Dynamics of a two-step Electroweak Phase Transition

May 2, 2014

in Collaboration with Pavel Fileviez Pérez Michael J. Ramsey-Musolf Kai Wang

ACFI Higgs Portal Workshop

Hiren Patel hiren.patel@mpi-hd.mpg.de

MAX-PLANCK-GESELLSCHAFT

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK

Electroweak Baryogenesis and Sakharov's Criteria

Electroweak Baryogenesis

MAX-PLANCK-INSTITUT

Previous Strategies (to strengthen phase transition)

Make $\underline{E}(\xi)$ bigger.

Make $\overline{\lambda}$ smaller.

In general, very difficult.

Previous Strategies

(to strengthen phase transition)

Effective potential a function of multiple order parameters.

In regions of parameter space, structure of free energy is such that there could be a multi-step phase transition.

If extra degrees of freedom are SM-gauge singlets, EW sphaleron not affected in essential way,

Condition on phase transition strength

Applied only on <u>final</u> step.

If extra scalar degrees of freedom carry gauge quantum numbers,

Sphalerons would couple to scalar field, phase transitions induced by these could influence them.

(model-builder's POV)

In this setup, it may be easier to generate a strong first order phase transition at step 1.

underlying parameters controlling this step are largely unconstrained.

(but possibly measured at LHC)

$\Sigma SM - Formulation$

P. Fileviez Pérez, H.Patel, M.J. Ramsey-Musolf, K. Wang. PRD 79 (2009), 055024

Scalar Field Content:

Higgs doublet

$$H\equiv (1,2,rac{1}{2})=egin{pmatrix} \phi^+\ rac{1}{\sqrt{2}}(H^0+i\phi^0) \end{pmatrix} \,,$$

SU(2) real triplet

$$\Sigma = (1,3,0) = ec{T} \cdot ec{\Sigma} = rac{1}{2} \left(egin{array}{cc} \Sigma^0 & \sqrt{2}\Sigma^+ \ \sqrt{2}\Sigma^- & -\Sigma^0 \end{array}
ight)$$

<u>Couplings:</u> (renormalizable)

Fermiophobic — incompatible hypercharge

Gauge-couplings: couples to W, Z and EM field

Scalar potential:

Standard model

$$V(H,\Sigma) = -\mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^4 = \frac{1}{2} \mu_{\Sigma}^2 \vec{\Sigma}^2 + \frac{b_4}{4} (\vec{\Sigma}^2)^2 + \frac{b_4}{4} (\vec{\Sigma}^2)^2$$
Higgs portal interaction
 $Higgs portal interaction$

Four unmeasured parameters μ_{Σ}^2 , b_4 , a_1 , a_2

Phenomenological Constraints

In general, potential permits vevs for both Σ and H.

Triplet VEV contributes to W mass (but not Z)

$$egin{aligned} \mathcal{L}_{ ext{kin.}} &= (D_{\mu}H)^{\dagger}(D^{\mu}H) + ext{Tr}(D_{\mu}\Sigma)^2 \ &\longrightarrow \quad rac{g^2}{4}(v^2 + rac{4\langle\Sigma
angle^2}{4})W^+_{\mu}W^{\mu-} + rac{1}{2}rac{v^2}{4}(g^2 + g'^2)Z_{\mu}Z^{\mu} \ & ext{W mass} \end{aligned}$$

SM relation: weak charged and neutral current rates upset

$$ho \equiv rac{M_W^2}{M_Z^2 \cos heta_{
m w}} \qquad {
m SM (L.0.)} \qquad {
m \Sigma SM} = 1 \longrightarrow 1 + rac{4 \langle \Sigma
angle}{v^2}$$

Experimentally, SM relation satisfied to high prec.

 $ho_{
m exp} = \delta_{
m SM} + \delta
ho \qquad \delta
ho = 0.0004^{+0.0003}_{-0.0004}$ (95% conf.)

