Complexity, Parallel Computation and Statistical Physics

Jon Machta

High Energy Seminar
UMass, Amherst
February 3, 2011
Outline

- Overview and motivation: What aspect of natural complexity are we trying to formalize?
- Background: statistical physics and parallel computational complexity.
- Depth: a useful proxy for complexity?
- Examples: the simple and complex in statistical physics
- Conclusions
Collaborators

- Ray Greenlaw
- Cris Moore
- Don Blair
- Ken Moriaty
- Xuenan Li
- Ben Machta
- Dan Tillberg
What’s the difference?

from NASA
What’s the difference?

- Mass
- Temperature
- Entropy
- Entropy production
What’s the difference?

- Mass
- Temperature
- Entropy
- Entropy production

from NASA
What’s the difference?

- Complexity
What’s the difference?

- Complexity
What's the difference?

- Complexity
Ising Model

- A more tractable example from statistical physics.
- System states described by “spins” $s_i = \pm 1$ on a lattice.
- Probability of system states described by the Gibbs distribution
Ising Model

\[\mathcal{H} = - \sum_{(i,j)} s_i s_j \]

\[P[s] = e^{-\mathcal{H}[s]/kT}/Z \]

Gibbs Distribution
Ising Model

\[\mathcal{H} = - \sum_{(i,j)} s_i s_j \]

\[P[s] = e^{-\mathcal{H}[s]/kT}/Z \]

Gibbs Distribution

\[T = 0 \quad T = T_c \quad T = \infty \]
Ising Model

\[\mathcal{H} = -\sum_{(i,j)} s_i s_j \]

\[P[s] = e^{-\mathcal{H}[s]/kT}/Z \]

Critical point

\[T = 0 \quad T = T_c \quad T = \infty \]
The Ising Critical Point

- Long range correlations
- Fractal clusters of like spins
- Structure on all length scales.
- Difficult to simulate numerically and analyze theoretically.
Ising Model

Temperature

\[T = 0 \quad < \quad T = T_c \quad < \quad T = \infty \]
Ising Model

Temperature

Entropy

completely ordered

completely disordered
Ising Model

Temperature

Entropy

Complexity

<<
● **Question:** What makes the Earth more complex than the Sun and the Ising critical point more complex than its high or low temperature phases?
• **Question:** What makes the Earth more complex than the Sun and the Ising critical point more complex than its high or low temperature phases?

• **One answer:** A long history.
History and Complexity

Charles Bennett
History and Complexity

Charles Bennett

• The emergence of a complex system from simple initial conditions requires a long history.
• The Earth and the Sun are both 4.5 billions years old...
• The Earth and the Sun are both 4.5 billions years old...

• ...but, the present state of the Sun does not remember the full 4.5 billion year history (except via conserved quantities) while the present state of the Earth (biosphere) is contingent on a very long evolutionary process. The Earth does remember its past.
• High and low temperature states of the Ising model can be sampled using small number of sweeps of a Monte Carlo algorithm.

• The critical state of the Ising model requires a number of sweeps of a Monte Carlo algorithm that scales as a power of the system size (critical slowing down).
History and Complexity

Charles Bennett

—in SFI Studies in the Sciences of Complexity, Vol. 7 (1990)
History and Complexity

Charles Bennett
—in SFI Studies in the Sciences of Complexity, Vol. 7 (1990)

• The emergence of a complex system from simple initial conditions requires a long history.
History and Complexity

Charles Bennett
—in SFI Studies in the Sciences of Complexity, Vol. 7 (1990)

• The emergence of a complex system from simple initial conditions requires a long history.

• History can be quantified in terms of the computational complexity (running time) of simulating states of the system.
What computational complexity measure best measures physical complexity?

- Complexity emerges from interactions, not from signal propagation → discount communication.
- Size alone should not contribute to physical complexity → discount hardware.
- These considerations suggest parallel time as the appropriate computational complexity measure.
History and Complexity
History and Complexity

• The emergence of a complex system from simple initial conditions requires a long history.
• History can be quantified in terms of the computational complexity of simulating states of the system.
• The appropriate computational measure of history is parallel time.
Models of Computation

- Polynomial
 - Linear
 - One
 - Local
 - Turing Machine
 - Random Access Machine (RAM)
 - Global
- Parallel Random Access Machine (PRAM)

Communication
Models of Computation

- Parallel Random Access Machine (PRAM)
- Cellular Automata
- Turing Machine
- Random Access Machine (RAM)
- Local
- Global
- Communication
Parallel Random Access Machine

