LFV in B decays

Diego Guadagnoli
LAPTh Annecy (France)

Based on
S.L. Glashow, DG, K. Lane,
PRL 15
Motivation: LHCb’s $b \to s$ data

The original reason for this work are the following pieces of exp info (LHCb):

\[R_K = \frac{BR(B^+ \to K^+ \mu \mu)_{[1,6]}}{BR(B^+ \to K^+ e e)_{[1,6]}} = 0.745 \cdot (1 \pm 13\%) \]

whereas the SM predicts unity within any foreseeable exp accuracy

D. Guadagnoli, LFV in B decays
The original reason for this work are the following pieces of exp info (LHCb):

1. \[R_K = \frac{BR(B^+ \to K^+ \mu \mu)_{[1,6]}^{[1,6]}}{BR(B^+ \to K^+ e e)_{[1,6]}} = 0.745 \cdot (1 \pm 13\%) \]
 whereas the SM predicts unity within any foreseeable exp accuracy

2. \[BR(B^+ \to K^+ \mu \mu)_{[1,6]}^{[1,6]} = (1.19 \pm 0.07) \cdot 10^{-7} \]
 vs.
\[BR(B^+ \to K^+ \mu \mu)_{[1,6]}^{SM} = 1.75^{+0.60}_{-0.29} \times 10^{-7} \]

[Bobeth, Hiller, van Dick (2012)]
Motivation:
LHCb's $b \to s$ data

The original reason for this work are the following pieces of exp info (LHCb):

1. $R_K = \frac{BR(B^+ \to K^+ \mu \mu)_{[1,6]}}{BR(B^+ \to K^+ ee)_{[1,6]}} = 0.745 \cdot (1 \pm 13\%)$

 whereas the SM predicts unity within any foreseeable exp accuracy

2. $BR(B^+ \to K^+ \mu \mu)_{[1,6]} = (1.19 \pm 0.07) \cdot 10^{-7}$

 vs.

 $BR(B^+ \to K^+ \mu \mu)_{[1,6]}^{SM} = 1.75_{-0.29}^{+0.60} \times 10^{-7}$

 [Bobeth, Hiller, van Dick (2012)]

3. $BR(B^+ \to K^+ ee)_{[1,6]}$ agrees with the SM (within large errors)
Motivation:
LHCb's $b \to s$ data

The original reason for this work are the following pieces of exp info (LHCb):

1. $R_K = \frac{BR(B^+ \to K^+ \mu \mu)_{[1,6]}}{BR(B^+ \to K^+ ee)_{[1,6]}} = 0.745 \cdot (1 \pm 13\%)$
 whereas the SM predicts unity within any foreseeable exp accuracy

2. $BR(B^+ \to K^+ \mu \mu)_{[1,6]} = \left(1.19 \pm 0.07\right) \cdot 10^{-7}$
 vs.
 $BR(B^+ \to K^+ \mu \mu)^{SM}_{[1,6]} = 1.75^{+0.60}_{-0.29} \times 10^{-7}$
 [Bobeth, Hiller, van Dick (2012)]

3. $BR(B^+ \to K^+ ee)_{[1,6]}$ agrees with the SM (within large errors)

Note
- muons are among the most reliable objects within LHCb
Motivation:
LHCb's $b \to s$ data

The original reason for this work are the following pieces of exp info (LHCb):

1. $R_K = \frac{BR(B^+ \to K^+ \mu\mu)_{[1,6]}}{BR(B^+ \to K^+ ee)_{[1,6]}} = 0.745 \cdot (1 \pm 13\%)$
 whereas the SM predicts unity within any foreseeable exp accuracy

2. $BR(B^+ \to K^+ \mu\mu)_{[1,6]} = (1.19 \pm 0.07) \cdot 10^{-7}$
 vs.
 $BR(B^+ \to K^+ \mu\mu)^{SM}_{[1,6]} = 1.75^{+0.60}_{-0.29} \times 10^{-7}$
 [Bobeth, Hiller, van Dick (2012)]

3. $BR(B^+ \to K^+ ee)_{[1,6]}$ agrees with the SM (within large errors)

Note
- muons are among the most reliable objects within LHCb
- the electron channel would be an obvious culprit (brems + low stats).
 But there is no disagreement

D. Guadagnoli, LFV in B decays
Motivation:
LHCb’s b → s data

The original reason for this work are the following pieces of exp info (LHCb):

1. $R_K = \frac{BR(B^+ \to K^+ \mu\mu)_{[1,6]}^{} }{BR(B^+ \to K^+ ee)_{[1,6]}^{} } = 0.745 \cdot (1\pm13\%)$ whereas the SM predicts unity within any foreseeable exp accuracy

2. $BR(B^+ \to K^+ \mu\mu)_{[1,6]}^{} = (1.19\pm0.07) \cdot 10^{-7}$ vs. $BR(B^+ \to K^+ \mu\mu)_{SM}^{[1,6]} = 1.75^{+0.60}_{-0.29} \times 10^{-7}$ [Bobeth, Hiller, van Dick (2012)]

3. $BR(B^+ \to K^+ ee)_{[1,6]}^{}$ agrees with the SM (within large errors)

Note
- muons are among the most reliable objects within LHCb
- the electron channel would be an obvious culprit (brems + low stats).
 But there is no disagreement

1 + 2 + 3 \Rightarrow There seems to be BSM LFNU and the effect is in $\mu\mu$, not ee
Actually, after some effective-theory insights, two further pieces of info support the above picture.