Translates to bound: $\langle \Sigma
angle \leq 3 \; {
m GeV}$

Phenomenological Constraints

Experimentally, SM relation satisfied to high prec. $ho_{
m exp} = \delta_{
m SM} + \delta
ho \qquad \delta
ho = 0.0004^{+0.0003}_{-0.0004}$

(95% conf.)

Easy and natural explanation of smallness:

 $\langle \Sigma \rangle$ depends linearly on a_1 (for small values): $\langle \Sigma \rangle \sim \mathcal{O}(a_1) \implies a_1 \text{ is } \mathcal{O}(3 \text{ GeV}) \text{ (1\% EW scale)}$

Technically natural, but make simplifying assumption: $a_1 = 0$

$$V(H,\Sigma) = -\mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^4 \left[-\frac{1}{2} \mu_{\Sigma}^2 \vec{\Sigma}^2 + \frac{b_4}{4} (\vec{\Sigma}^2)^2 \right] \left[+a_1 H^{\dagger} \vec{Z} H + \frac{a_2}{2} H^{\dagger} H \vec{\Sigma}^2 \right]$$

Potential is now SO(3) symmetric and has Z_2 symmetry: $ec{\Sigma}
ightarrow - ec{\Sigma}$

Three unmeasured parameters μ_{Σ}^2 , b_4 , $parameters a_2$

Translates to bound:

 $\langle \Sigma \rangle \leq 3 \; {
m GeV}$

Particle Spectrum

$$V(H,\Sigma) = -\mu^2 H^{\dagger}H + \lambda (H^{\dagger}H)^4 - rac{1}{2}\mu_{\Sigma}^2ec{\Sigma}^2 + rac{b_4}{4}(ec{\Sigma}^2)^2 + rac{a_2}{2}H^{\dagger}Hec{\Sigma}^2$$

Zero-temperature Vacuum Structure H.Patel, M.J. Ramsey-Musolf, PRD 88 (2013), 035013

Pattern of phase transition influenced by zero-T vacuum structure

't Hooft–Polyakov Monopoles

Peculiar feature: Sigma phase resembles Glashow-Salam model of EW interactions (no weak-neutral currents)

't Hooft and Polyakov showed stable **magnetic monopole solution**.

=> early universe populated by monopoles

=> subsequently wiped out after 2nd phase transition to EW phase.

Rubakov effect: scattering with Fermions **violates B+L exactly like sphalerons**. In addition to sphaleron processes, monopoles would also wipeout baryon asymmetry

But to what extent?

Depends on monopole concentration:

- 1. Kibble mechanism
- 2. Thermal production (**Dominant**)

(monopole-antimonopole pair-production)

Bigger $\langle \Sigma \rangle \Rightarrow$ Higher mass \Rightarrow Lower concentration

(equil. monopole) $\sim e^{-m_M(T)/T}$

Baryon preservation

Step 1: $\vec{\Sigma}$ couples to *W*, *Z* fields:

- Sphalerons rates suppressed

- Monopole density suppressed

stronger Step 1 \Rightarrow greater suppression

<u>Qualitatively</u>: (gauge-dep) Step 1 $V_{\text{eff}}(\phi, T) = D(T^2 - T_0^2) \phi^2 - E T \phi^3 + \frac{b_4}{4} \phi^4 + \dots$ Smaller b_4 leads to stronger transition: $\frac{\langle \Sigma \rangle}{T_c} = \frac{2E}{b_4}$

Step 2: H couples to W, Z fields:

