Singlet Assisted Electroweak Phase Transitions and Precision Higgs Studies

Peter Winslow

Based on:

S. Profumo, M. Ramsey-Musolf, C. Wainwright, P. Winslow

arXiv:1510.XXXX
A. Kotwal, J. M. No, M. Ramsey-Musolf, P. Winslow
Outline

Singlets: Collider Physics ↔ Cosmology

The xSM: a Minimally Extended Scalar Sector

1st Order Phase Transitions: Electroweak Baryogenesis in the xSM

NextGen Colliders: A motivation from Cosmology
LHC has thrown open the door to the scalar sector of the SM!

… but where’s all the NP?
No obvious hints from CKM-ology or EWPO either…

Options:
→ Heavy NP
→ Weakly coupled NP
→ Clever NP (compressed spectra, etc.)
→ Hidden Sectors / Singlets
Singlets:

- Less constrained (possibly still weak scale)
- Typically still couple to SM via portals
 → Interesting collider signatures
- Also motivated by real cosmological problems

\[\Delta \mathcal{L} \supset \mathcal{O}_{NP} |H|^2 \]

SM\hspace{2cm}NP

Higgs Portal
Singlets:

- Less constrained (possibly still weak scale)

- Typically still couple to SM via portals
 → Interesting collider signatures

- Also motivated by real cosmological problems
 → Matter/Antimatter Asymmetry

- Higgs portals can modify character of EWPT
 → Strongly 1st order EWPT
 → Highly motivated by EWBG

Requirement of a SFOEWPT identifies a preferred parameter space
→ *Cosmological motivation for collider searches*
The xSM: a useful toy model

$$V_{xSM}(H, S) = V_{SM}(H) + \left(\frac{a_1}{2} S + \frac{a_2}{2} S^2 \right) |H|^2 + \begin{array}{l}
\frac{b_2}{2} S^2 + \frac{b_3}{3} S^3 + \frac{b_4}{4} S^4
\end{array}$$

Higgs Portal

$$H = \left(\frac{1}{\sqrt{2}} \left(v_0 + h + iG^0 \right) \right), \; S = x_0 + s$$

Higgs Mixing

$$\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} h \\ s \end{pmatrix}$$

- Set $m_{h_1} = 125$ GeV

- h_1 (h_2) couplings to SM rescaled by $\cos \theta$ ($\sin \theta$)

- Singlet inherits SM couplings entirely from mixing
 - searches for heavy scalars
 - EW precision observables

$$\sin 2\theta = \frac{(a_1 + 2a_2x_0)v_0}{(m_1^2 - m_2^2)}$$
Strong 1st order EWPTs in the xSM

Connecting to EWPT requires finite temperature effective potential

\[V_{\text{eff}}(\phi, T) = V_0(\phi) + V_{CW}(\phi) + V_T^{\neq 0}(\phi, T) + V^{\text{Ring-sum}}(\phi, T) \]
Strong 1st order EWPTs in the xSM

Connecting to EWPT requires finite temperature effective potential

\[V_{eff}(\phi, T) = V_0(\phi) + V_{CW}(\phi) + V^{T \neq 0}(\phi, T) + V^{\text{Ring-sum}}(\phi, T) \]

\[\rightarrow \text{Gauge dependent!!} \quad \text{JHEP 1107 (2011) 029} \]

\[\rightarrow \text{Independence restored at high temperature} \]

\[V_{eff}(\phi, \alpha, T)^{xSM} \xrightarrow{\text{High } T} \bar{D}(T^2 - T_0^2)\phi^2 + e\phi^3 + \frac{\bar{\lambda}}{4}\phi^4 \]

\[v(T)/\sqrt{2} = \phi(T) \cos \alpha(T), \ x(T) = \phi(T) \sin \alpha(T) \]

Condition for SFOEWPT

\[\cos \alpha(T_c) \frac{\Delta \phi(T_c)}{T_c} \gtrsim 1 \]

\[\implies - \cos \alpha(T_c) \frac{e}{2T_c \bar{\lambda}} \gtrsim 1 \]