4. P'_5 deficit in angular $B \rightarrow K^* \mu \mu$ data

(it occurs also in the low-q^2 range)
Actually, after some effective-theory insights, two further pieces of info support the above picture

4. P'_5 deficit in angular $B \rightarrow K^* \mu \mu$ data (it occurs also in the low-q^2 range)

5. \[
\frac{BR(B_s \rightarrow \mu \mu)_{\text{exp}}}{BR(B_s \rightarrow \mu \mu)_{\text{SM}}} = 0.77 \pm 0.20
\]
Motivation 2

Actually, after some effective-theory insights, two further pieces of info support the above picture.

1. Actually, after some effective-theory insights, two further pieces of info support the above picture.

4. P_5^* deficit in angular $B \to K^* \mu \mu$ data (it occurs also in the low-q^2 range)

5. \[
\frac{BR(B_s \to \mu \mu)_{\text{exp}}}{BR(B_s \to \mu \mu)_{\text{SM}}} = 0.77 \pm 0.20
\]

- Each of the above points, taken singly, is at best a 3σ effect

⇒ Early to get excited
Motivation 2

Actually, after some effective-theory insights, two further pieces of info support the above picture

- P'_5 deficit in angular $B \rightarrow K^* \mu \mu$ data
- \[
\frac{BR(B_s \rightarrow \mu \mu)_{exp}}{BR(B_s \rightarrow \mu \mu)_{SM}} = 0.77 \pm 0.20
\]

Each of the above points, taken singly, is at best a 3σ effect

\[\Rightarrow\] Early to get excited

Yet:
- **Q1**: Can we (easily) make sense of ① to ⑤?
- **Q2**: What are the most immediate signatures to expect?
Concerning Q2: most immediate signatures to expect
Concerning Q2: most immediate signatures to expect

Basic observation:

- If R_K is signaling LFNU at a non-SM level, we may also expect LFV at a non-SM level.
Concerning Q2: most immediate signatures to expect

Basic observation:

- If R_K is signaling LFNU at a non-SM level, we may also expect LFV at a non-SM level.

In fact:

- Consider a new, LFNU interaction above the EWSB scale, e.g. with

 new vector bosons: $\ell Z' \ell$ or leptoquarks: $\ell \phi q$
Concerning Q2: most immediate signatures to expect

Basic observation:

- If R_K is signaling LFNU at a non-SM level, we may also expect LFV at a non-SM level.

In fact:

- Consider a new, LFNU interaction above the EWSB scale, e.g. with

 new vector bosons: $l\ell' Z'$ or leptoquarks: $l\phi q$

- *In what basis are quarks and leptons in the above interaction?*

 In general, it's the “gauge” basis.

 Namely, it's not the mass eigenbasis.

 (This basis doesn't yet even exist. We are above the EWSB scale.)
Concerning Q2: most immediate signatures to expect

Basic observation:

- If R_K is signaling LFNU at a non-SM level, we may also expect LFV at a non-SM level.

In fact:

- Consider a new, LFNU interaction above the EWSB scale, e.g. with

 new vector bosons: $\ell Z' \ell$ \quad or \quad leptoquarks: $\ell \phi q$

- In what basis are quarks and leptons in the above interaction?

 In general, it's the “gauge” basis.

 Namely, it's not the mass eigenbasis.
 (This basis doesn't yet even exist. We are above the EWSB scale.)

- Rotating q and ℓ to the mass eigenbasis generates LFV interactions.
Let's now turn to Q1:

Can we (easily) make sense of data 1 to 5?

It is highly non-trivial that a simple consistent BSM picture exists to describe the above data 1 to 5.
Let’s now turn to Q1:

Can we (easily) make sense of data ➊ to ➋?

It is highly non-trivial that a simple consistent BSM picture exists to describe the above data ➊ to ➋.

Consider the following Hamiltonian

\[
H_{\text{SM+NP}}(\bar{b} \rightarrow \bar{s} \mu \mu) = -\frac{4G_F}{\sqrt{2}} V_{tb}^* V_{ts} \frac{\alpha_{\text{em}}}{4\pi} \left[\bar{b}_L \gamma^\lambda s_L \cdot \left(C_{9}^{(\mu)} \bar{\mu} \gamma^\lambda \mu + C_{10}^{(\mu)} \bar{\mu} \gamma^\lambda \gamma^5 \mu \right) \right]
\]
Let’s now turn to Q1:
Can we (easily) make sense of data \dagger to \ddagger?

It is highly non-trivial that a simple consistent BSM picture exists to describe the above data \dagger to \ddagger.

- Consider the following Hamiltonian

\[
H_{SM+NP}(\bar{b} \to \bar{s} \mu \mu) = -\frac{4 G_F}{\sqrt{2}} V_{tb}^* V_{ts} \frac{\alpha_{em}}{4\pi} \left[\bar{b}_L \gamma_\lambda s_L \cdot \left(C_9^{(\mu)} \bar{\mu} \gamma_\lambda \mu + C_{10}^{(\mu)} \bar{\mu} \gamma_\lambda \gamma_5 \mu \right) \right]
\]

purely vector lepton current

purely axial lepton current
Let's now turn to Q1:
Can we (easily) make sense of data 1 to 5?

It is highly non-trivial that a simple consistent BSM picture exists to describe the above data 1 to 5.

