T Violation in n-A Reactions

Neutron Optical Parity and Time-Reversal EXperiment

Hirohiko M. SHIMIZU

Department of Physics, Nagoya University

shimizu@phi.phys.nagoya-u.jp

on behalf of the NOPTREX collaboration

Title(T Violation in n-A Reactions) Conf(Theoretical Issues and Experimental Opportunities in Searches for Time Reversal Invariance Violation) Date(2018/12/07) At(Amherst)

Neutron Optical Parity and Time Reversal EXperiment

NOPTREX Collaboration

KEK 2018S12

Neutron Optical Parity and Time Reversal Experiment

NOPTREX Collaboration

Nagoya University

KEK 2018S12

H.M.Shimizu, M.Kitaguchi, K.Hirota, T.Yamamoto, K.Ishizaki, S.Endoh, T.Sato, Y.Niinomi, T.Morishima, G.Ichikawa, Y.Kiyanagi, J.Hisano, N,Wada, T.Matsushita Kyushu University T.Yoshioka, S.Takada, J.Koga, S.Makise JAEA T.Okudaira, K.Sakai, A.Kimura, H.Harada KEK T.Ino, S.Ishimoto, K.Taketani, K.Mishima, C.C.Haddock Tokyo Inst. Tech. Hiroshima Univ. **Univ. British Columbia H.Fujioka** T.Momose M.linuma Osaka Univ. K.Ogata, H.Kohri, M.Yosoi, T.Shima, H.Yoshikawa Tohoku Univ. **M.Fujita RIKEN** Y.Yamagata, T.Uesaka, K.Tateishi, H.Ikegami Yamagata Univ. Japan Women's Univ. Ashikaga Univ. T.Iwata, Y.Miyachi D.Takahashi **R.Ishiguro** Kyoto Univ. Y.I.Takahashi, M.Hino

Indiana University

W.M.Snow, J.Curole, J.Carini

Univ. South Carolina

V.Gudkov

Oak Ridge National Lab.

J.D.Bowman, S.Penttila, X.Tong, P.Jiang

Kentucky Univ.

B.Plaster, D.Schaper, C.Crawford

Paul Scherrer Institut

P.Hautle

Southern Illinois University

B.M.Goodson

Univ. California Berkeley

A.S.Tremsin

Berea College

M.Veillette

Title(T Violation in n-A Reactions) Conf(Theoretical Issues and Experimental Opportunities in Searches for Time Reversal Invariance Violation) Date(2018/12/07) At(Amherst)

Compound States

Title(T Violation in n-A Reactions)

Conf(Theoretical Issues and Experimental Opportunities in S Date(2018/12/07) At(Amherst)

5

Universality Check

compound nuclear spin orbital n spin nuclear spin J = l + s + In entrance spin j S channel spin

$$\begin{split} |((Is)S,l)J\rangle &= \sum_{j} \left\langle (I,(sl)j)J|((Is)S,l)J\rangle \left| (I,(sl)j)J \right\rangle \\ &= \sum_{j} (-1)^{l+s+I+J} \sqrt{(2j+1)(2S+1)} \left\{ \begin{array}{cc} I & s & l \\ J & S & j \end{array} \right\} |(I,(sl)j)J\rangle \\ &x &= \sqrt{\frac{\Gamma_{n}^{p}(j=1/2)}{\Gamma_{n}^{p}}} \quad y = \sqrt{\frac{\Gamma_{n}^{p}(j=3/2)}{\Gamma_{n}^{p}}} \quad x_{S} = \sqrt{\frac{\Gamma_{n}^{p}(S=I-\frac{1}{2})}{\Gamma_{n}^{p}}} \quad y_{S} = \sqrt{\frac{\Gamma_{n}^{p}(S=I+\frac{1}{2})}{\Gamma_{n}^{p}}} \\ z_{j} &= \left\{ \begin{array}{cc} x & (j=1/2) \\ y & (j=3/2) \end{array} \right\}, \quad \tilde{z}_{S} = \left\{ \begin{array}{cc} x_{S} & (S=I-1/2) \\ y_{S} & (S=I+1/2) \end{array} \right\} \quad \tilde{z}_{S} = \sum_{j} (-1)^{l+I+j+S} \sqrt{(2j+1)(2S+1)} \left\{ \begin{array}{cc} l & s & j \\ I & J & S \end{array} \right\} z_{j} \end{split}$$

s-p interference ⇔ channel-spin interference

$$\begin{split} P:|lsI\rangle &\to (-1)^l\,|lsI\rangle & T:|lsI\rangle \to (-1)^{i\pi S_y}K\,|lsI\rangle \\ l=0,1 \quad \mbox{P-odd} & S=I\pm 1/2 \quad \mbox{T-odd} \end{split}$$