SFOEWPT driven by tree-level parameters

\[\rightarrow \text{Classical transition} \]

\[e = \left(\frac{a_1}{2} \cos^2 \alpha + \frac{b_3}{3} \sin^2 \alpha \right) \sin \alpha \]

\[\bar{\lambda} = \lambda \cos^4 \alpha + \frac{a_2}{2} \cos^2 \alpha \sin^2 \alpha + \frac{b_4}{4} \sin^4 \alpha \]
Strong 1st order EWPTs in the xSM

General requirements for SFOEWPT:

- Large $\cos \alpha(T_c)$

- Large, negative a_1 \implies \text{Raises barrier}

- $\overline{\lambda}$ linearly related to T_C \implies \lambda \text{ correlated with } T_C$

Condition for SFOEWPT

\[
cos \alpha(T_c) \frac{\Delta \phi(T_c)}{T_c} \gtrsim 1
\]

\[
\implies - \cos \alpha(T_c) \frac{e}{2T_c \overline{\lambda}} \gtrsim 1
\]

SFOEWPT driven by tree-level parameters \implies \text{Classical transition}

\[
e = \left(\frac{a_1}{2} \cos^2 \alpha + \frac{b_3}{3} \sin^2 \alpha \right) \sin \alpha
\]

\[
\overline{\lambda} = \lambda \cos^4 \alpha + \frac{a_2}{2} \cos^2 \alpha \sin^2 \alpha + \frac{b_4}{4} \sin^4 \alpha
\]
Strong 1st order EWPTs in the xSM

General requirements for SFOEWPT:

- Large $\cos \alpha(T_c)$
- Large, negative a_1 \rightarrow Raises barrier
- $\bar{\lambda}$ linearly related to T_C \rightarrow λ correlated with T_C

Condition for SFOEWPT

$$\cos \alpha(T_c) \frac{\Delta \phi(T_c)}{T_c} \gtrsim 1$$

$$\implies - \cos \alpha(T_c) \frac{e}{2T_c \bar{\lambda}} \gtrsim 1$$

True value is slightly higher in xSM

PRD 90 (2014) 1, 015015

SFOEWPT driven by tree-level parameters \rightarrow Classical transition

$$e = \left(\frac{a_1}{2} \cos^2 \alpha + \frac{b_3}{3} \sin^2 \alpha \right) \sin \alpha$$

$$\bar{\lambda} = \lambda \cos^4 \alpha + \frac{a_2}{2} \cos^2 \alpha \sin^2 \alpha + \frac{b_4}{4} \sin^4 \alpha$$
Possible collider signatures

\[m_2 < 2 m_1 \rightarrow \text{BSM Higgs-like decay modes} \]

\[m_1/2 < m_2 < 2 m_1 \rightarrow \text{Precision measurements} \]

\[m_2 > 2 m_1 \rightarrow \text{Resonant di-Higgs(-like) production} \]
Phenomenology depends largely on mass

Possible collider signatures

\[m_2 < 2 m_1 \rightarrow \text{BSM Higgs-like decay modes} \]

\[m_1/2 < m_2 < 2 m_1 \rightarrow \text{Precision measurements} \]

\[m_2 > 2 m_1 \rightarrow \text{Resonant di-Higgs(-like) production} \]

Motivates precision measurements at future colliders
Phenomenology depends largely on mass

Possible collider signatures

\[m_2 < 2 m_1 \rightarrow \text{BSM Higgs-like decay modes} \]

\[\frac{m_1}{2} < m_2 < 2 m_1 \rightarrow \text{Precision measurements} \]

\[m_2 > 2 m_1 \rightarrow \text{Resonant di-Higgs(-like) production} \]

What do we *know* from current LHC?

What can we *learn* from future colliders?

