Experimental Nuclear Physics at UMass

Faculty: D. Kawall, K. Kumar, and R. Miskimen

- Our activities span energies from 100 MeV to 500 GeV
- From photon-nucleon scattering, electron-electron scattering, electron-nucleon scattering, proton-proton collisions, storage rings…
- Address fundamental questions involving the strong nuclear force, weak interactions, searches for new physics
Probing Mysteries in the Spin Structure of the Proton
Amaresh Datta, Mikhail Stepanov, Dave Kawall, UMass

http://www.phenix.bnl.gov

- Simple non-relativistic quark model of proton suggests \(J_z = \frac{1}{2} = S_z^{\text{quarks}} \)
- Measurements around 1988 showed \(S_z^{\text{quarks}} = (12 \pm 17)\% \)
- Quark contribution to proton spin consistent with zero! Spin Crisis was born.
- Today, \(S_z^{\text{quarks}} \approx 25\% \pm 5\% \) - so where does 3/4 of proton spin come from ???
- Nucleon spin can be decomposed as: \(J_z = \frac{1}{2} = S_z^{\text{quarks}} + S_z^{\text{gluons}} + L_z^{q+g} \)

⇒ To measure gluon contribution, \(S_z^{\text{gluons}} \), need strongly interacting probe

UMass, January 28th, 2011
Probing Mysteries in the Spin Structure of the Proton

- RHIC: collides polarized protons with center of mass energies from 200 to 500 GeV
- Measure how number of jets, direct photons, pions, produced depends on colliding proton spin directions
- Work backwards from asymmetry measurements to extract gluons contribution to proton spin
- 2009 results suggest gluon contribution S^gluons_z to proton spin is small, $\leq 20\%$
- 2009-2011: Use parity violation in W production \Rightarrow for clean measurement of \bar{u} and \bar{d} contributions to proton spin: First results in PRL soon
- 1000s of papers on proton spin - efforts have deepened our understanding of QCD tremendously
- Physics beyond SM: measure muon g-2 to 0.14 ppm, just approved January 2011 !!!
- In development: proposals to improve limits on p, d EDMs by factor 1000 to $\leq 10^{-29}$ e·cm !!!

Good Student Needed!
Elastic Electron Scattering (Kumar)

Measure σ as a function of Q^2

Neglecting recoil and spin:
Obtain Fourier transform of charge distribution

We now know that electrons interact with nuclei also via the weak force

This is a rare process; tough to isolate: sophisticated measurement technique

\[Q^2 = -(p - p')^2 \]

\[Q \approx \frac{hc}{\lambda} \]

\[\rho (r) \]

\[4\pi r^2 dr \]

\[2 \text{fm} \quad 4 \text{fm} \]

\[N \quad N \]

\[e^- \gamma \]

\[e^- \]

\[4\text{-momentum transfer} \]

\[Q^2 = 4EE' \sin^2 \frac{\theta}{2} \]

\[A_{PV} = \frac{\sigma}{\sigma^0} \]

\[\sim \frac{A_{\text{weak}}}{A_{\text{EM}}} \sim \frac{G_F Q^2}{4\pi \alpha} \]

\[A_{PV} \sim 10^{-4} \times Q^2 \left(\text{GeV}^2 \right) \]
The PREX Experiment

- Neutron star has solid crust over liquid core.
- Heavy spinless nucleus has neutron skin.

$R_p \sim 5.5 \text{ fm}$

$R_n - R_p \sim 0.1 \text{ to } 0.3 \text{ fm}$?

- First data taken in summer '10
- Analysis in progress
- Followup runs being designed
- Work towards new data in '13

Faculty: Krishna Kumar
Postdocs: Juliette Mammei, Seamus Riordan
Graduate Students: Luis Mercado, Jon Wexler, Sereres Johnston, Adam Blomberg
Undergraduates: Patrick Rogan, Vireak Yim

Next Project: The MOLLER Experiment
- Precision test of the weak force to search for clues about the early universe
- Complementary to Large Hadron Collider experiments
Nuclear physics with polarized photons and protons at the Mainz Microtron, Germany

Faculty: R. Miskimen
Postdoc: A. Mushkarenkov
Ph.D. students: B. Barnes, C. Harris, P. Martel
Undergraduates: Eric Lee, Fabian

Physics

• Use the Crystal Ball detector to measure nucleon polarizabilities by polarized Compton scattering \(\gamma p \rightarrow \gamma p \)
• Polarizabilities are fundamental properties of strongly interacting particles, as fundamental as the mass or magnetic moment
• Threshold pion photoproduction, \(\gamma p \rightarrow p\pi^0 \) as a test of low-energy QCD

Measuring the dielectric constant of the proton
Crystal Ball detector

Phil Martel working on the Crystal Ball

Polarized proton target