Title(T Violation in n-A Reactions) Conf(Theoretical Issues and Experimental Opportunities in Searches for Time Reversal Invariance Violation) Date(2018/12/07) At(Amherst) page 7

T-violation in Neutron Optics

Conf(Theoretical Issues and Expérimental Opportunities in Searches for Time Reve Date(2018/12/07) At(Amherst)

page

9

T-violation in Neutron Optics

Analyzing Power and Polarization

Title(T Violation in n-A Reactions)

Date(2018/12/07) At(Amherst)

Polarization Transfer Coefficient

Conf(Theoretical Issues and Experimental Opportunities in Searches for Time Reversal Invariance Violation 11 page

Date(2018/12/07) At(Amherst)

12

(1), (2) Estimation in Effective Field Theory

$$\sigma_{\pm} = \sigma_{1} \pm \sigma_{2} \quad r = r_{1} - r_{2} \quad x_{a} = m_{a}r$$

$$T_{12}^{z} = 3r_{1}^{z}\tau_{2}^{z} - \tau_{1} \cdot \tau_{2} \quad Y_{1}(x) = \left(1 + \frac{1}{x}\right)\frac{e^{-x}}{x}$$

$$g_{\pi} = 13.07, \quad g_{\eta} = 2.24, \quad g_{\rho} = 2.75, \quad g_{\omega} = 8.25$$

$$V_{CP} = \left[-\frac{\bar{g}_{\eta}^{(0)}g_{\eta}}{2m_{N}}\frac{m_{\eta}^{2}}{4\pi}Y_{1}(x_{\eta}) + \frac{\bar{g}_{\omega}^{(0)}g_{\omega}}{2m_{N}}\frac{m_{\omega}^{2}}{4\pi}Y_{1}(x_{\omega}) \right] \sigma_{-} \cdot \hat{r}$$

$$+ \left[-\frac{\bar{g}_{\pi}^{(0)}g_{\pi}}{2m_{N}}\frac{m_{\pi}^{2}}{4\pi}Y_{1}(x_{\pi}) + \frac{\bar{g}_{\rho}^{(0)}g_{\rho}}{2m_{N}}\frac{m_{\rho}^{2}}{4\pi}Y_{1}(x_{\rho}) \right] \tau_{1} \cdot \tau_{2}\sigma_{-} \cdot \hat{r}$$

$$+ \left[-\frac{\bar{g}_{\pi}^{(1)}g_{\pi}}{2m_{N}}\frac{m_{\pi}^{2}}{4\pi}Y_{1}(x_{\pi}) + \frac{\bar{g}_{\eta}^{(0)}g_{\eta}}{2m_{N}}\frac{m_{\eta}^{2}}{4\pi}Y_{1}(x_{\rho}) \right] T_{12}^{z}\sigma_{-} \cdot \hat{r}$$

$$+ \left[-\frac{\bar{g}_{\pi}^{(1)}g_{\pi}}{2m_{N}}\frac{m_{\pi}^{2}}{4\pi}Y_{1}(x_{\pi}) + \frac{\bar{g}_{\eta}^{(1)}g_{\eta}}{2m_{N}}\frac{m_{\eta}^{2}}{4\pi}Y_{1}(x_{\rho}) + \frac{\bar{g}_{\mu}^{(1)}g_{\rho}}{2m_{N}}\frac{m_{\rho}^{2}}{4\pi}Y_{1}(x_{\rho}) \right] \tau_{+}\sigma_{-} \cdot \hat{r}$$

$$+ \left[-\frac{\bar{g}_{\pi}^{(1)}g_{\pi}}{2m_{N}}\frac{m_{\pi}^{2}}{4\pi}Y_{1}(x_{\pi}) - \frac{\bar{g}_{\eta}^{(1)}g_{\eta}}{2m_{N}}\frac{m_{\eta}^{2}}{4\pi}Y_{1}(x_{\eta}) - \frac{\bar{g}_{\mu}^{(1)}g_{\rho}}{2m_{N}}\frac{m_{\rho}^{2}}{4\pi}Y_{1}(x_{\rho}) + \frac{\bar{g}_{\omega}^{(1)}g_{\omega}}{2m_{N}}\frac{m_{\omega}^{2}}{4\pi}Y_{1}(x_{\omega}) \right] \tau_{+}\sigma_{+} \cdot \hat{r}$$

