{had} \text{ channel}$

Scan: EWPT-viable model parameters

Light: all models
Black: LEP allowed

R-M & No, arXiv:1310.6035
EWPT: Resonant Di-Higgs Production

Signatures

\[m_2 = 270 \text{ GeV "un-boosted"} \]
\[m_2 = 370 \text{ GeV "boosted"} \]

bb\(\tau^+\tau^-\) : discovery with \(~ 100 \text{ fb}^{-1}\) in \(\tau_{\text{lep}} \tau_{\text{had}}\) channel

R-M & No, arXiv:1310.6035
EWPT & LHC Phenomenology

Signatures

$m_2 > 2 m_1$

Mixed States:
Precision ↔ ILC

Scan: EWPT-viable model parameters

Light: all models
Black: LEP allowed

$m_1 > 2 m_2$

See Peter Winslow Talk

Profumo, R-M,
Shaugnessy ’07
Higgs Portal: Simple Scalar Extensions

<table>
<thead>
<tr>
<th>Extension</th>
<th>DOF</th>
<th>EWPT</th>
<th>DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real singlet</td>
<td>1</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>Real singlet</td>
<td>1</td>
<td>✗</td>
<td>✔</td>
</tr>
<tr>
<td>Complex Singlet</td>
<td>2</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Real Triplet</td>
<td>3</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

May be low-energy remnants of UV complete theory & illustrative of generic features
Complex Singlet: EWB & DM?

Barger, Langacker, McCaskey, R-M Shaugnessy

Spontaneously & softly broken global $U(1)$\[<s> \neq 0\]

$$V_{HS} = \frac{\delta^2}{2} H^\dagger H |\tilde{S}|^2 = \frac{\delta^2}{2} H^\dagger H (S^2 + A^2)$$

Controls Ω_{CDM}, T_C, & H-S mixing

$$V_{\tilde{S}} = \frac{b_2}{2} |\tilde{S}|^2 + \frac{b_1}{2} \tilde{S}^2 + \text{c.c.} + \cdots$$

Gives non-zero M_A
Complex Singlet: EWB & DM?

Barger, Langacker, McCaskey, R-M Shaugnessy

Consequences:

Three scalars: \(h_1, h_2 \): mixtures of \(h \) & \(S \)

\(A \): dark matter

Phenomenology:

- Produce \(h_1, h_2 \) w/ reduced \(\sigma \)
- Reduce BR (\(h_j \rightarrow \text{SM} \))
- Observation of BR (invis)
- Possible obs of \(\sigma^{SI} \)
Higgs Portal: Simple Scalar Extensions

<table>
<thead>
<tr>
<th>Extension</th>
<th>DOF</th>
<th>EWPT</th>
<th>DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real singlet</td>
<td>1</td>
<td>✔</td>
<td>✘</td>
</tr>
<tr>
<td>Real singlet</td>
<td>1</td>
<td>✘</td>
<td>✔</td>
</tr>
<tr>
<td>Complex Singlet</td>
<td>2</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Real Triplet</td>
<td>3</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

Simplest non-trivial EW multiplet
Real Triplet

\[\Sigma^0, \Sigma^+, \Sigma^- \sim (1, 3, 0) \]

\[V_{H\Sigma} = \frac{a_1}{2} H^\dagger \Sigma H + \frac{a_2}{2} H^\dagger H \text{ Tr } \Sigma^2 \]

EWPT: \(a_{1,2} \neq 0 \) & \(<\Sigma^0> \neq 0 \)

DM & EWPT: \(a_1 = 0 \) & \(<\Sigma^0> = 0 \)

Fileviez-Perez, Patel, Wang, R-M: PRD 79: 055024 (2009); 0811.3957 [hep-ph]
Real Triplet

$$\Sigma^0, \Sigma^+, \Sigma^- \sim (1, 3, 0)$$

$$V_{H\Sigma} = \frac{a_1}{2} H^\dagger \Sigma H + \frac{a_2}{2} H^\dagger H \text{ Tr } \Sigma^2$$

