AMMERST CENTER FOR FUNDAMENTAL INTERACTIONS

Physics at the interface: Energy, Intensity, and Cosmic frontiers **University of Massachusetts Amherst**

Beta decay as a probe of new physics

Fierz interference term in nuclear decays

Oscar Naviliat-Cuncic

National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy Michigan State University

Thanks to: N. Birge, L. Broussard, N. Fomin, A. García, X. Fléchard, E Liénard, N. Severijns Mainly two ways to search for the presence of the Fierz term in beta decay observables:

• "Indirect" searches (*Ft*-values, correlation coefficients), integrated $\tilde{X} = \frac{X}{1 + b \langle m_e/E_e \rangle}$ or differential:

• "Direct" searches (spectrum shape): $\left(1+b\frac{m}{W}\right)$

Current status of S and T constraints

• "Minimal fit" (LH-v)

M. Gonzalez-Alonso, O.N.C., N. Severijns, Prog. Part. Nucl. Phys. in print (2018) arXiv:1803.08732

• From <u>contributions of the Fierz</u> term to $Ft(0^+ \rightarrow 0^+)$, τ_n and A_n

- Other neutron and nuclear data have very small impact.
- Constraint on Tensor is \sim 2 weaker than on Scalar.

Benchmark uncertainties

• How good we need to measure?...

M. Gonzalez-Alonso, O.N.C, N. Severijns, Prog. Part. Nucl. Phys. in print (2018) arXiv:1803.08732

Coefficient	Absolute uncertainty	Relative uncertainty	SM value
b_n	3.2×10^{-3}		0
a_n	$4.7 imes 10^{-4}$	$4.4 imes 10^{-3}$	-0.10648(19)
\tilde{a}_n	$6.4 imes 10^{-4}$ <	$6.1 imes 10^{-3}$	-0.10648(19)
A_n	$5.9 imes 10^{-4}$	$5.0 imes 10^{-3}$	-0.11935(24)
\tilde{A}_n	$7.8 imes10^{-4}$	$6.5 imes10^{-3}$	-0.11935(24)
\tilde{B}_n	$1.2 imes 10^{-4}$	$1.2 imes 10^{-4}$	0.98713(5)
b_F	2.3×10^{-3}		0
b_{GT}	$3.9 imes10^{-3}$		0
a_F	6.4×10^{-6}	6.4×10^{-6}	1
\tilde{a}_F	$4.7 imes 10^{-4}$	$4.7 imes 10^{-4}$	1
a_{GT}	$4.0 imes 10^{-6}$ <	$1.2 imes 10^{-5}$	-1/3
\tilde{a}_{GT}	$3.7 imes 10^{-4}$ \leftarrow	$1.1 imes 10^{-3}$	-1/3

- ...to impact couplings in β decay.
- (complementarity/competition with HE not considered here)

Sensitivity of recent indirect searches

• "Dedicated" (KU-Leuven): low temperature nuclear orientation

F. Wauters et al., Phys. Rev. C 80 (2009) 062501(R): \tilde{A} in ¹¹⁴In, $\Delta b_{GT} \sim 7\%$ (1 σ)

F. Wauters et al., Phys. Rev. C 82 (2010) 055502:

G. Soti et al., Phys. Rev. C **90** (2014) 035502:

 \tilde{A} in ⁶⁰Co, $\Delta b_{GT} \sim 3.5\% (1\sigma)$

 \tilde{A} in ⁶⁷Cu, $\Delta b_{GT} \sim 5.1\% (1\sigma)$

...no impact on constraints

• "Opportunistic" (TRIUMF): polarized atoms in MOT

M. Anholm et al., DNP Meeting 2018, Hawaii: \tilde{A} in ³⁷K, $\Delta b_{mix} \sim 4\%$ (1 σ)

Current direct searches and plans

... explicitly considering the determination of b_{GT}

Isotope	Method	Lab/Institution
⁶ He	thin foil; 4π detector	GANIL/LPC-Caen
???	MWDC+scintillators	Krakow, Leuven
⁴⁵ Ca	source in UCNA spectr.	UT, ORNL, NCSU, KUL++
⁶ He	CRES	UW, ANL++
⁶ He, ²⁰ F	Calorimetry	NSCL/MSU, Wittenberg

Selection of candidates

Kinematic sensitivity

Uncertainty for 10⁸ events (assuming fit from 5% to 95% of end-point)

Hadronic corrections

In an isospin triplet, the weak magnetism form factor can be determined from CVC

Candidates ⁶He ²⁰F

Sensitivity to form factors in ⁶He

• Sensitivity to induced tensor:

$$\frac{\Delta b_{GT}}{\Delta d} = 1.8 \times 10^{-5}$$

• Sensitivity to weak magnetism:

$$\frac{\Delta b_{GT}}{\Delta b_{WM}} = 4.2 \times 10^{-4}$$

$$b_{WM} = \sqrt{\frac{6\Gamma_{M1}M^2}{\alpha E_{\gamma}^3}} = 68.22(79) \implies \Delta b_{GT} = 3.4 \times 10^{-4} \quad \text{(Due to uncertainty on WM, } \Delta b_{WM} = 0.79\text{)}$$