$$= \frac{\tilde{d}_{\pi}^{(1)}g_{\pi}}m_{\pi}^{2}Y_{1}(x_{\pi}) - \frac{\tilde{g}_{\eta}^{(1)}g_{\eta}}{2m_{N}}\frac{m_{\eta}^{2}}{4\pi}Y_{1}(x_{\eta}) - \frac{\bar{g}_{\mu}^{(1)}g_{\rho}}{2m_{N}}\frac{m_{\rho}^{2}}{4\pi}Y_{1}(x_{\rho}) + \frac{\bar{g}_{\omega}^{(1)}g_{\omega}}{2m_{N}}\frac{m_{\omega}^{2}}{4\pi}Y_{1}(x_{\omega}) \right] \tau_{+}\sigma_{+} \cdot \hat{r}$$

Title(T Violation in n-A Reactions) Conf(Theoretical Issues and Experimental Opportunities in Searches for Time Reversal Invariance Violation) Date(2018/12/07) At(Amherst) page 13

(1), (2) Estimation in Effective Field Theory

$$\frac{\langle s|W_{\rm T}|p\rangle}{\langle s|W|p\rangle} \simeq (1-0.1) \times \frac{\langle W_{\rm T}\rangle}{\langle W\rangle}$$

 $(\mathbf{0})$

Gudkov, Phys. Rep. 212 (1992) 77 Flambaum, Phys. Rev. C51 (1995) 2914

Y.H.Song et al., Phys. Rev. C83(2011) 065503

$$\frac{W_{\rm T}}{W} \simeq -0.47 \left(\frac{\overline{g}_{\pi}^{(0)}}{h_{\pi}^1} + 0.26 \frac{\overline{g}_{\pi}^{(1)}}{h_{\pi}^1} \right)$$

 $h_\pi^1 \sim 3 \times 10^{-7}$

$$\begin{aligned} \overline{g}_{\pi}^{(0)} &< 2.5 \times 10^{-10} \qquad |d_{\rm n}| < 3 \times 10^{-26} \, e \, {\rm cm} \\ \overline{g}_{\pi}^{(1)} &< 0.5 \times 10^{-11} \qquad |d(^{199}{\rm Hg})| < 3.1 \times 10^{-29} \, e \, {\rm cm} \end{aligned}$$

$$\mathbf{n} + \mathbf{p} \to \mathbf{d} + \gamma$$

$$\left|\frac{W_{\rm T}}{W}\right| < 3.9 \times 10^{-4} \quad \mbox{ \leftarrow discovery potential corresponding to the present nEDM upper limit}$$

k_γ $\sigma_n k_n$ $|s\rangle |J_s E_s \Gamma_s \Gamma_s^n|$ $|p\rangle \ J_p E_p \Gamma_p \Gamma_p^n$ $|p_{1/2}\rangle$ $|p_{3/2}\rangle$ $\Gamma_{p,1/2}^n$ $\Gamma_{p,3/2}^n$ $x = \cos \phi \quad y = \sin \phi$ $x = \sqrt{\frac{\Gamma_n^{p\frac{1}{2}}}{\Gamma_n^p}} \quad y = \sqrt{\frac{\Gamma_n^{p\frac{3}{2}}}{\Gamma_n^p}}$