EWPT: $a_{1,2} \neq 0 \& \langle \Sigma^0 \rangle \neq 0$

DM & EWPT: $a_1 = 0 \& \langle \Sigma^0 \rangle = 0$

Small: ρ-param

Fileviez-Perez, Patel, Wang, R-M: PRD 79: 055024 (2009); 0811.3957 [hep-ph]
Real Triplet: DM

\[\Sigma^0, \Sigma^+, \Sigma^- \sim (1, 3, 0) \]

\[V_{H \Sigma} = \frac{a_2}{2} H\dagger H \text{ Tr } \Sigma^2 \]

EWPT: \(a_{1,2} \neq 0 \) & \(<\Sigma^0> \neq 0 \)

DM & EWPT: \(a_1 = 0 \) & \(<\Sigma^0> = 0 \)

Small: \(\rho \)-param

EW Phase Transition: Higgs Portal

1st order 2nd order

Increasing m_h →

New scalars

Real Triplet $\Sigma \sim (1,3,0)$

Two-step EWPT &

dark matter

Quench sphalerons

Small entropy dilution

Baryogenesis

Σ dark matter

Patel, R-M: arXiv 1212.5652; Fileviez-Perez, Patel, RM, Wang
Higgs Diphoton Decays

LHC: \(H \rightarrow \gamma \gamma \)

Real Triplet: EWPT

\[\Sigma^0, \Sigma^+, \Sigma^- \sim (1, 3, 0) \]

\[
V_{H\Sigma} = \frac{a_2}{2} H^\dagger H \text{ Tr } \Sigma^2
\]

Two-step EWSB

1. Break SU(2)_L x U(1)_Y w/ \(\Sigma \) vev
2. Transition to Higgs phase w/ small or zero \(\Sigma \) vev

EWB favorable
Real Triplet: EWPT

\[\Sigma^0, \Sigma^+, \Sigma^- \sim (1, 3, 0) \]

\[V_{H\Sigma} = \frac{a_2}{2} H^\dagger H \text{ Tr } \Sigma^2 \]

Two-step EWSB

1. Break SU(2)_L x U(1)_{Y} w/ \Sigma vev

2. Transition to Higgs phase w/ small or zero \Sigma vev

Real Triplet: DM Search

Mass splitting due to EW symmetry breaking:

\[M_{\Sigma^\pm} - M_{\Sigma^0} \sim \frac{\alpha}{4\pi} M_W \]

\[\Sigma^+ \rightarrow \Sigma^0 + \pi^+ \text{ (soft)} \]

Generalizes to higher dim EW multiplets
Real Triplet : DM Search

Basic signature:
\[x_0 = 0 : H^\pm \rightarrow H_2 \pi^\pm \]

Charged track disappearing after \(~5\) cm
\[q\bar{q} \rightarrow W^\pm \rightarrow H^\pm H_2 \quad q\bar{q} \rightarrow Z^*,\gamma^* \rightarrow H^+H^- \]

SM Background:
- QCD jZ and jW w/
- \(Z \rightarrow \nu\nu \) & \(W \rightarrow l\nu \)

Trigger: Monojet (ISR) + large \(\not{E}_T \)

Fileviez-Perez, Patel, Wang, R-M: PRD 79: 055024 (2009); 0811.3957 [hep-ph]
Real Triplet : DM Search

Basic signature:
\[x_0 = 0 : H^\pm \rightarrow H_2 \pi^\pm \]

Charged track disappearing after \(\sim 5 \) cm
\[q\bar{q} \rightarrow W^\pm \rightarrow H^\pm H_2 \quad q\bar{q} \rightarrow Z^*, \gamma^* \rightarrow H^+ H^- \]

Trigger: Monojet (ISR) + large \(E_T \)

SM Background:
QCD \(jZ \) and \(jW \) w/ \(Z \rightarrow \nu\nu \) & \(W \rightarrow l\nu \)

Cuts:
- large \(E_T \)
- hard jet
- One 5cm track

EW Phase Transition: Higgs Portal

Do good symmetries today need to be good symmetries in the early Universe?

Increasing m_h
New scalars

Symmetry Breaking & Restoration

Do good symmetries today need to be good symmetries in the early Universe?