Motivates precision measurements at future colliders

In progress…

Also, see Chien-Yi’s Talk!
Indirect Searches: Higgs-like coupling measurements

Fit to current data

$$\chi^2(\theta) = \sum_i \left(\frac{\mu_i^{obs} - \cos^2 \theta}{\Delta \mu_i^{obs}} \right)^2$$

Sensitivity from projected uncertainties

$$\chi^2(\theta) = \sum_i \left(\frac{1 - \cos^2 \theta}{\Delta \mu_i^{proj}} \right)^2$$

LHC:
All 7-8 TeV data available

HL-LHC:
$$\sqrt{s} = 14 \text{ TeV}, 3 \text{ ab}^{-1}$$
ATL-PHYS-PUB-2013-014, CMS-NOTE-13-002

ILC-1:
$$\sqrt{s} = 250 \text{ GeV}, 250 \text{ fb}^{-1}$$

ILC-3:
$$\sqrt{s} = 1 \text{ TeV}, 1 \text{ ab}^{-1}$$

TLEP:
$$\sqrt{s} = 240 \text{ GeV}, 1 \text{ ab}^{-1}$$
arXiv:1305.6498
Indirect Searches: Oblique Parameters

Effects are simple to calculate

\[\Delta \mathcal{O} = \cos^2 \theta \mathcal{O}_{SM}^S(m_1) + \sin^2 \theta \mathcal{O}_{SM}^T(m_2) - \mathcal{O}_{SM}^S(m_1) \]
\[= (1 - \cos^2 \theta) (\mathcal{O}_{SM}^T(m_2) - \mathcal{O}_{SM}^S(m_1)) \]

\[\mathcal{O} = S, T, U \]

Perform full fit to current best-fit values from Gfitter

\[\Delta \chi^2 = \sum_{i,j} (\Delta \mathcal{O}_i - \Delta \mathcal{O}_i^0) \left(\sigma^2 \right)_{ij}^{-1} (\Delta \mathcal{O}_j - \Delta \mathcal{O}_j^0) \]

Direct searches: Null results from SM-like Higgs searches

All h_2-SM interactions rescaled by $\sin\theta$

$$\mu_{XX} = \frac{\sigma(m_2) \cdot \text{BR}(m_2)}{\sigma^{SM}(m_2) \cdot \text{BR}^{SM}(m_2)} = 1 - \cos^2\theta$$

LEP Searches

Direct searches: Null results from SM-like Higgs searches

All h_2-SM interactions rescaled by $\sin \theta$

$$\mu_{XX} = \frac{\sigma(m_2) \cdot \text{BR}(m_2)}{\sigma^{SM}(m_2) \cdot \text{BR}^{SM}(m_2)} = 1 - \cos^2 \theta$$

Higgs Discovery

LEP Searches

LHC Searches

→ ATLAS-CMS Combination

Direct searches: Null results from SM-like Higgs searches

All h_2-SM interactions rescaled by $\sin \theta$

$$\mu_{XX} = \frac{\sigma(m_2) \cdot BR(m_2)}{\sigma^{SM}(m_2) \cdot BR^{SM}(m_2)} = 1 - \cos^2 \theta$$

Higgs Discovery

LEP Searches

LHC Searches

→ ATLAS-CMS Combination

Dedicated heavy SM-like Higgs search

→ CMS

Eur. J. Phys. 73, 2469 (2013)
Lepton Colliders

\[\sqrt{s} > 2 \, m_{h_1} \]

Direct Production

\[\sqrt{s} < 2 \, m_{h_1} \]

Indirect Production

Model-dependent...