coeff.	σ_n -dep.	σ_{γ} -dep.	P	Τ	correlation
a_0	no	no	P-even	T-even	1
a_1	no	no	P-even	T-even	$\boldsymbol{k}_n \cdot \boldsymbol{k}_{\gamma}$
a_2	yes	no	P-even	T-odd	$\boldsymbol{\sigma}_n \cdot (\boldsymbol{k}_n \times \boldsymbol{k}_{\gamma})$
<i>a</i> ₃	no	no	P-even	T-even	$(\boldsymbol{k}_n \cdot \boldsymbol{k}_{\gamma})^2 - \frac{1}{3}$
a_4	yes	no	P-even	T-odd	$(\boldsymbol{k}_n \cdot \boldsymbol{k}_{\gamma}) \boldsymbol{\sigma}_n \cdot (\boldsymbol{k}_n \times \boldsymbol{k}_{\gamma})$
a_5	yes	yes	P-even	T-even	$(\boldsymbol{\sigma}_{\gamma}\cdot\boldsymbol{k}_{\gamma})(\boldsymbol{\sigma}_{n}\cdot\boldsymbol{k}_{\gamma})$
a_6	yes	yes	P-even	T-even	$(\boldsymbol{\sigma}_{\gamma} \cdot \boldsymbol{k}_{\gamma}) (\boldsymbol{\sigma}_{n} \cdot \boldsymbol{k}_{\gamma})$
a7	yes	yes	P-even	T-even	$(\boldsymbol{\sigma}_{\gamma} \cdot \boldsymbol{k}_{\gamma}) \left[(\boldsymbol{\sigma}_{n} \cdot \boldsymbol{k}_{\gamma}) (\boldsymbol{k}_{\gamma} \cdot \boldsymbol{k}_{n}) - \frac{1}{3} (\boldsymbol{\sigma}_{n} \cdot \boldsymbol{k}_{n}) \right]$
a_8	yes	yes	P-even	T-even	$(\boldsymbol{\sigma}_{\gamma} \cdot \boldsymbol{k}_{\gamma}) \left[(\boldsymbol{\sigma}_{n} \cdot \boldsymbol{k}_{n}) \left(\boldsymbol{k}_{n} \cdot \boldsymbol{k}_{\gamma} \right) - \frac{1}{3} \left(\boldsymbol{\sigma}_{n} \cdot \boldsymbol{k}_{\gamma} \right) \right]$
<i>a</i> 9	yes	no	P-odd	T-even	$(\boldsymbol{\sigma}_n \cdot \boldsymbol{k}_{\gamma})$
a_{10}	yes	no	P-odd	T-even	$(\boldsymbol{\sigma}_n \cdot \boldsymbol{k}_n)$
<i>a</i> ₁₁	yes	no	P-odd	T-even	$(\boldsymbol{\sigma}_n \cdot \boldsymbol{k}_{\gamma}) (\boldsymbol{k}_{\gamma} \cdot \boldsymbol{k}_n) - \frac{1}{3} (\boldsymbol{\sigma}_n \cdot \boldsymbol{k}_n)$
<i>a</i> ₁₂	yes	no	P-odd	T-even	$(\boldsymbol{\sigma}_n \cdot \boldsymbol{k}_n) \left(\boldsymbol{k}_n \cdot \boldsymbol{k}_{\gamma} \right) - \frac{1}{3} \left(\boldsymbol{\sigma}_n \cdot \boldsymbol{k}_{\gamma} \right)$
<i>a</i> ₁₃	no	yes	P-odd	T-even	$(\boldsymbol{\sigma}_{\boldsymbol{\gamma}} \cdot \boldsymbol{k}_{\boldsymbol{\gamma}})$
<i>a</i> ₁₄	no	yes	P-odd	T-even	$(\boldsymbol{\sigma}_{\gamma}\cdot\boldsymbol{k}_{\gamma})(\boldsymbol{k}_{n}\cdot\boldsymbol{k}_{\gamma})$
<i>a</i> ₁₅	yes	yes	P-odd	T-odd	$(\boldsymbol{\sigma}_{\gamma}\cdot\boldsymbol{k}_{\gamma})\boldsymbol{\sigma}_{n}\cdot(\boldsymbol{k}_{n}\times\boldsymbol{k}_{\gamma})$
<i>a</i> ₁₆	no	yes	P-odd	T-even	$(\boldsymbol{\sigma}_{\gamma} \cdot \boldsymbol{k}_{\gamma}) \left[(\boldsymbol{k}_n \cdot \boldsymbol{k}_{\gamma})^2 - \frac{1}{3} \right]$
a17	yes	yes	P-odd	T-odd	$(\boldsymbol{\sigma}_{\gamma} \cdot \boldsymbol{k}_{\gamma}) (\boldsymbol{k}_n \cdot \boldsymbol{k}_{\gamma}) \boldsymbol{\sigma}_n \cdot (\boldsymbol{k}_n \times \boldsymbol{k}_{\gamma})$

