Superconducting Circuits for Quantum Information

Prof. Chen Wang (Starting Sept. 2016)

Department of Physics, University of Massachusetts, Amherst

Current Address: Departments of Applied Physics, Yale University

Quantum Information

Experimental quantum information:
- a fast-developing field where we directly manipulate the quantum state of isolated systems based on the Schrödinger equation.

Current technology
- from rocket to CPUs

Future technology?
- Quantum machines

The basic building block: quantum bit

The Hamiltonian by design!

- Superconductor
- Infusulator
- Cooper pairs

Collective current/voltage excitations \rightarrow described by $|\psi\rangle$

Equipment, Devices and Experimental methods

- Microwave electronics
- Dilution refrigerator
- Evaporator for device fabrication
- Josephson junction
- 3D quantum circuit architecture

Study of Decoherence and Superconductivity

Does a quantum state in the lab live forever?
- Energy relaxation \rightarrow T_1 time
- Dephasing \rightarrow T_ϕ time

We identify various unintended coupling between our qubits and external degrees of freedom to improve the coherence times. This is also often a rewarding process to learn more about our solid state system.

Example:
- Non-equilibrium quasiparticle excitations in our superconducting qubits can cause qubit decay, but a few vortices can help remove them.

Controlling Mesoscopic Entangled States

Heard of Schrödinger’s cat?
- Nowadays we can place objects a little more macroscopic than qubits into superposition or entangled states!

Two-mode cat state:
- $|\psi\rangle = \frac{1}{\sqrt{2}} \left(|\alpha\rangle_A |\alpha\rangle_B + \frac{1}{\sqrt{2}} |\alpha\rangle_A - \alpha\rangle_B \right)$

Joint Wigner function

- simultaneously “alive”
- simultaneously “dead”