- Each processor runs the same program but has a distinct label.
- Each processor communicates with any memory cell in a single time step.
- Primary resources:
 - Parallel time
 - Number of processors
- Gates evaluated one level at a time from input to output with no feedback.
- One hardwired circuit for each problem size.
- Primary resources
 - $\text{Depth} =$ number of levels
 \approx parallel time
 - $\text{Width} =$ maximum number of gates in a level
 \approx number of processors
 - $\text{Work} =$ total number of gates
Adding n numbers can be carried out in $O(\log n)$ steps using $O(n)$ processors.

\[\sum X_i \]

\[
\begin{align*}
X_1 + X_2 & \rightarrow X_3 \\
X_4 + X_5 & \rightarrow X_6 \\
X_7 + X_8 & \rightarrow X_{10} \\
X_3 + X_6 & \rightarrow X_9 \\
X_9 & \rightarrow \sum X_i
\end{align*}
\]
Adding n numbers can be carried out in $O(\log n)$ steps using $O(n)$ processors.

Connected components of a graph can be found in $O(\log^2 n)$ time using polynomially many processors.
Complexity Classes and P-completeness

- **P** is the class of *feasible* problems: solvable with polynomial work.
- **NC** is the class of problems efficiently solved in parallel (polylog depth and polynomial work, $\text{NC} \subseteq \text{P}$).
- Are there feasible problems that cannot be solved efficiently in parallel ($\text{P} \neq \text{NC}$)?
- **P-complete** problems are the hardest problems in **P** to solve in parallel. It is believed they are *inherently sequential*: not solvable in polylog depth.
- The Circuit Value Problem is **P**-complete.
Complexity Classes and P-completeness

- **P** is the class of *feasible* problems: solvable with polynomial work.
- **NC** is the class of problems efficiently solved in parallel (polylog depth and polynomial work, $\text{NC} \subseteq \text{P}$).
- Are there feasible problems that cannot be solved efficiently in parallel ($\text{P} \neq \text{NC}$)?
- **P-complete** problems are the hardest problems in P to solve in parallel. It is believed they are *inherently sequential*: not solvable in polylog depth.
- The Circuit Value Problem is P-complete.

![Diagram of NOR gates and TRUE/FALSE nodes](image-url)
Sampling Complexity

• Monte Carlo simulations convert random bits into descriptions of a typical system states.

• What is the depth of the shallowest feasible circuit (running time of the fastest PRAM program) that generates typical states?
Sampling Complexity

• Monte Carlo simulations convert random bits into descriptions of a typical system states.

• What is the depth of the shallowest feasible circuit (running time of the fastest PRAM program) that generates typical states?

Depth is a property of systems in statistical physics
The depth of a natural system is the time complexity of the fastest parallel Monte Carlo algorithm (PRAM or Boolean circuit family with random inputs) that generates typical system states (or histories) with polynomial hardware.
Comments on fastest
Comments on fastest

• A natural system should not be called complex because it emerges slowly via an inefficient process.

 - Many systems that appear to have a long history do not, in fact, have much depth.
Comments on **fastest**

- A natural system should not be called complex because it emerges slowly via an inefficient process.
 - Many systems that appear to have a long history do not, in fact, have much depth.

- Depth is uncomputable. Upper bounds can be found by demonstrating specific parallel sampling algorithms but lower bounds are difficult to establish.
 - A necessary feature, not a bug!
Maximal Property of Depth

For a system AB composed of independent subsystems A and B, the depth of the whole is the maximum over subsystems:

$$\mathcal{D}(AB) = \max\{\mathcal{D}(A), \mathcal{D}(B)\}$$

Follows immediately from parallelism.
Maximal Property of Depth

For a system AB composed of independent subsystems A and B, the depth of the whole is the maximum over subsystems:

$$\mathcal{D}(AB) = \max\{\mathcal{D}(A), \mathcal{D}(B)\}$$

Follows immediately from parallelism.
Maximal Property of Depth

For a system AB composed of independent subsystems A and B, the depth of the whole is the maximum over subsystems:

$$\mathcal{D}(AB) = \max\{\mathcal{D}(A), \mathcal{D}(B)\}$$

Follows immediately from parallelism.