Flambaum, Nucl. Phys. A435 (1985) 352

 $= \sum_{J_{s}} |V_{1}(J_{s})|^{2} + \sum_{J_{s},j} |V_{2}(J_{p}j)|^{2}$ = 2Re $\sum_{J_{s},J_{p},j} V_{1}(J_{s})V_{2}^{*}(J_{p}j)P(J_{s}J_{p}\frac{1}{2}j1IF)$ = $-2Im \sum_{J_{s},J_{p},j} V_{1}(J_{s})V_{2}^{*}(J_{p}j)\beta_{j}P(J_{s}J_{p}\frac{1}{2}j1IF)$ a_0 a_1 a_2 $a_{3} = \operatorname{Re} \sum_{J_{s}, j, J_{p}', j'} V_{2}(J_{p}j) V_{2}^{*}(J_{p}'j') P(J_{p}J_{p}'jj'2IF) 3\sqrt{10} \begin{cases} 2 & 1 & 1 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 2 & j & j' \end{cases} \\ a_{4} = -\operatorname{Im} \sum_{J_{s}, j, J_{p}', j'} V_{2}(J_{p}j) V_{2}^{*}(J_{p}'j') P(J_{p}J_{p}'jj'2IF) 6\sqrt{5} \begin{cases} 2 & 1 & 1 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 2 & j & j' \end{cases} \\ \begin{cases} 2 & 1 & 1 \\ 1 & \frac{1}{2} & \frac{1}{2} \\ 2 & j & j' \end{cases} \end{cases}$ $|s\rangle \ J_s E_s \Gamma_s \Gamma_s^n$ $= -\operatorname{Re} \left| \sum_{J_{\mathrm{s}},J'_{\mathrm{s}}} V_{1}(J_{\mathrm{s}}j) V_{1}^{*}(J'_{\mathrm{s}}j') P(J_{\mathrm{s}}J'_{\mathrm{s}}\frac{1}{2}\frac{1}{2}1IF) + \sum_{J_{\mathrm{p}},j,J'_{\mathrm{p}},j'} V_{2}(J_{\mathrm{p}}j) V_{2}^{*}(J'_{\mathrm{p}}j') P(J_{\mathrm{p}}J'_{\mathrm{p}}j_{\mathrm{p}}) \right|_{\mathcal{H}} + \sum_{J_{\mathrm{p}},j,J'_{\mathrm{p}},j'} V_{2}(J_{\mathrm{p}}j) V_{2}^{*}(J'_{\mathrm{p}}j') P(J_{\mathrm{p}}J'_{\mathrm{p}}j_{\mathrm{p}})$ $|p\rangle \ J_p E_p \Gamma_p \Gamma_p^n$ $= -2\text{Re}\sum_{J_{s}} V_{1}(J_{s}j)V_{2}^{*}(J_{p} = J_{s}, \frac{1}{2})$ $= \text{Re}\sum_{J_{s}, J_{p}} V_{1}(J_{s})V_{2}^{*}(J_{p}\frac{3}{2})P(J_{s}J_{p}\frac{1}{2}\frac{3}{2}2IF)$ a_6 a_7 $a_8 = -\operatorname{Re}\sum_{J_{\mathrm{p}},j,J'_{\mathrm{p}},j'} V_2(J_{\mathrm{p}}j) V_2^*(J'_{\mathrm{p}}j') P(J_{\mathrm{p}}J'_{\mathrm{p}}jj'1IF) 18 \begin{cases} 2 & 1 & 1 \\ 1 & \frac{1}{2} & \frac{1}{2} \\ 1 & i & i' \end{cases}$ $|p_{1/2}\rangle$ $|p_{3/2}\rangle$ $a_9 = -2\operatorname{Re} \left| \sum_{J_{\mathrm{s}},J'_{\mathrm{s}}} V_1(J_{\mathrm{s}}j) V_3^*(J'_{\mathrm{s}}j') P(J_{\mathrm{s}}J'_{\mathrm{s}}\frac{1}{2}\frac{1}{2}1IF) + \sum_{J_{\mathrm{p}},j,J'_{\mathrm{p}},j'} V_2(J_{\mathrm{p}}j) V_4^*(J'_{\mathrm{p}}j') P(J_{\mathrm{p}}J'_{\mathrm{p}}) \right|_{\mathcal{F}}$ $\Gamma_{p,1/2}^n$ $\Gamma_{p,3/2}^n$ $\begin{array}{rcl} a_{10} & = & -2\operatorname{Re}\sum_{J_{\mathrm{s}}} \left[V_2(J_{\mathrm{p}} = J_{\mathrm{s}}, \frac{1}{2})V_3^*(J_{\mathrm{s}}) + V_1(J_{\mathrm{s}})V_4^*(J_{\mathrm{p}} = J_{\mathrm{s}}, \frac{1}{2}) \right] \\ a_{11} & = & 2\operatorname{Re}\sum_{J_{\mathrm{s}},J_{\mathrm{p}}} \left[V_2(J_{\mathrm{p}}\frac{3}{2})V_3^*(J_{\mathrm{s}}) + V_1(J_{\mathrm{s}})V_4^*(J_{\mathrm{p}}\frac{3}{2}) \right] \sqrt{3}P(J_{\mathrm{s}}J_{\mathrm{p}}\frac{1}{2}\frac{1}{3}2IF) \end{array}$ $a_{12} = -\operatorname{Re}\sum_{J_{s},j,J_{p}',j'} V_{2}(J_{p}j)V_{4}^{*}(J_{p}'j')P(J_{p}J_{p}'jj'1IF)18 \left\{ \begin{array}{ccc} 2 & 1 & 1 \\ 1 & \frac{1}{2} & \frac{1}{2} \\ 1 & i & i' \end{array} \right\}$ $x = \cos \phi \quad y = \sin \phi$ $\begin{array}{lll} a_{13} & = & 2\operatorname{Re}\left[\sum_{J_{\mathrm{s}}}V_{1}(J_{\mathrm{s}})V_{3}^{*}(J_{\mathrm{s}}) + \sum_{J_{\mathrm{p}}j}V_{2}(J_{\mathrm{p}}j)V_{4}^{*}(J_{\mathrm{p}}j)\right] \\ a_{14} & = & 2\operatorname{Re}\sum_{J_{\mathrm{s}}J_{\mathrm{p}}j}\left[V_{2}(J_{\mathrm{p}}j)V_{3}^{*}(J_{\mathrm{s}}) + V_{1}(J_{\mathrm{s}})V_{4}^{*}(J_{\mathrm{p}}j)\right]P(J_{\mathrm{s}}J_{\mathrm{p}}\frac{1}{2}j1IF) \\ a_{15} & = & 2\operatorname{Im}\sum_{J_{\mathrm{s}}J_{\mathrm{p}}j}\left[V_{2}(J_{\mathrm{p}}j)V_{3}^{*}(J_{\mathrm{s}}) - V_{1}(J_{\mathrm{s}})V_{4}^{*}(J_{\mathrm{p}}j)\right]\beta_{j}P(J_{\mathrm{s}}J_{\mathrm{p}}\frac{1}{2}j1IF) \end{array}$ $x = \sqrt{\frac{\Gamma_n^{p\frac{1}{2}}}{\Gamma_n^p}} \quad y = \sqrt{\frac{\Gamma_n^{p\frac{3}{2}}}{\Gamma_n^p}}$ $a_{16} = 2\operatorname{Re}\sum_{J_{p},j,J'_{p},j'} V_{2}(J_{p}j)V_{4}^{*}(J'_{p}j')P(J_{p}J'_{p}jj'2IF)3\sqrt{10} \begin{cases} 2 & 1 & 1 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 2 & j & j' \end{cases} \\a_{17} = -2\operatorname{Im}\sum_{J_{p},j,J'_{p},j'} V_{2}(J_{p}j)V_{4}^{*}(J'_{p}j')P(J_{p}J'_{p}jj'2IF)6\sqrt{5} \begin{cases} 2 & 1 & 1 \\ 1 & \frac{1}{2} & \frac{1}{2} \\ 2 & j & j' \end{cases} \end{cases}$