Noble, Perelstein
PRD 78 063518 (2008)

Direct

\[p_s < \]

\[m_{h_1} \]

Indirect

\[p_s > \]

\[m_{h_1} \]

PRD 90 (2014) 1, 015001

Hadron Colliders

Direct Production

\[g \, g \, \text{fusion} : \]

\[t \]

\[t \]

\[h^0 \]

Indirect Production

\[q \]

\[\mathbb{W}, \mathbb{Z} \]

\[h^0 \]

\[q \]

\[\mathbb{W}, \mathbb{Z} \]

\[h^0 \]
Projected sensitivity to Higgs-like tri-linear self-coupling

TLEP & CEPC: Direct (Indirect)

HL-LHC: $\bar{b}b\gamma\gamma$, with $\bar{b}bW^+W^-$, $\bar{b}b\tau^+\tau^-$

$\lambda_{h_1 h_1 h_1}/\lambda_{h_1 h_1 h_1}^{SM}$

arXiv:1305.6498

Projected sensitivity to Higgs-like tri-linear self-coupling

ILC: $e^+ e^- \rightarrow Zhh$

with $e^+ e^- \rightarrow \nu \bar{\nu} hh$

1 TeV with 2.5/ab

VHE-LHC or SPPC (100 TeV pp collider)

100 TeV with 3/ab

ILC Higgs White Paper

$\lambda_{h_1 h_1 h_1}/\lambda_{SM}^{h_1 h_1 h_1}$

Projected sensitivity to Higgs-like tri-linear self-coupling

Revised to 100 TeV with 3/ab (30/ab): (~40%) ~10%

JHEP 1502, 016 (2015)

ILC: $e^+ e^- \rightarrow Z h h$
with $e^+ e^- \rightarrow \nu \bar{\nu} h h$

1 TeV with 2.5/ab

VHE-LHC or SPPC (100 TeV pp collider)

100 TeV with 3/ab

ILC Higgs White Paper

Projected sensitivity to Higgs-like tri-linear self-coupling
Phenomenological Implications

Perform MC scans over xSM space

\[a_1/\text{TeV}, b_3/\text{TeV} \in [-1, 1], \quad x_0/\text{TeV} \in [0, 1], \quad b_4, \, \lambda \in [0, 1] \]

Require: \textit{Current Collider Constraints} \quad SFOEWPT \quad Sufficient Tunnelling

- High precision Higgs-like coupling measurements
- Searches for SM-like Higgs’ near di-Higgs threshold

SFOEWPT-viable space is biased towards small mixing and large mass splitting.

Motivates:

- High precision Higgs-like coupling measurements
- Searches for SM-like Higgs’ near di-Higgs threshold
Phenomenological Implications

Deviations for which $\lambda_{h_1 h_1 h_1} < \lambda_{h_1 h_1 h_1}^{SM}$ correspond to strong quenching of sphalerons!

Precision measurements of tri-linear Higgs self-coupling will be powerful probes of SFOEWPT-viable space!
For higher singlet-like masses, $h_2 \to h_1 h_1$ opens up
→ Resonantly enhanced di-Higgs production becomes possible

What are discovery prospects for models which feature SFOEWPT?

Assume in the resonance region
→ don’t account for box graphs

\[
\lambda_{211} = \sin \theta f(\lambda, x_0, a_1, b_3, b_4)
\]

Goal: Determine benchmark points, based on largest σ BR, which feature a SFOEWPT
→ Concentrate on ggF

\[
\sigma_{LO}(pp(gg) \to h_2) = \sin^2 \theta \sigma_{ggF}^{ggF} m_2^2 \frac{d\mathcal{L}}{dm_2^2}
\]
For higher singlet-like masses, $h_2 \rightarrow h_1 h_1$ opens up → Resonantly enhanced di-Higgs production becomes possible

What are discovery prospects for models which feature SFOEWPT?

Assume in the resonance region → don’t account for box graphs

\[\lambda_{211} = \sin \theta \ f(\lambda, x_0, a_1, b_3, b_4) \]

Goal: **Determine benchmark points, based on largest σ BR, which feature a SFOEWPT** → **Concentrate on ggF**

\[\sigma_{LO}(pp(gg) \rightarrow h_2) = \sin^2 \theta \ \sigma_0^{ggF} m_2^2 \ \frac{d\mathcal{L}}{dm_2^2} \]

Higgs XSWG at 100 TeV
For higher singlet-like masses, $h_2 \rightarrow h_1 h_1$ opens up
→ Resonantly enhanced di-Higgs production becomes possible

What are discovery prospects for models which feature SFOEWPT?