Rochelle salt: $\text{KNaC}_4\text{H}_4\text{O}_6 \cdot 4\text{H}_2\text{O}$

Increasing T →

creasing m_h →

New scalars

J. Valasek
EW Phase Transition: Higgs Portal

Do good symmetries today need to be good symmetries in the early Universe? No

- O(n) x O(n): Weinberg (1974)
- SU(5), CP…: Dvali, Mohapatra, Senjanovic (‘79, 80’s, 90’s)
- Cline, Moore, Servant et al (1999)
- EM: Langacker & Pi (1980)

EW Phase Transition: Higgs Portal

Do good symmetries today need to be good symmetries in the early Universe? No

- $O(n) \times O(n)$: Weinberg (1974)
- $SU(5)$, CP…: Dvali, Mohapatra, Senjanovic ('79, '80's, '90's)
- Cline, Moore, Servant et al (1999)
- EM: Langacker & Pi (1980)

Color Breaking & Restoration

Two illustrative cases:

<table>
<thead>
<tr>
<th>Extension</th>
<th>DOF</th>
<th>EWPT</th>
<th>DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color triplet scalar</td>
<td>6</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>Color triplet + singlet</td>
<td>7</td>
<td>✔</td>
<td>✗</td>
</tr>
</tbody>
</table>

H. Patel, R-M, Wise
1303.1140 (2013)
Color Breaking & Restoration

Two illustrative cases: H. Patel, R-M, Wise 1303.1140 (2013)

<table>
<thead>
<tr>
<th>Extension</th>
<th>DOF</th>
<th>EWPT</th>
<th>DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color triplet scalar</td>
<td>6</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>Color triplet + singlet</td>
<td>7</td>
<td>✔</td>
<td>✗</td>
</tr>
</tbody>
</table>

Spontaneous B violation
EW Phase Transition: Higgs Portal

1. Break SU(3)$_C$

2. Restore SU(3)$_C$

Increasing m_h

New scalars

Colored Scalars (triplet)

Color breaking & restoration

Summary: Workshop Questions

- What happened ~ 10ps after the Big Bang?

- Single step (cross over) transition?

- More d.o.f. with a richer pattern of EWSB?
 - Single or multiple steps?
 - First or second order?
 - Coupled to origin of matter?

- What are collider signatures that could provide clues?
 - Modified Higgs properties (production, decays)
 - New states
Back Up Slides
Ingredients for Baryogenesis

- B violation (sphalerons)
- C & CP violation
- Out-of-equilibrium or CPT violation

<table>
<thead>
<tr>
<th></th>
<th>Standard Model</th>
<th>BSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>B violation (sphalerons)</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>C & CP violation</td>
<td>✗</td>
<td>✔️</td>
</tr>
<tr>
<td>Out-of-equilibrium or CPT violation</td>
<td>✗</td>
<td>✔️</td>
</tr>
</tbody>
</table>
Ingredients for Baryogenesis

- B violation (sphalerons)
- C & CP violation
- Out-of-equilibrium or CPT violation

Scenarios: leptogenesis, EW baryogenesis, Affleck-Dine, asymmetric DM, cold baryogenesis, post-sphaleron baryogenesis...

Standard Model	BSM
✔ | ✔
✖ | ✔
✖ | ✔
Ingredients for Baryogenesis

Scenarios: leptogenesis, EW baryogenesis, Affleck-Dine, asymmetric DM, cold baryogenesis, post-sphaleron baryogenesis…

Testable
Standard Model BSM

• B violation (sphalerons) ✔ ✔
• C & CP violation ✗ ✔
• Out-of-equilibrium or CPT violation ✗ ✔
Baryon Number Preservation

“Washout factor”

\[S \equiv \frac{\rho_B(\Delta t_{EW})}{\rho_B(0)} > e^{-N} \]

Two quantities of interest:

- \(T_C \) from \(V_{\text{eff}} \)
- \(E_{\text{sph}} \) from \(\Gamma_{\text{eff}} \)

\[\ln S \sim A(T_C) e^{\zeta} \]

\[\zeta = F(\varphi) \]

\[\zeta \equiv \left. \frac{\hat{E}_{\text{sph}}}{T} \right|_{T=T_C} \]
Daisy Resummation