- Consider the following Hamiltonian

\[
H_{SM+NP} \left(\bar{b} \rightarrow \bar{s} \mu \mu \right) = -\frac{4 G_F}{\sqrt{2}} V_{tb}^* V_{ts} \frac{\alpha_{em}}{4\pi} \left[\bar{b} L \gamma^\lambda s_L \cdot \left(C_9^{(\mu)} \bar{\mu} \gamma_\lambda \mu + C_{10}^{(\mu)} \bar{\mu} \gamma_\lambda \gamma_5 \mu \right) \right]
\]

- Note:
\[
C_9^{SM} (m_b) \approx +4.2 \\
C_{10}^{SM} (m_b) \approx -4.4
\]

[Bobeth, Misiak, Urban, 99]
[Khodjamirian et al., 10]
Let's now turn to Q1:

Can we (easily) make sense of data ➊ to ➋?

It is highly non-trivial that a simple consistent BSM picture exists to describe the above data ➊ to ➋.

- Consider the following Hamiltonian

\[
H_{\text{SM+NP}}(\bar{b} \to \bar{s} \mu \mu) = -\frac{4 G_F}{\sqrt{2}} V_{tb}^* V_{ts} \frac{\alpha_{\text{em}}}{4 \pi} \left[\bar{b} L \gamma^\lambda s_L \cdot \left(C_9^{(u)} \bar{\mu} \gamma_\lambda \mu + C_{10}^{(u)} \bar{\mu} \gamma_\lambda \gamma_5 \mu \right) \right]
\]

- Note:

\[
C_9^{\text{SM}}(m_b) \approx +4.2 \quad \quad C_{10}^{\text{SM}}(m_b) \approx -4.4
\]

Note: In the SM, also the lepton current has nearly V - A structure.

[Bobeth, Misiak, Urban, 99]
[Khodjamirian et al., 10]
Let’s now turn to Q1:

Can we (easily) make sense of data ➊ to ➋?

It is highly non-trivial that a simple consistent BSM picture exists to describe the above data ➊ to ➋.

Consider the following Hamiltonian

\[
H_{\text{SM+NP}}(\bar{b} \rightarrow \bar{s} \mu \mu) = -\frac{4 G_F}{\sqrt{2}} V^*_{tb} V_{ts} \frac{\alpha_{\text{em}}}{4 \pi} \left[\bar{b} L \gamma^\lambda s_L \cdot \left(C^{|\mu|}_{9} \bar{\mu} \gamma_\lambda \mu + C^{|\mu|}_{10} \bar{\mu} \gamma_\lambda \gamma_5 \mu \right) \right]
\]

Note:

\[
C^\text{SM}_{9}(m_b) \approx +4.2 \\
C^\text{SM}_{10}(m_b) \approx -4.4
\]

i.e. in the SM also the lepton current has nearly V – A structure.

We assume the above V – A structure to hold also beyond the SM, namely

\[
C^{(\ell)}_9 \approx -C^{(\ell)}_{10} \quad \text{with} \quad C^{(\ell)}_{9,10} = C^{\text{SM}}_{9,10} + C^{(\ell),\text{NP}}_{9,10}
\]

Our main motivation is phenomenological: it fits the data. However, there is more: see last slide.

D. Guadagnoli, LFV in B decays
In short, our model requirements are:

- $C_9^{(\ell)} \approx -C_{10}^{(\ell)}$ (V – A structure)

- $|C_{9,\text{NP}}^{(\mu)}| \gg |C_{9,\text{NP}}^{(e)}|$ (LFNU)
In short, our model requirements are:

\[C_9^{(\ell)} \approx -C_{10}^{(\ell)} \quad (V-A \text{ structure}) \]

\[|C_{9,NP}^{(\mu)}| \gg |C_{9,NP}^{(e)}| \quad (LFNU) \]

This structure can be generated from a purely 3rd-generation interaction of the kind

\[
H_{NP} = G \bar{b}'_L y^\lambda_b b'_L \bar{\tau}'_L y^\lambda \tau'_L
\]

with \(G = 1/\Lambda_{NP}^2 \ll G_F \)

expected e.g. in topcolor models

[see C.T. Hill, PLB 1995]
In short, our model requirements are:

$C_9^f \approx -C_{10}^f$ \hspace{1cm} (V − A structure)

$|C_{9,\text{NP}}^{(\mu)}| \gg |C_{9,\text{NP}}^{(e)}|$ \hspace{1cm} (LFNU)

This structure can be generated from a purely 3rd-generation interaction of the kind

$$H_{\text{NP}} = G \bar{b}'_L \gamma^\lambda b'_L \bar{\tau}'_L \gamma^\lambda \tau'_L$$

with $G = 1/\Lambda_{\text{NP}}^2 \ll G_F$

Note: primed fields

Fields are in the “gauge” basis (= primed)
In short, our model requirements are:

\[C_9^{(\ell)} \approx -C_{10}^{(\ell)} \quad (V-A \text{ structure}) \]

\[|C_{9,\text{NP}}^{(u)}| \gg |C_{9,\text{NP}}^{(e)}| \quad (\text{LFNU}) \]

This structure can be generated from a purely 3rd-generation interaction of the kind

\[H_{\text{NP}} = G \bar{b}_L' y^\lambda b_L' \bar{\tau}_L' y^\lambda \tau_L' \]

with \(G = 1/\Lambda_{\text{NP}}^2 \ll G_F \)

Note: primed fields

- Fields are in the “gauge” basis (= primed)
- They need to be rotated to the mass eigenbasis

\[b_L' \equiv (d_L')_3 = |U_L^d|_{3i} (d_L)_i \]

\[\tau_L' \equiv (\ell_L')_3 = |U_L^\ell|_{3i} (\ell_L)_i \]
In short, our model requirements are:

\[-C_9^{(\ell)} \approx -C_{10}^{(\ell)} \quad (V-A \text{ structure})\]

\[|C_{9,\text{NP}}^{(\mu)}| \gg |C_{9,\text{NP}}^{(e)}| \quad (\text{LFNU})\]

This structure can be generated from a purely 3rd-generation interaction of the kind

\[
H_{\text{NP}} = G \bar{b}'_L \gamma^\lambda b'_L \bar{\ell}'_L \gamma^\lambda \tau'_L
\]

with \(G = 1/\Lambda_{\text{NP}}^2 \ll G_F\).