Assume in the resonance region
→ don’t account for box graphs

$\lambda_{211} = \sin \theta f(\lambda, x_0, a_1, b_3, b_4)$

Goal: Determine benchmark points, based on largest σBR, which feature a SFOEWPT
→ Concentrate on ggF

$$BR(h_2 \rightarrow h_1 h_1) = \left(1 + \frac{8\pi \sin^2 \theta \ m_2 \Gamma_{h_1}^{SM}(m_2)}{\lambda_{211}^2 \sqrt{1 - \frac{4m_1^2}{m_2^2}}} \right)^{-1}$$
- Simulate events with MG5 + Pythia8
- Choose final states based on BG suppression
 → bbyy, 4τ, ττyy have smaller σ’s but cleaner signatures
 → 100 TeV collider may yield substantial # of events
- For each final state:
 - Combine distributions
 - Use BDT algorithm to separate signal from BG
- Simulate events with MG5 + Pythia8
- Choose final states based on BG suppression
 → bbyy, 4τ, ττyy have smaller σ’s but cleaner signatures
 → 100 TeV collider may yield substantial # of events
- For each final state:
 - Combine distributions
 - Use BDT algorithm to separate signal from BG

<table>
<thead>
<tr>
<th>Benchmarks</th>
<th>c0</th>
<th>m2 (GeV)</th>
<th>Wb_2 (GeV)</th>
<th>Wb (GeV)</th>
<th>x_0 (GeV)</th>
<th>λ</th>
<th>a1 (GeV)</th>
<th>a2</th>
<th>b0 (GeV)</th>
<th>b4</th>
<th>g_{111}</th>
<th>g_{211}</th>
<th>σ (pb)</th>
<th>BR</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>0.97</td>
<td>295</td>
<td>0.69</td>
<td>7.89</td>
<td>79</td>
<td>0.17</td>
<td>-637.5</td>
<td>1.87</td>
<td>-166</td>
<td>0.9</td>
<td>45</td>
<td>49</td>
<td>28</td>
<td>0.27</td>
</tr>
<tr>
<td>B2</td>
<td>0.95</td>
<td>338.7</td>
<td>4.41</td>
<td>13.31</td>
<td>228</td>
<td>0.94</td>
<td>-484</td>
<td>0.53</td>
<td>-343</td>
<td>0.6</td>
<td>186</td>
<td>199</td>
<td>52</td>
<td>0.71</td>
</tr>
<tr>
<td>B3</td>
<td>0.95</td>
<td>306.9</td>
<td>5.02</td>
<td>19.37</td>
<td>257</td>
<td>0.93</td>
<td>-276</td>
<td>0.01</td>
<td>-380</td>
<td>0.9</td>
<td>184</td>
<td>-306</td>
<td>54.5</td>
<td>0.7</td>
</tr>
<tr>
<td>B4</td>
<td>0.96</td>
<td>406.2</td>
<td>3.11</td>
<td>31.21</td>
<td>190</td>
<td>0.66</td>
<td>-952</td>
<td>1.6</td>
<td>-159</td>
<td>0.76</td>
<td>120</td>
<td>-65</td>
<td>51</td>
<td>0.12</td>
</tr>
<tr>
<td>B5</td>
<td>0.98</td>
<td>493.3</td>
<td>2.84</td>
<td>63.16</td>
<td>26</td>
<td>0.09</td>
<td>-420</td>
<td>1</td>
<td>-66</td>
<td>0.74</td>
<td>7.1</td>
<td>-43.5</td>
<td>19.5</td>
<td>0.05</td>
</tr>
<tr>
<td>B6</td>
<td>0.97</td>
<td>513.6</td>
<td>4.14</td>
<td>74.39</td>
<td>26</td>
<td>0.4</td>
<td>-262</td>
<td>1.3</td>
<td>113</td>
<td>0.65</td>
<td>2</td>
<td>-81.85</td>