Depth is *intensive* (nearly independent of size) for homogeneous systems with short range correlations.
Examples from statistical physics

• Random walks
• Preferential attachment networks
• The Ising model
• Diffusion limited aggregation
Random Walks

from wikipedia
Random Walks

• There is apparent history in the random walk since its position at time $t+1$ is obtained from the position at time t by adding a random step.
Random Walks

- There is apparent history in the random walk since its position at time $t+1$ is obtained from the position at time t by adding a random step.
- Since addition can be carried out in log parallel time, a random walk of length t has log t depth.

from wikipedia
Examples from statistical physics

- Random walks
- Preferential attachment networks
- The Ising model
- Diffusion limited aggregation
Add nodes one at a time, connecting new nodes to old nodes according to a “rich get richer” preferential attachment rule:

$$\pi_n(t) = \text{Prob}[t \text{ connects to } n] \propto k_n(t)^\alpha$$

where $k_n(t)$ is the degree of node n at time t.
Behavior of Growing Networks

\[\pi_n(t) = \text{Prob}[t \text{ connects to } n] \propto k_n(t)^\alpha \]

\(P(k) \sim \exp(-k) \)
Random

\(P(k) \sim \exp(-k^\beta) \)
\(0 \leq \alpha \leq 1 \)

\(P(k) \sim k^{-\nu} \)
Scale Free

Gel Node

\(P(k) \) is the degree distribution

Discontinuous structural transition at \(\alpha = 1 \)
Redirection

I. Generate a random sequential network.

II. With probability \(r \), color edge \(R \) (redirect) and with probability \(1-r \) color edge \(T \) (terminal).

III. New links obtained by tracing \(R \) edges and stopping after traversing a \(T \) edge.

Krapivsky, Redner, Leyvraz, *PRE* 63, 066123 (2001)
Parallel Algorithm for Scale Free Networks

- Redirection provides a fast parallel algorithm for the scale free case.
- The longest redirected path $\sim \log N$
- Tracing such a path in parallel $\sim \log \log N$
- Depth of scale free networks $\sim \log \log \log N$
Depth of PA Networks

Mean field approximation

\[T = \frac{\log(N)}{-\log(1 - 2^{-\alpha})} \]

Simulation

log N

T / log N

constant

\(\alpha \)
Depth of PA Networks

\[T = \frac{\log(N)}{-\log(1 - 2^{-\alpha})} \]

Mean field approximation

Simulation
Examples from statistical physics

- Random walks
- Preferential attachment networks
- The Ising model
- Diffusion limited aggregation
Ising model

The best known parallel algorithm for the (3D) Ising model (the Swendsen-Wang algorithm) equilibrates at the critical point in a time that scales as a small power of the system size.

\[z \approx 0.5 \text{ at } T = T_c \]

\[z = 0(\log) \text{ for } T \neq T_c \]
The best known parallel algorithm for the (3D) Ising model (the Swendsen-Wang algorithm) equilibrates at the critical point in a time that scales as a small power of the system size.

\[z \approx 0.5 \text{ at } T = T_c \]

\[z = 0(\log) \text{ for } T \neq T_c \]

More generally, depth tends to be a maximum at transitions between ordered and disordered states.
Examples from statistical physics

- Random walks
- Preferential attachment networks
- The Ising model
- Diffusion limited aggregation
Diffusion Limited Aggregation

- Particles added *one at a time* with sticking probabilities given by the solution of Laplace’s equation.
- Self-organized fractal object
 \[d_f = 1.715 \ldots \] (2D)
- Physical systems:
 - Fluid flow in porous media
 - Electrodeposition
 - Bacterial colonies
Random Walk Dynamics for DLA
The Problem with Parallelizing DLA

Parallel dynamics ignores *interference* between 1 and 3

Sequential dynamics
Depth of DLA

Theorem: Determining the shape of an aggregate from the random walks of the constituent particles is a \mathbf{P}-complete problem.

Proof sketch: Reduce the Circuit Value Problem to DLA dynamics.

Caveats:
1. $\mathbf{P} \neq \mathbf{NC}$ not proven
2. Average case may be easier than worst case
3. Alternative dynamics may be faster than random walk dynamics
1. Start with seed particle at the origin and N walk trajectories
2. In parallel move all particles along their trajectories to tentative sticking points on tentative cluster, which is initially the seed particle at the origin.
3. New tentative cluster obtained by removing all particles that interfere with earlier particles.
4. Continue until all particles are correctly placed.
Efficiency of the Algorithm

• DLA is a tree whose structural depth, D_s, scales as the radius of the cluster.
• The running time, T, of the algorithm is asymptotically proportional to the structural depth.

$$T \sim D_s \sim N^{1/d_f}$$

![Graph showing the relationship between D_s/T and T.]
Summary

- Depth (parallel time complexity of sampling distributions) is a property of any natural system described in the framework of statistical physics.

- Depth captures some salient features of the intuitive notion of complexity.