Note: primed fields

- Fields are in the “gauge” basis (= primed)
- They need to be rotated to the mass eigenbasis
- This rotation induces LFNU and LFV effects

\[
\begin{align*}
\bar{b}'_L & \equiv (d'_L)_3 = |U^d_L|_{3i} (d_L)_i \\
\tau'_L & \equiv (\ell'_L)_3 = |U^\ell_L|_{3i} (\ell_L)_i
\end{align*}
\]
Explaining $b \to s$ data

- Recalling our full Hamiltonian

$$H_{\text{SM+NP}}(\bar{b} \to \bar{s} \mu \mu) = -\frac{4 G_F}{\sqrt{2}} V_{tb}^* V_{ts} \frac{\alpha_{\text{em}}}{4 \pi} \left[\bar{b}_L \gamma^\lambda s_L \cdot \left(C_9^{(\mu)} \bar{\mu} \gamma_\lambda \mu + C_{10}^{(\mu)} \bar{\mu} \gamma_\lambda \gamma_5 \mu \right) \right]$$

the shift to the C_9 Wilson coeff. in the $\mu\mu$-channel becomes

$$k_{\text{SM}} C_9^{(\mu)} = k_{\text{SM}} C_{9,\text{SM}} + \frac{G}{2} \left(U_{L}^{d*} (U_{L}^{d})_3 \right)_2^2$$
Explaining $b \rightarrow s$ data

- Recalling our full Hamiltonian

$$H_{\text{SM+NP}}(\bar{b} \rightarrow \bar{s} \mu \mu) = -\frac{4 G_F}{\sqrt{2}} V_{tb}^* V_{ts} \frac{\alpha_{\text{em}}}{4\pi} \left[\bar{b}_L \gamma^\lambda s_L \cdot \left(C_9^{(\mu)} \bar{\mu} \gamma_\lambda \mu + C_{10}^{(\mu)} \bar{\mu} \gamma_\lambda \gamma_5 \mu \right) \right]$$

the shift to the C_9 Wilson coeff. in the $\mu\mu$-channel becomes

$$k_{\text{SM}} C_9^{(\mu)} = k_{\text{SM}} C_{9,\text{SM}} + \frac{G}{2} |(U_L^{d})_{33} (U_L^{d})_{32} (U_{L}^{\ell})_{32}|^2$$

k_{SM} (SM norm. factor)
Explaining $b \to s$ data

- Recalling our full Hamiltonian

$$H_{\text{SM+NP}}(\bar{b} \to \bar{s} \mu \mu) = \frac{4 G_F}{\sqrt{2}} V_{tb}^* V_{ts} \frac{\alpha_{\text{em}}}{4 \pi} \left[\bar{b}_L \gamma^\lambda s_L \cdot \left(C_9^{(\mu)} \bar{\mu}_L \gamma_\lambda \mu + C_{10}^{(\mu)} \bar{\mu}_L \gamma_\lambda \gamma_5 \mu \right) \right]$$

the shift to the C_9 Wilson coeff. in the $\mu\mu$-channel becomes

$$k_{\text{SM}} C_9^{(\mu)} = k_{\text{SM}} C_{9,\text{SM}} + \frac{G}{2} \left(U_L^{d*} U_L^d \right)_{33} \left(U_L^\ell \right)_{32}^2$$

$$= \beta_{\text{SM}}$$
Explaining $b \to s$ data

- Recalling our full Hamiltonian

$$H_{SM+NP}(\bar{b} \to \bar{s} \mu \mu) = -\frac{4G_F}{\sqrt{2}} V_{tb}^* V_{ts} \frac{\alpha_{em}}{4\pi} \left[\bar{b}_L \gamma^\lambda s_L \cdot \left(C_9^{(\mu)} \bar{\mu} \gamma_\lambda \gamma_5 \mu + C_{10}^{(\mu)} \bar{\mu} \gamma_\lambda \gamma_5 \mu \right) \right]$$

the shift to the C_9 Wilson coeff. in the $\mu\mu$-channel becomes

$$k_{SM} C_9^{(\mu)} = k_{SM} C_{9,SM} + \frac{G}{2} \left(U_L^{d*}_{33} (U_L^{d})_{32} \right)^2 \left| (U_L^\ell)_{32} \right|^2$$

$$= \beta_{SM} + \beta_{NP}$$

The NP contribution has opposite sign than the SM one if

$$G \left((U_L^d)_{32} \right) < 0$$
Explaining $b \rightarrow s$ data

- Recalling our full Hamiltonian

$$H_{SM+NP}(\bar{b} \rightarrow \bar{s} \mu \mu) = \frac{-4 G_F}{\sqrt{2}} V_{tb}^* V_{ts} \frac{\alpha_{em}}{4 \pi} \left[\bar{b}_L \gamma^\lambda s_L \cdot \left(C^{(\mu)}_9 \bar{\mu} \gamma^\lambda \mu + C^{(\mu)}_{10} \bar{\mu} \gamma^\lambda \gamma^5 \mu \right) \right]$$