- In *A*=6 it is not possible to determine *d* experimentally from comparison with mirror decay.
- Calculation: *d*=2.4, F. Calaprice, PRC 12 (1975) 2016

Sensitivity to form factors in ⁶He

- In the decays of A=8, 12, and 20 triplets, it is observed (Barry's talk) that $d \approx b_{WM}$.
- There is no obvious explanations why d is suppressed in ⁶He.
- If the error on *d* would be $\Delta d = 68.22 2.4$ then we get $\Delta b_{GT} = 1.3 \times 10^{-3}$!!!

⁶He at GANIL

Courtesy: X. Flechard

Calibration with ATRON electron accelerator

Tests with 90 Sr β source EJ-240 & EJ-204 scintillators

ACFI, Beta decay as a probe of new physics, Nov.1-3, 2018

miniBETA (Leuven, Krakow)

NIVERSITY

Courtesy: N. Severijns (M. Perkowski, Mazurian Lakes Conf. 2017)

- Beta source inside detector
- Trigger with plastic scintillators
- Track with MWDC
- Tested with cosmics:
- average efficiency ~90%
- position resolution ~0.5mm
- (not clear what source will be used)

11

⁴⁵Ca at LANL

- Single crystal Si
- 100 nm dead layer
- 1.5 mm thick

- 10⁸ events collected
- MC simulations under way
- Analysis in progress including corrections for cross-talk, backscattering, etc.

⁶He little-b measurement at UW

W. Byron¹, M. Fertl¹, A. Garcia¹, G. Garvey¹, B. Graner¹, M. Guigue², A. Leredde³, P. Mueller³, N. Oblath², R.G.H. Robertson¹, G. Rybka¹, G. Savard³, D. Stancil⁴, H.E. Swanson¹, B.A. Vandeevender², F. Wietfeldt⁵, A. Young⁴

¹University of Washington, ²Pacific Northwest National Laboratory, ³Argonne National Lab, ⁴North Carolina State University, ⁵Tulane

Goal: measure "little b" to 10^{-3} or better in ⁶He Stats not a problem.

Use cyclotron radiation spectroscopy. Similar to Project 8 setup for tritium decay. PRL 114, 162501 (2015)

⁶He little-b measurement at UW

Goal: measure "little b" to 10^{-3} or better in ⁶He Stats not a problem.

Presently under construction

1-7 Tesla superconducting solenoid

⁶He in

RF guides GHZ

⁶He in

Why do we like the Project-8 technique for ⁶He?

- Measures beta energy at creation, before complicated energy-loss mechanisms.
- High resolution allows debugging of systematic uncertainties.
- Room photon or e scattering does not yield background.
- 6He in gaseous form works well with the technique.
- 6He ion-trap (shown by others to work) allows sensitivity higher than any other proposed.
- Counts needed not a big demand on running time.

We have put together a collaboration, written and submitted a proposal. Now kick-started by DOE and UW funds.

Phase I: proof of principle 2 GHz bandwidth. Show detection of cycl. radiation from 6He. Study power distribution.

Phase II: first measurement (b < 10⁻³) 6 GHz bandwidth. 6He and 19Ne measurements.

Phase III: ultimate measurement ($b < 10^{-4}$) ion-trap for no limitation from geometric effect. Mission until Aug. 2020

Calorimetric technique at NSCL

- Eliminates effect of electron backscattering from detectors
- Chopped beam: implantation/decay

Data from ²⁰F

NIVERSITY

M. Hughes et al. PRC 97 (2018) 054328

ACFI, Beta decay as a probe of new physics, Nov.1-3, 2018

²⁰F half-life

M. Hughes et al. PRC 97 (2018) 054328

17 combined std. dev. discrepancy!

- Level of uncorrelated background is smaller than 8×10^{-6}

Escape of Bremsstrahlung radiation

X. Huyan et al. NIMA 97 (2018) 054328

For ⁶He spectrum, the differences correspond to about 5% of the linear term due to WM.

Radiative corrections

Example of fit in ⁶He

~100 independent spectra collected with CsI(Na) and NaI(Tl)

Status and Outlook

- Current level of statistical sensitivity:
 - 3×10^{-3} for 20 F
 - 1.5×10⁻³ for ⁶He (with CsI and NaI detectors)

- Uncorrelated background in ²⁰F is negligible but the effect of summing due to Bremsstrahlung and 1.6 MeV photon in implantation detector makes the analysis more complicated.
- New beam request for ⁶He is in preparation.

Summary

• Several innovative experimental approaches are considered to reach new levels of sensitivity for the measurements of the Fierz term.

• "Which experimental approaches provide the most promising probes for new physics..."?

