Chemical imaging of optoelectronic nanomaterials:
What can you learn from a handful of photons?

Michael D. Barnes
Dept. of Chemistry (and Physics)
University of Massachusetts-Amherst
mdbarnes@chem.umass.edu
Chemical imaging of Semiconducting Nanomaterials: ... the chemical information is in the photons!
Probing exciton dissociation at the Organic/Inorganic semiconductor interface (Barnes and Emrick)

- influence of nanostructure architecture on charge-separation processes?
- spectroscopic signatures and timescales?
- Novel polarization-driven optical processes

April 2010
Quantum dot luminescence under influence of excess charge: Fluorescence and Charge-force Imaging studies

- Electro-sprayed QDs on glass surface (similar blue spectral shift)
- Determine surface charge (and QD polarizability) by measuring cantilever phase-shift vs. tip bias
Polarization-resolved Lifetime Imaging

J. Labastide, K. T. Early, M. Y. Odoi, and M. D. Barnes to be published
Barnes group:

- Ebru Yalcin (Postdoctoral Fellow)
- Boqian Yang (Postdoctoral Fellow)
- Ruthanne Hassey (Helicenes, NYU postdoc)
- Michael Odoi* (CdSe-opv, Univ. of Rochester)
- Kevin Early* (CdSe-opv)
- Austin Cyphersmith (QD polarization imaging)
- Mina Bahghar
- Joelle Labastide

• Undergraduates (current)
 - Artem Maksov
 - Jeremy Graham
 - Tim Mortsolf
 - Isaac Levine

 - Danielle Sowle
 - David Ramsdell
 - Austin Barnes

• Collaborators
 - Paul Lahti (Chemistry) - organic ‘antenna’ systems; conjugated polymers
 - Todd Emrick (PS&E) - quantum dot-organic composite nanostructures
 - “DV” Venkataraman (Chemistry) - single-molecule chiroptical phenomena
 - Tom Russell (PS&E) - optoelectronic co-polymer films