the shift to the C_9 Wilson coeff. in the $\mu\mu$-channel becomes

$$k_{SM} C^{(\mu)}_9 = k_{SM} C_{9,SM} + \frac{G}{2} \left| (U^d_L)^*_{33} (U^d_L)_{32} \right|^2$$

$$= \beta_{SM} + \beta_{NP}$$

The NP contribution has opposite sign than the SM one if

$$G \left| (U^d_L)_{32} \right| < 0$$

- On the other hand, in the ee-channel

$$k_{SM} C^{(e)}_9 = k_{SM} C_{9,SM} + \frac{G}{2} \left| (U^d_L)^*_{33} (U^d_L)_{32} \right|^2$$
Explaining $b \rightarrow s$ data

- Recalling our full Hamiltonian

\[
H_{\text{SM+NP}}(\bar{b} \rightarrow \bar{s} \mu \mu) = -\frac{4 G_F}{\sqrt{2}} V_{tb}^* V_{ts} \frac{\alpha_{\text{em}}}{4\pi} \left[\bar{b}_L \gamma^\lambda s_L \cdot \left(C_9^{(\mu)} \bar{\mu}_L \gamma_\lambda \mu + C_{10}^{(\mu)} \bar{\mu}_L \gamma_\lambda \gamma_5 \mu \right) \right]
\]

The shift to the C_9 Wilson coeff. in the $\mu\mu$-channel becomes

\[
k_{\text{SM}} C_9^{(\mu)} = k_{\text{SM}} (C_{9,\text{SM}}) + \frac{G}{2} \left(U_L^{d*}_{33} (U_L^{d}_{32}) (U_L^{\ell})_{32} \right)^2
\]

\[
= \beta_{\text{SM}} + \beta_{\text{NP}}
\]

- On the other hand, in the ee-channel

\[
k_{\text{SM}} C_9^{(e)} = k_{\text{SM}} (C_{9,\text{SM}}) + \frac{G}{2} \left(U_L^{d*}_{33} (U_L^{d}_{32}) (U_L^{\ell})_{31} \right)^2
\]

The NP contrib. in the ee-channel is negligible, as

\[
\left| (U_L^{\ell})_{31} \right|^2 \ll \left| (U_L^{\ell})_{32} \right|^2
\]
Explaining $b \rightarrow s$ data

- Recalling our full Hamiltonian

$$H_{SM+NP} (\bar{b} \rightarrow \bar{s} \mu \mu) = \frac{4 G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{\alpha_{em}}{4 \pi} \left[\bar{b}_L \gamma^\lambda s_L \cdot \left(C_9^{(\mu)} \bar{\mu} \gamma_\lambda \mu + C_{10}^{(\mu)} \bar{\mu} \gamma_\lambda \gamma_5 \mu \right) \right]$$

the shift to the C_9 Wilson coeff. in the $\mu\mu$-channel becomes

$$k_{SM} C_9^{(\mu)} = k_{SM} C_{9,SM} + \frac{G}{2} (U_L^{d})^{*}_{33} (U_L^{d})_{32} |(U_L^{\ell})_{32}|^2$$

$$= \beta_{SM} + \beta_{NP}$$

The NP contribution has opposite sign than the SM one if

$$G (U_L^{d})_{32} < 0$$

- On the other hand, in the ee-channel

$$k_{SM} C_9^{(e)} = k_{SM} C_{9,SM} + \frac{G}{2} (U_L^{d})^{*}_{33} (U_L^{d})_{32} |(U_L^{\ell})_{31}|^2$$

$$\approx \beta_{SM}$$

The NP contrib. in the ee-channel is negligible, as

$$|U_L^{\ell} |_{31}^2 \ll |U_L^{\ell} |_{32}^2$$
Explaining $b \to s$ data

- The above shifts to the $C_{9,10}$ Wilson coeffs. imply

$$R_K \approx \frac{|C_9^{(\mu)}|^2 + |C_{10}^{(\mu)}|^2}{|C_9^{(e)}|^2 + |C_{10}^{(e)}|^2} = \frac{2 \cdot (\beta_{SM} + \beta_{NP})^2}{2 \cdot \beta_{SM}^2}$$
Explaining $b \rightarrow s$ data

The above shifts to the $C_{9,10}$ Wilson coeffs. imply

$$R_K \approx \frac{|C_9^{(\mu)}|^2 + |C_{10}^{(\mu)}|^2}{|C_9^{(e)}|^2 + |C_{10}^{(e)}|^2} = \frac{2(\beta_{SM} + \beta_{NP})^2}{2\beta_{SM}^2}$$

factors of 2:
equal contributions from $|C_9|^2$ and $|C_{10}|^2$
Explaining $b \to s$ data

The above shifts to the $C_{9,10}$ Wilson coeffs. imply

$$R_K \approx \frac{|C_9^{(\mu)}|^2 + |C_{10}^{(\mu)}|^2}{|C_9^{(e)}|^2 + |C_{10}^{(e)}|^2} = \frac{2(\beta_{SM} + \beta_{NP})^2}{2\beta_{SM}^2}$$

factors of 2:

- equal contributions from $|C_9|^2$ and $|C_{10}|^2$

Approximations

- phase-space factor is about the same in the $\mu\mu$- and in the ee-channel
- dominance of the $|C_{9,10}|^2$ contributions in the concerned q^2 region
Explaining $b \rightarrow s$ data