Convergence of PT: going beyond \bar{h}_l expansion

Light stop scenario

For given T, increasingly negative m_i^2 increases difference between two minima

Increased ΔV \rightarrow Lowered T_C
DM Phenomenology

Relic Density

He, Li, Li, Tandean, Tsai

Direct Detection

He, Li, Li, Tandean, Tsai

Higgs pole

Barger, Langacker, McCaskey, R-M, Shaugnessy

λ, σ_aa (cm2), σ_DM, Ω_DM

$S \rightarrow H \rightarrow _\tilde{f} f$
Real Triplet: EWPT

$\Sigma^0, \Sigma^+, \Sigma^-$ \sim (1, 3, 0)

\[V_{H\Sigma} = \frac{a_2}{2} H \dagger H \ Tr \ \Sigma^2 \]

Two-step EWSB

1. **Break SU(2)_L x U(1)_Y w/ Σ vev**
2. **Transition to Higgs phase w/ small or zero Σ vev**

![Diagram showing the relationship between m_H, a_2, and δ with the SM as a reference point.](image)
Real Triplet: EWPT

\[\Sigma^0, \Sigma^+, \Sigma^- \sim (1, 3, 0) \]

Two-step EWSB

\[V_{H\Sigma} = \frac{a_2}{2} H^\dagger H \text{ Tr } \Sigma^2 \]
Real Triplet: EWPT

\[\Sigma^0, \Sigma^+, \Sigma^- \sim (1, 3, 0) \]

Two-step EWSB

1. Break SU(2)_L x U(1)_\gamma w/ \Sigma vev
2. Transition to Higgs phase w/ small or zero \Sigma vev
Color Breaking & Restoration

Two illustrative cases:

<table>
<thead>
<tr>
<th>Extension</th>
<th>DOF</th>
<th>EWPT</th>
<th>DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color triplet scalar</td>
<td>6</td>
<td>✔</td>
<td>✗</td>
</tr>
<tr>
<td>Color triplet + singlet</td>
<td>7</td>
<td>✔</td>
<td>✗</td>
</tr>
</tbody>
</table>

“Light”: special flavor structure

Spontaneous B violation
Color Breaking & Restoration

Two illustrative cases:

<table>
<thead>
<tr>
<th>Extension</th>
<th>DOF</th>
<th>EWPT</th>
<th>DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color triplet scalar</td>
<td>6</td>
<td>✔</td>
<td>✖</td>
</tr>
<tr>
<td>Color triplet + singlet</td>
<td>7</td>
<td>✔</td>
<td>✖</td>
</tr>
</tbody>
</table>

- heavy: generic flavor structure
- Spontaneous B violation

SM + Color Triplet

H. Patel, R-M, Wise
1303.1140 (2013)

\[V = -\mu_H^2 (H^\dagger H) - \mu_C^2 (C^\dagger C) + \frac{\lambda_H}{2} (H^\dagger H)^2 \]
\[+ \frac{\lambda_C}{2} (C^\dagger C)^2 + \lambda_{HC} (H^\dagger H)(C^\dagger C). \]

Decays: \[C \rightarrow \langle C \rangle = \nu_C \] : B violation

\[L_Y = C \bar{u}_R g_{uL} L_L + C \bar{Q}_L g_{Qe} e_R + \text{h.c..} \]
SM + Color Triplet

\[
V = -\mu_H^2 (H^\dagger H) - \mu_C^2 (C^\dagger C) + \frac{\lambda_H}{2} (H^\dagger H)^2 \\
+ \frac{\lambda_C}{2} (C^\dagger C)^2 + \lambda_{HC} (H^\dagger H)(C^\dagger C).
\]

Upper bound on \(m_C \):

\[
\begin{align*}
m_h^2 &= 2\mu_H^2 = 2\lambda_H v_H^2 > 0 \\
m_C^2 &= -\mu_C^2 + \lambda_{HC} v_H^2 > 0
\end{align*}
\]

\[
m_C < (\sqrt{\lambda_{HC}}) v_H \simeq (174 \text{ GeV}) \sqrt{\lambda_{HC}}
\]
SM + Color Triplet + Singlet

\[\Delta V = -\frac{\mu_S^2}{2} S^2 + \frac{\lambda_S}{4} S^4 + \lambda_{HC} (H^\dagger H)(C^\dagger C) + \frac{\lambda_{HS}}{2} (H^\dagger H)S^2 + \frac{\lambda_{CS}}{2} (C^\dagger C)S^2 + \frac{e_S}{3} S^3 + e_C C^\dagger CS + e_H H^\dagger HS. \]