- SM EW Klinkhamer-Manton Sphalerons rates suppressed

always **sufficiently** strong

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK E HEIDELBERG

Hiren Patel

≜Σ⁰

Modified Higgs Decay

Currently, most sensitive to $\ \Gamma(H^0 o \gamma \gamma)$ model potential $V(H,\Sigma) = -\mu^2 H^{\dagger} H + \lambda (H^{\dagger} H)^4$ $-rac{1}{2}\mu_{\Sigma}^2ec{\Sigma}^2+rac{b_4}{4}(ec{\Sigma}^2)^2+rac{a_2}{2}H^\dagger Hec{\Sigma}^2$ Higgs-portal coupling a_2 adds new contribution to amplitude $= 0^{+}$ H^0 H^0 H^0 $\Delta M_{\Sigma} pprox$ 166 MeV E_{\bullet} Σ^{\pm} $\sim v a_2$ π^{\pm} Σ^0 $\left[\Gamma(\Sigma SM) - \Gamma(SM)\right] / \Gamma(SM)$ (stable) Positive a_2 suppresses $\gamma\gamma$ mode. 200 0% Negative a_2 enhances $\gamma\gamma$ mode. -20% 180 +10% $(b_4 \text{ indep.})$ 160 H^0 M_{Σ} (GeV) 125 GeV -30% 140 +20% Two-step EWPT (SM)-40% occurs for positive a_2 . 120 $\gamma\gamma$ 100 80

Hiren Patel

-1.0 -0.5

0.0

0.5

 a_2

1.0

1.5 2.0

LHC Production: Σ^{\pm}

Hiren Patel

AX-PLANCK-INSTITUT

Σ^0 as a CDM candidate

Kinetic theory: sphaleron rate related to its <u>mass</u> (energy)

$$\Gamma_{
m sph.} \sim (gT)^4 e^{-E_{
m sph}/T}$$

Sphaleron <u>mass</u> dependent on Higgs field value inside bubble

 $E_{
m sph} \sim 4\pi \langle \phi
angle /g$

At phase transition, need ratio to be large.

 T_c Baryon number preservation criterion on strength of phase transition. **This talk** (outline): set C, CP-violation aside

1. New Strategy to strengthen phase transition

Two-step phase transition

H.Patel, M.J. Ramsey-Musolf, PRD 88 (2013), 035013

Connection to colliders

P. Fileviez Pérez, H.Patel, M.J. Ramsey-Musolf, K. Wang. PRD 79 (2009), 055024

<u>Problem</u>: This is gauge dependent

> H.Patel, M.J. Ramsey-Musolf, JHEP 1107 (2011), 029

(standard) Computation of
$$\frac{\langle \phi \rangle}{T_c}$$

- 1. Track evolution of minima in $V_{\rm eff}$ as a function of temperature.
- 2. Numerically solve minimization and degeneracy condition equations:

$$f 1 \;\; rac{\partial}{\partial \phi} V_{ ext{eff}}(\phi_{\min}, \, T_c) = 0$$

2
$$V_{ ext{eff}}(0, T_c) = V_{ ext{eff}}(\phi_{ ext{min}}, T_c)$$

In a gauge theory, the effective potential is gauge dependent.

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK HEIDELBERG

Diagnosis & Resolution I

1

~*Diagnosis*~ lsen _____ *T_c* gauge-

- Nielsen identity $\implies T_c$ gaugeindependent
- valid order-by-order in loopexpansion
- But, numerical solution to <u>minimization</u> condition

1. $V'_{\text{eff}}(\phi_{\min}, T_c) = 0$

2.
$$V_{\text{eff}}(0, T_c) = V_{\text{eff}}(\phi_{\min}, T_c)$$

leads to inconsistent truncation in loop-expansion!

"<u>h-bar Expansion method</u>"

~Resolution~

Minimize by an inversion of series

$$\begin{cases} \text{counts # of loops} \\ \downarrow \\ \phi_{\min} = \phi_0 + \hbar \phi_1 + \hbar^2 \phi_2 + \dots \\ \phi_{\min} = \phi_0 + \hbar \phi_1 + \hbar^2 \phi_2 + \dots \end{cases}$$

Equation for ea. power of \hbar ; yields ϕ_{\min} . Subs. into each side;

$$V(\phi_{\min}, T) = V_0(\phi_0) + \hbar V_1(\phi_0, T) + \hbar^2 \Big[V_2(\phi_0, T, \xi) - \frac{1}{2} \phi_1^2(\xi) \frac{\partial^2 V_0}{\partial \phi^2} |_{\phi_0} \Big] + \dots$$

Diagnosis & Resolution I

Hiren Patel

AX-PLANCK-INSTITUT

Diagnosis & Resolution II