- The above shifts to the $C_{9,10}$ Wilson coeffs. imply

$$R_K \approx \frac{|C_9^{(\mu)}|^2 + |C_{10}^{(\mu)}|^2}{|C_9^{(e)}|^2 + |C_{10}^{(e)}|^2} = \frac{2\cdot(\beta_{\text{SM}} + \beta_{\text{NP}})^2}{2\cdot \beta_{\text{SM}}^2}$$

dominance of the $|C_{9,10}|^2$ contributions in the concerned q^2 region

- Factors of 2:
 - equal contributions from $|C_9|^2$ and $|C_{10}|^2$
 - phase-space factor is about the same in the $\mu\mu$- and in the ee-channel

- Note as well

$$0.77 \pm 0.20 = \frac{BR(B_s \rightarrow \mu\mu)_{\text{exp}}}{BR(B_s \rightarrow \mu\mu)_{\text{SM}}} = \frac{BR(B_s \rightarrow \mu\mu)_{\text{SM+NP}}}{BR(B_s \rightarrow \mu\mu)_{\text{SM}}} = \frac{(\beta_{\text{SM}} + \beta_{\text{NP}})^2}{\beta_{\text{SM}}^2}$$

\[D.\ Guadagnoli,\ LFV\ in\ B\ decays\]
Explain b → s data

- The above shifts to the $C_{9,10}$ Wilson coeffs. imply

$$R_K \approx \frac{|C_9^{(\mu)}|^2 + |C_{10}^{(\mu)}|^2}{|C_9^{(e)}|^2 + |C_{10}^{(e)}|^2} = \frac{2 \cdot (\beta_{SM} + \beta_{NP})^2}{2 \cdot \beta_{SM}^2}$$

factors of 2:
equal contributions from $|C_9|^2$ and $|C_{10}|^2$

- Approximations
 - phase-space factor is about the same in the $\mu\mu$- and in the ee-channel
 - dominance of the $|C_{9,10}|^2$ contributions in the concerned q^2 region

- Note as well

$$0.77 \pm 0.20 = \frac{BR(B_s \rightarrow \mu\mu)_{exp}}{BR(B_s \rightarrow \mu\mu)_{SM}} = \frac{BR(B_s \rightarrow \mu\mu)_{SM+NP}}{BR(B_s \rightarrow \mu\mu)_{SM}} = \frac{(\beta_{SM} + \beta_{NP})^2}{\beta_{SM}^2}$$

implying (within our model) the correlations

$$\frac{BR(B_s \rightarrow \mu\mu)_{exp}}{BR(B_s \rightarrow \mu\mu)_{SM}} \approx R_K \approx \frac{BR(B^+ \rightarrow K^+ \mu\mu)_{exp}}{BR(B^+ \rightarrow K^+ \mu\mu)_{SM}}$$

Another good reason to pursue accuracy in the $B_s \rightarrow \mu\mu$ measurement

D. Guadagnoli, LFV in B decays
\[
\frac{BR(B^+ \to K^+ \mu e)}{BR(B^+ \to K^+ \mu \mu)} = \frac{\beta_{NP}^2}{(\beta_{SM} + \beta_{NP})^2} \cdot \frac{|(U^L_{\ell 31})|^2}{|(U^L_{\ell 32})|^2} \cdot 2
\]
\[\frac{BR(B^+ \to K^+ \mu e)}{BR(B^+ \to K^+ \mu \mu)} = \frac{\beta_{NP}^2}{(\beta_{SM} + \beta_{NP})^2} \frac{|(U_L^\ell)_{31}|^2}{|(U_L^\ell)_{32}|^2} \cdot 2 \]

\[= 0.159^2 \]

according to \(R_K \)
\[
\frac{BR(B^+ \to K^+ \mu e)}{BR(B^+ \to K^+ \mu \mu)} = \frac{\beta_{NP}^2}{(\beta_{SM} + \beta_{NP})^2} \left| (U_{L}^\ell)_{31} \right|^2 \cdot \left| (U_{L}^\ell)_{32} \right|^2 \cdot 2
\]
\[= 0.159^2\]
according to R_K
LFV model signatures

\[
\frac{BR(B^+ \rightarrow K^+ \mu e)}{BR(B^+ \rightarrow K^+ \mu \mu)} = \frac{\beta_{NP}^2}{(\beta_{SM} + \beta_{NP})^2} \left| \begin{pmatrix} U_L^{\ell} \end{pmatrix}_{31} \right|^2 \left| \begin{pmatrix} U_L^{\ell} \end{pmatrix}_{32} \right|^2 \cdot \frac{2}{\mu^e - \mu^e \text{ modes}}
\]

The current \(BR(B^+ \rightarrow K^+ \mu e) \) limit yields the weak bound

\[
\left| \begin{pmatrix} U_L^{\ell} \end{pmatrix}_{31} \right| \left| \begin{pmatrix} U_L^{\ell} \end{pmatrix}_{32} \right| < 3.7
\]
LFV model signatures

\[
\frac{BR(B^+ \to K^+ \mu e)}{BR(B^+ \to K^+ \mu \mu)} = \frac{\beta_{NP}^2}{(\beta_{SM} + \beta_{NP})^2} \left| \frac{(U_L^\ell)_{31}}{(U_L^\ell)_{32}} \right|^2 \cdot 2 \mu^*e^{-} & \mu^{-}e^{+} \text{ modes}
\]

\[
BR(B^+ \to K^+ \mu e) < 2.2 \times 10^{-8} \cdot \left| \frac{(U_L^\ell)_{31}}{(U_L^\ell)_{32}} \right|^2
\]