Heavier colored scalar

\[m_C^2 = -\mu_C^2 + \lambda_{HC} v_H^2 + \frac{\lambda_{CS}}{2} v_S^2 + e_C v_S \]
Higgs Decays: All Channels

ATLAS Preliminary

- $WZ \to bb$
 - $\mathcal{L} = 7 \text{ TeV}, L = 4.7 \text{ fb}^{-1}$
 - $\mathcal{L} = 8 \text{ TeV}, L = 13 \text{ fb}^{-1}$
- $H \to \tau\tau$
 - $\mathcal{L} = 7 \text{ TeV}, L = 4.6 \text{ fb}^{-1}$
 - $\mathcal{L} = 8 \text{ TeV}, L = 13 \text{ fb}^{-1}$
- $H \to WW^{(*)} \to h\nu\nu$
 - $\mathcal{L} = 7 \text{ TeV}, L = 4.6 \text{ fb}^{-1}$
 - $\mathcal{L} = 8 \text{ TeV}, L = 20.7 \text{ fb}^{-1}$
- $H \to \gamma\gamma$
 - $\mathcal{L} = 7 \text{ TeV}, L = 4.8 \text{ fb}^{-1}$
 - $\mathcal{L} = 8 \text{ TeV}, L = 20.7 \text{ fb}^{-1}$
- $H \to ZZ^{(*)} \to 4l$
 - $\mathcal{L} = 7 \text{ TeV}, L = 4.6 \text{ fb}^{-1}$
 - $\mathcal{L} = 8 \text{ TeV}, L = 20.7 \text{ fb}^{-1}$

Combined

- $\mathcal{L} = 7 \text{ TeV}, L = 4.6 - 4.8 \text{ fb}^{-1}$
- $\mathcal{L} = 8 \text{ TeV}, L = 13 - 20.7 \text{ fb}^{-1}$

CMS Preliminary

$m_h = 125.7 \text{ GeV}$

- $p_{SM} = 0.65$
- $H \to bb$
 - $\mu = 1.15 \pm 0.82$
- $H \to \tau\tau$
 - $\mu = 1.10 \pm 0.41$
- $H \to \gamma\gamma$
 - $\mu = 0.77 \pm 0.27$
- $H \to WW$
 - $\mu = 0.68 \pm 0.20$
- $H \to ZZ$
 - $\mu = 0.92 \pm 0.28$

Best fit σ/σ_{SM}

$\mathcal{L} = 7 \text{ TeV}, L \leq 5.1 \text{ fb}^{-1}$
$\mathcal{L} = 8 \text{ TeV}, L \leq 19.8 \text{ fb}^{-1}$
Theoretical Issues

Gauge-dependence in $V_{\text{EFF}}(\varphi, T)$

$V_{\text{EFF}}(\varphi, T) \rightarrow V_{\text{EFF}}(\varphi, T; \xi)$

Ongoing research: approaches for carrying out tractable, GI computations

- C. Wainwright, S. Profumo, MRM Phys Rev. D84 (2011) 023521
- H. Gonderinger, H. Lim, & MRM, arXiv:1202.1316
Origin of Gauge Dependence

Effective Action

\[\Gamma[\phi_{c1}(x)] = W[j] - \int d^4 x j(x) \phi_{c1}(x) \]

\[W[j] = -i \ln Z[j] \]

\[Z[j] = \int \mathcal{D}\phi \mathcal{D}A \mathcal{D}\eta \mathcal{D}\eta^\dagger e^{i \int d^4 x \left[\mathcal{L}(x; j, \xi) \right]} \]

Effective Potential

\[\phi_{c1}(x) \rightarrow \phi_{c1} \quad \Gamma(\phi_{c1}) = -(\text{vol}) V_{\text{eff}}(\phi_{c1}) \]

Source term:

\[\int d^d x j(x) \phi(x) \]