Title(T Violation in n-A Reactions) Conf(Theoretical Issues and Experimental Opportunities in Sear Date(2018/12/07) At(Amherst)

7 Title(T Violation in n-A Reactions) Conf(Theoretical Issues and Experimental Opportunities in Searches for Time Reversal Invariance Violation Date(2018/12/07) At(Amherst) page 18

Title(T Violation in n-A Reactions) Conf(Theoretical Issues and Experimental Opportunities in Searches for Time Reversal Invariance Violation) Date(2018/12/07) At(Amherst)

Title(T Violation in n-A Reactions) Conf(Theoretical Issues and Experimental Opportunities in Searches for Time Reversal Invariance Viola Date(2018/12/07) At(Amherst)

20

$$\frac{\mathrm{d}\sigma_{\mathrm{n}\gamma}}{\mathrm{d}\Omega_{\gamma}} = \frac{1}{2} \left(a_0 + a_1 \cos \theta_{\gamma} + a_3 (\cos^2 \theta_{\gamma} - \frac{1}{3}) \right)$$

tion) 22 Heutron Ontical Parity and Time-Reversal Experiment

Neutron Optics for Parity and Time Reversal EXperiment

NOPTREX Collaboration

Date(2018/05/26) At(Grenoble)

KEK 2018S12

page

23

Title(Behavior of Neutron Spin in Polarized Nuclear Target for the T-violation Search in Compound Nuclei) Conf(5th Joint Meeting of the Nuclear Physics Divisions of APS and JPS (HAW2018)) Date(2018/10/27) At(Waikoloa) page 24 Neutron Optics and Physics

with ultimate polarizations reaches the discovery potential in 45 hours

Title(Discrete Symmetry Violation in Neutron-induced Compound States for New Physics Search) Conf(International Workshop for Particle Physics at Neutron Sources (PPNS2018)) Date(2018/05/26) At(Grenoble)

Higher-order Tensor Correlation Terms

$$\begin{split} f &= A' + B'(\boldsymbol{\sigma}_{n} \cdot \hat{\boldsymbol{I}}) + C'(\boldsymbol{\sigma}_{n} \cdot \hat{\boldsymbol{k}}_{n}) + D'(\boldsymbol{\sigma}_{n} \cdot (\hat{\boldsymbol{k}}_{n} \times \hat{\boldsymbol{I}})) \\ &+ E'\left((\hat{\boldsymbol{k}}_{n} \cdot \hat{\boldsymbol{I}})(\hat{\boldsymbol{k}}_{n} \cdot \hat{\boldsymbol{I}}) - \frac{1}{3}(\hat{\boldsymbol{k}}_{n} \cdot \hat{\boldsymbol{k}}_{n})(\hat{\boldsymbol{I}} \cdot \hat{\boldsymbol{I}})\right) \quad \text{P-even T-even} \\ &+ F'\left((\boldsymbol{\sigma}_{n} \cdot \hat{\boldsymbol{I}})(\hat{\boldsymbol{k}}_{n} \cdot \hat{\boldsymbol{I}}) - \frac{1}{3}(\boldsymbol{\sigma}_{n} \cdot \hat{\boldsymbol{k}}_{n})(\hat{\boldsymbol{I}} \cdot \hat{\boldsymbol{I}})\right) \quad \text{P-odd T-even} \\ &+ G'(\boldsymbol{\sigma}_{n} \cdot (\hat{\boldsymbol{k}}_{n} \times \hat{\boldsymbol{I}}))(\hat{\boldsymbol{k}}_{n} \cdot \hat{\boldsymbol{I}}) \quad \text{P-even T-odd} \end{split}$$

$$\begin{split} f &= \left\{ A' + E' \left((\hat{\boldsymbol{k}}_{\mathrm{n}} \cdot \hat{\boldsymbol{I}}) (\hat{\boldsymbol{k}}_{\mathrm{n}} \cdot \hat{\boldsymbol{I}}) - \frac{1}{3} (\hat{\boldsymbol{k}}_{\mathrm{n}} \cdot \hat{\boldsymbol{k}}_{\mathrm{n}}) (\hat{\boldsymbol{I}} \cdot \hat{\boldsymbol{I}}) \right) \right\} \\ &+ \boldsymbol{\sigma}_{\mathrm{n}} \cdot \left\{ \left(B' + F' (\hat{\boldsymbol{k}}_{\mathrm{n}} \cdot \hat{\boldsymbol{I}}) \right) \hat{\boldsymbol{I}} + \left(C' - F' \frac{\hat{\boldsymbol{I}}^2}{3} \right) \hat{\boldsymbol{k}}_{\mathrm{n}} + \left(D' + G' (\hat{\boldsymbol{k}}_{\mathrm{n}} \cdot \hat{\boldsymbol{I}}) \right) (\hat{\boldsymbol{k}}_{\mathrm{n}} \times \hat{\boldsymbol{I}}) \right\} \end{split}$$

$$F' = \frac{1}{\pi k} \frac{3}{16} \sqrt{\frac{3}{10}} \operatorname{Re}\left[\frac{\sqrt{\Gamma_{\rm s}^{\rm n}}}{E - E_{\rm s} - i\Gamma_{\rm s}} W \frac{\sqrt{\Gamma_{\rm p}^{\rm n}}}{E - E_{\rm p} + i\Gamma_{\rm p}}\right] y$$