The current \(BR(B^+ \to K^+ \mu e)\) limit yields the weak bound

\[
\left| \frac{(U_L^\ell)_{31}}{(U_L^\ell)_{32}} \right| < 3.7
\]

\[
BR(B^+ \to K^+ \mu \tau) \text{ would be even more promising, as it scales with } \left| \frac{(U_L^\ell)_{33}}{(U_L^\ell)_{32}} \right|^2
\]

D. Guadagnoli, LFV in B decays
LFV model signatures

\[
\frac{BR(B^+ \to K^+ \mu e)}{BR(B^+ \to K^+ \mu \mu)} = \frac{\beta_{NP}^2}{(\beta_{SM} + \beta_{NP})^2} \left| \frac{(U_L^\ell)_{31}}{(U_L^\ell)_{32}} \right|^2 \cdot 2
\]

with \(\beta_{NP} = 0.159^2 \) according to \(R_K \).

\[
BR(B^+ \to K^+ \mu e) < 2.2 \times 10^{-8} \cdot \left| \frac{(U_L^\ell)_{31}}{(U_L^\ell)_{32}} \right|^2
\]

The current \(BR(B^+ \to K^+ \mu e) \) limit yields the weak bound

\[
\left| \frac{(U_L^\ell)_{31}}{(U_L^\ell)_{32}} \right| < 3.7
\]

\[
BR(B^+ \to K^+ \mu \tau)
\]

would be even more promising, as it scales with \(\left| \frac{(U_L^\ell)_{33}}{(U_L^\ell)_{32}} \right|^2 \)

A reliable prediction of the BR requires more work, especially because of

- terms other than \(|C_9|^2 \) and \(|C_{10}|^2 \) are important
- phase-space factors are substantially different than in the \(\mu \mu \) and ee cases
\[\frac{BR(B_s \rightarrow \mu e)}{BR(B_s \rightarrow \mu \mu)} = \frac{\beta_{NP}^2}{(\beta_{SM} + \beta_{NP})^2} \cdot \frac{|(U_L^f)_{31}|^2}{|(U_L^f)_{32}|^2} \]
$\frac{BR(B_s \to \mu e)}{BR(B_s \to \mu \mu)} = \frac{\beta_{NP}^2}{(\beta_{SM} + \beta_{NP})^2} \cdot \frac{|(U_L^e)_{31}|^2}{|(U_L^e)_{32}|^2}$

Again, $B_s \to \mu \tau$ would be even more promising, because it scales as $|(U_L^e)_{33}|^2/(U_L^e)_{32}|^2$

(a potential enhancement factor, actually)
\[
\frac{BR(B_s \to \mu e)}{BR(B_s \to \mu \mu)} = \frac{\beta_{NP}^2}{(\beta_{SM} + \beta_{NP})^2} \cdot \frac{|(U_L^\ell)_{31}|^2}{|(U_L^\ell)_{32}|^2}
\]

Again, \(B_s \to \mu \tau \) would be even more promising, because it scales as \(|(U_L^\ell)_{33}|^2/(U_L^\ell)_{32}|^2 \)

(a potential enhancement factor, actually)

An interesting signature outside B physics would be \(K \to \pi \ell^- \ell^+ \)

Note, instead, that the “K-physics analogue” of \(R_K \):

\[
\frac{BR(K \to \pi \mu \mu)}{BR(K \to \pi e e)} \quad \text{less interesting}
\]

as it is long-distance dominated

[see D'Ambrosio et al., 1998]
More signatures

- Being defined above the EWSB scale, our assumed operator \(G \bar{b}'_L \gamma^\lambda b'_L \bar{\tau}'_L \gamma^\lambda \tau'_L \)
 must actually be made invariant under \(SU(3)_c \times SU(2)_L \times U(1)_Y \).
More signatures

- Being defined above the EWSB scale, our assumed operator \(G \bar{b}'_L \gamma^\lambda b'_L \bar{\tau}'_L \gamma^\lambda \tau'_L \) must actually be made invariant under \(SU(3)_c \times SU(2)_L \times U(1)_Y \).

\[
\bar{b}'_L \gamma^\lambda b'_L \bar{\tau}'_L \gamma^\lambda \tau'_L \quad \text{inv.} \quad \begin{cases}
\bar{Q}'_L \gamma^\lambda Q'_L \bar{L}'_L \gamma^\lambda L'_L \\
\bar{Q}'^i_L \gamma^\lambda Q'^j_L \bar{L}'^i_L \gamma^\lambda L'^j_L \\
\bar{Q}'^i_L \gamma^\lambda Q'^j_L \bar{L}'^i_L \gamma^\lambda L'^j_L
\end{cases}
\]

[neutral-current int's only]
[also charged-current int's]

See:
Bhattacharya, Datta, London, Shivashankara, PLB 15

For a recent discussion:
Alonso, Grinstein, Martin-Camalich, PRL 14
More signatures

- Being defined above the EWSB scale, our assumed operator \(G \bar{b}'_L \gamma^\lambda b'_L \bar{\tau}'_L \gamma^\lambda \tau'_L \)
 must actually be made invariant under \(SU(3)_c \times SU(2)_L \times U(1)_\gamma \)