<td>19</td>
<td>0.11</td>
</tr>
<tr>
<td>B7</td>
<td>0.97</td>
<td>573.9</td>
<td>6.02</td>
<td>106.42</td>
<td>29</td>
<td>0.18</td>
<td>-711</td>
<td>1.5</td>
<td>-962</td>
<td>0.57</td>
<td>9.3</td>
<td>-122</td>
<td>11</td>
<td>0.13</td>
</tr>
<tr>
<td>B8</td>
<td>0.97</td>
<td>614.6</td>
<td>7.29</td>
<td>132.41</td>
<td>31</td>
<td>0.23</td>
<td>-944</td>
<td>1.9</td>
<td>-690</td>
<td>0.45</td>
<td>15.5</td>
<td>-137</td>
<td>8.8</td>
<td>0.1</td>
</tr>
<tr>
<td>B9</td>
<td>0.97</td>
<td>673.2</td>
<td>11.13</td>
<td>176.5</td>
<td>31</td>
<td>0.18</td>
<td>-844</td>
<td>1.6</td>
<td>-471</td>
<td>0.6</td>
<td>9.7</td>
<td>-133</td>
<td>4.3</td>
<td>0.12</td>
</tr>
<tr>
<td>B10</td>
<td>0.98</td>
<td>725.4</td>
<td>8.82</td>
<td>222.26</td>
<td>24</td>
<td>0.16</td>
<td>-632</td>
<td>0.94</td>
<td>952</td>
<td>1</td>
<td>3.6</td>
<td>-105</td>
<td>1.56</td>
<td>0.11</td>
</tr>
<tr>
<td>B11</td>
<td>0.99</td>
<td>781.6</td>
<td>4.99</td>
<td>281.85</td>
<td>16</td>
<td>0.1</td>
<td>-862</td>
<td>1.48</td>
<td>711.5</td>
<td>0.26</td>
<td>8</td>
<td>-139</td>
<td>1.13</td>
<td>0.11</td>
</tr>
<tr>
<td>B12</td>
<td>0.98</td>
<td>816.6</td>
<td>10.44</td>
<td>325.53</td>
<td>21</td>
<td>0.16</td>
<td>-909</td>
<td>0.9</td>
<td>351</td>
<td>0.53</td>
<td>5.77</td>
<td>-170</td>
<td>2.3</td>
<td>0.14</td>
</tr>
<tr>
<td>B13</td>
<td>0.99</td>
<td>868.4</td>
<td>8.06</td>
<td>398.44</td>
<td>17.4</td>
<td>0.13</td>
<td>-851</td>
<td>1.48</td>
<td>711.5</td>
<td>0.26</td>
<td>8</td>
<td>-139</td>
<td>1.13</td>
<td>0.11</td>
</tr>
<tr>
<td>B14</td>
<td>0.99</td>
<td>915.3</td>
<td>9.70</td>
<td>475.65</td>
<td>17.6</td>
<td>0.15</td>
<td>-958</td>
<td>1.8</td>
<td>573</td>
<td>0.36</td>
<td>9.6</td>
<td>-154.6</td>
<td>0.93</td>
<td>0.11</td>
</tr>
</tbody>
</table>
Conclusions

xSM: a simple framework linking EWPT dynamics to mixing phenomenology, allowing
- EWPT-preferred parameter space to act as a guide for collider searches
- Precision collider measurements to act as a powerful probe of the EWPT

In both cases, SFOEWPT motivates next gen. colliders for the purposes of
- High precision Higgs coupling measurements
- Direct searches for singlet-like scalars

Should future experiments find evidence for
- Non-zero Higgs mixing
- Existence of a singlet-like scalar
- Deviations in $\lambda_{h_1 h_1 h_1}^{SM}$

our work will aid in narrowing down SFOEWPT-viable parameter space

Thank you!
Orange Points: Satisfy Collider Bounds

Black Points: Satisfy EWPT

Backup Slides