Not GI
Nielsen Identities

Identity:

\[
\frac{\partial \Gamma}{\partial \xi} = \int d^d x \ d^d y \left[C(\phi, A; x, y) \frac{\delta \Gamma}{\delta \phi(x)} + E_\mu(\phi, A; x, y) \frac{\delta \Gamma}{\delta A_\mu^a(x)} \right]
\]

Extremal configurations:

\[
\frac{\delta \Gamma}{\delta \phi(x)} = \frac{\delta \Gamma}{\delta A_\mu^a(x)} = 0 \quad \Rightarrow \quad \frac{\partial \Gamma}{\partial \xi} = 0
\]

Effective potential:

\[
\phi \rightarrow \phi_{\text{min}}(\xi)
\]

\[
\frac{\partial V_{\text{eff}}}{\partial \xi} = -\tilde{C}(\phi, \xi) \frac{\partial V_{\text{eff}}}{\partial \phi} = 0
\]
Baryon Number Preservation

\[S \equiv \frac{\rho_B(\Delta t_{EW})}{\rho_B(0)} > e^{-N} \]

\[\ln S \sim A(T_C) e^{\zeta} \]

\[\zeta = F(\varphi) \]

\[\zeta \equiv \frac{E_{\text{sph}}}{T} \bigg|_{T=T_C} \]

Two qtns of interest:

- \(T_C \) from \(V_{\text{eff}} \)
- \(E_{\text{sph}} \) from \(\Gamma_{\text{eff}} \)
Baryon Number Preservation: Pert Theory

\[S \equiv \frac{\rho_B(\Delta t_{EW})}{\rho_B(0)} > e^{-N} \]

Conventional treatments

Gauge Dep

“Baryon number preservation criterion” (BNPC)

H. Patel & MRM, JHEP 1107 (2011) 029

\[\zeta = F(\varphi) \]
Baryon Number Preservation: Pert Theory

\[S \equiv \frac{\rho_B(\Delta t_{EW})}{\rho_B(0)} > e^{-N} \]

Conventional treatments

\[\zeta = F(\varphi) \]

Gauge Dep

“Baryon number preservation criterion” (BNPC)

- GI \(T_C \) from hbar exp, \(V_{\text{eff}}(\phi^*\phi) \), or Hamiltonian formulation
- Use GI scale in \(E_{\text{sph}} \) computation

H. Patel & MRM, JHEP 1107 (2011) 029
Nielsen Identities: Application to T_C

Critical Temperature

$$V_{\text{eff}}(\phi_{\text{min}}, T_C) = V_{\text{eff}}(0, T_C)$$

Apply consistently order-by-order in \hbar

$$V_{\text{eff}}(\phi, T) = V_0(\phi) + \hbar V_1(\phi, T) + \hbar^2 V_2(\phi, T) + \ldots$$

$$\phi_{\text{min}} = \phi_0 + \hbar \phi_1(T, \xi) + \hbar^2 \phi_2(T, \xi) + \ldots$$

Implement minimization order-by-order (defines ϕ_n)

$$V_{\text{eff}}[\phi_{\text{min}}(T), T] = V_0(\phi_0) + \hbar V_1(\phi_0, T)$$

$$+ \hbar^2 \left[V_2(\phi_0, T, \xi) - \frac{1}{2} \phi_1(T, \xi) \frac{\partial^2 V_0}{\partial \phi^2} |_{\phi_0} \right] + O(\hbar^3)$$

References:
- Fukuda & Kugo '74: $T=0$ V_{EFF}
- Laine '95: 3D high-T Eff Theory
- Patel & R-M '11: Full high T Theory
Obtaining a GI T_C

Track evolution of minima with T using \hbar expansion

$n=1$

$n=2$

$n=3$

Track evolution of different minima with T using

$V_{\text{eff}}[\phi_{\text{min}}(T), T] = V_0[\phi_{0}^{(n)}] + \hbar V_1[\phi_{0}(n), T]$

Illustrative results in SM:

$V_{\text{eff}}(\phi_{\text{min}}(T), T) = V_0(\phi) + \hbar V_1(\phi, T)$

Full ϕ

$V_{\text{eff}}[\phi_{\text{min}}(T), T] = V_0(\phi_0) + \hbar V_1(\phi_0, T)$