See: Bhattacharya, Datta, London, Shivashankara, PLB 15

For a recent discussion: Alonso, Grinstein, Martin-Camalich, PRL 14

\[
\begin{aligned}
&\overline{b}'_L \gamma^\lambda b'_L \bar{\tau}'_L \gamma^\lambda \tau'_L \\
\text{inv.} \\
&\text{SU(2)}_L \\
&\begin{cases}
\overline{Q}'_L \gamma^\lambda Q'_L \bar{L}'_L \gamma^\lambda L'_L & \text{[neutral-current int's only]} \\
\overline{Q}''^i_L \gamma^\lambda Q''^j_L \bar{L}'^i_l \gamma^\lambda L''^i_l & \text{[also charged-current int's]}
\end{cases}
\end{aligned}
\]

- Thus, the generated structures are all of:

\[
\begin{aligned}
t't' \nu'_{\tau} \nu'_{\tau}, & \quad t't' \tau' \tau', & \quad b'b' \nu'_{\tau} \nu'_{\tau}, & \quad b'b' \tau' \tau', & \quad t'b' \tau' \nu'_{\tau}
\end{aligned}
\]
More signatures

- Being defined above the EWSB scale, our assumed operator $G \bar{b}'_L \gamma^\lambda b'_L \bar{\tau}'_L \gamma^\lambda \tau'_L$ must actually be made invariant under $SU(3)_c \times SU(2)_L \times U(1)_Y$

- Thus, the generated structures are all of:

\[
\begin{align*}
&\bar{b}'_L \gamma^\lambda b'_L \bar{\tau}'_L \gamma^\lambda \tau'_L \quad \text{inv.} \\
&\begin{aligned}
&\bar{Q}'_L \gamma^\lambda Q'_L \bar{L}'_L \gamma^\lambda L'_L \\
&\bar{Q}'^i_L \gamma^\lambda Q'^j_L \bar{L}'^i_L \gamma^\lambda L'^i_L
\end{aligned}
\end{align*}
\]

\[\text{[neutral-current int's only]}\]
\[\text{[also charged-current int's]}\]

- See: Bhattacharya, Datta, London, Shivashankara, PLB 15

D. Guadagnoli, LFV in B decays
More signatures

- Being defined above the EWSB scale, our assumed operator $G \bar{b}'_L \gamma^\lambda b'_L \bar{\tau}'_L \gamma^\lambda \tau'_L$ must actually be made invariant under $SU(3)_c \times SU(2)_L \times U(1)_Y$

For a recent discussion:
Alonso, Grinstein, Martin-Camalich, PRL 14

See:
Bhattacharya, Datta, London, Shivashankara, PLB 15

\[\begin{align*}
\bar{b}'_L \gamma^\lambda b'_L \bar{\tau}'_L \gamma^\lambda \tau'_L & \rightarrow SU(2)_L \\
\{ & \begin{align*}
\bar{Q}'_L \gamma^\lambda Q'_L \bar{L}'_L \gamma^\lambda L'_L \\
\bar{Q}'_L \gamma^\lambda Q'_L \bar{L}'_L \gamma^\lambda L'_L & \text{[neutral-current int's only]} \\
\bar{Q}'^i_L \gamma^\lambda Q'^j_L \bar{L}'^i_L \gamma^\lambda L'^j_L & \text{[also charged-current int's]} \\
\end{align*}
\end{align*} \]

Thus, the generated structures are all of:

- $t't' \nu'_\tau \nu'_\tau$, $t't' \tau' \tau'$, $b'b' \nu'_\tau \nu'_\tau$, $b'b' \tau' \tau'$, $t'b' \tau' \nu'_\tau$

After rotation to the mass basis (unprimed), the last structure contributes to $\Gamma(b \to c \tau \bar{\nu}_i)$

Can explain BaBar deviations on $R(D^{(*)}) = \frac{BR(\bar{B} \to D^{(*)+} \tau^- \bar{\nu}_\tau)}{BR(\bar{B} \to D^{(*)+} e^- \bar{\nu}_e)}$
Spares
Frequently made objection: what about the SM? It has LFNU, but no LFV

Take the SM with zero ν masses.

- Charged-lepton Yukawa couplings are LFNU, but they are diagonal in the mass eigenbasis (hence no LFV)
Take the SM with zero ν masses.

- Charged-lepton Yukawa couplings are LFNU, but they are diagonal in the mass eigenbasis (hence no LFV)

Or more generally, take the SM plus a minimal mechanism for ν masses.

- Physical LFV will appear in W couplings, but it's suppressed by powers of $(m_\nu/m_w)^2$
Frequently made objection:
what about the SM? It has LFNU, but no LFV

Take the SM with zero ν masses.

- Charged-lepton Yukawa couplings are LFNU, but they are diagonal in the mass eigenbasis (hence no LFV)

Or more generally, take the SM plus a minimal mechanism for ν masses.

- Physical LFV will appear in W couplings, but it's suppressed by powers of $(m_\nu / m_W)^2$

Bottom line: in the $SM+\nu$ there is LFNU, but LFV is nowhere to be seen (in decays)
Frequently made objection: what about the SM? It has LFNU, but no LFV

Take the SM with zero ν masses.

- Charged-lepton Yukawa couplings are LFNU, but they are diagonal in the mass eigenbasis (hence no LFV)

Or more generally, take the SM plus a minimal mechanism for ν masses.

- Physical LFV will appear in W couplings, but it's suppressed by powers of $\left(\frac{m_\nu}{m_W}\right)^2$

Bottom line: in the SM+ν there is LFNU, but LFV is nowhere to be seen (in decays)

- But nobody ordered that the reason (=tiny m_ν) behind the above conclusion be at work also beyond the SM

So, BSM LFNU \Rightarrow BSM LFV (i.e. not suppressed by m_ν)