Pseudomagnetism

72

$$f = A'_{i} + B'_{i}\sigma \cdot \hat{I} + C'_{i}\sigma \cdot \hat{k} + D'_{i}\sigma \cdot (\hat{I} \times \hat{k})$$

$$f_{perent-reven} \xrightarrow{\text{Spin Dependent}} \xrightarrow{\text{Perent-reven}} \xrightarrow{\text{Perent-rev$$

Polarization Transfer Coefficient

1. freeze target polarization 2. adjust magnetic field to cancel the pseudomagnetism (**Re B**')

0.6

 $E_{\rm n}[{\rm eV}]$

0.8

1.2

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.2

0.4

Alignment, adjustment of experimental apparatus can be measured through the function form of the energy dependence of neutron spin.

The polarized target is the key item.

Backup solution

Title(Discrete Symmetry Violation in Neutron-induced Compound States for New Physics Search) Conf(International Workshop for Particle Physics at Neutron Sources (PPNS2018)) Date(2018/05/26) At(Grenoble)

Brute-force Polarized Target to SPring8 → J-PARC

Title(Discrete Symmetry Violation in Neutron-induced Compound States for New Physics Search) Conf(International Workshop for Particle Physics at Neutron Sources (PPNS2018)) Date(2018/05/26) At(Grenoble) 31

Survey other target nuclei

7 Title(T Violation in n-A Reactions) Conf(Theoretical Issues and Experimental Opportunities in Searches for Time Reversal Invariance Violation Date(2018/12/07) At(Amherst) page 32

Mitchell, Phys. Rep. 354 (2001) 157 Shimizu, Nucl. Phys. A552 (1993) 293

7 Title(T Violation in n-A Reactions) Conf(Theoretical Issues and Experimental Opportunities in Searches for Time Reversal Invariance Violation Date(2018/12/07) At(Amherst) page 33

Title(T Violation in n-A Reactions) Conf(Theoretical Issues and Experimental Opportunities in Search) Date(2018/12/07) At(Amherst) 1) Noplex

Title(T Violation in n-A Reactions) Conf(Theoretical Issues and Experimental Opportunities in Searches for Time Reversal Invariance Violation) Date(2018/12/07) At(Amherst)

Neutron Optical Parity and Time Reversal Experiment

NOPTREX Collaboration

Nagoya University

KEK 2018S12

H.M.Shimizu, M.Kitaguchi, K.Hirota, T.Yamamoto, K.Ishizaki, S.Endoh, T.Sato, Y.Niinomi, T.Morishima, G.Ichikawa, Y.Kiyanagi, J.Hisano, N,Wada, T.Matsushita Kyushu University T.Yoshioka, S.Takada, J.Koga, S.Makise JAEA T.Okudaira, K.Sakai, A.Kimura, H.Harada KEK T.Ino, S.Ishimoto, K.Taketani, K.Mishima, C.C.Haddock Tokyo Inst. Tech. Hiroshima Univ. **Univ. British Columbia H.Fujioka** T.Momose M.linuma Osaka Univ. K.Ogata, H.Kohri, M.Yosoi, T.Shima, H.Yoshikawa Tohoku Univ. **M.Fujita RIKEN** Y.Yamagata, T.Uesaka, K.Tateishi, H.Ikegami Yamagata Univ. Japan Women's Univ. Ashikaga Univ. T.Iwata, Y.Miyachi D.Takahashi **R.Ishiguro** Kyoto Univ. Y.I.Takahashi, M.Hino

Indiana University

W.M.Snow, J.Curole, J.Carini

Univ. South Carolina

V.Gudkov

Oak Ridge National Lab.

J.D.Bowman, S.Penttila, X.Tong, P.Jiang

Kentucky Univ.

B.Plaster, D.Schaper, C.Crawford

Paul Scherrer Institut

P.Hautle

Southern Illinois University

B.M.Goodson

Univ. California Berkeley

A.S.Tremsin

Berea College

M.Veillette

Title(T Violation in n-A Reactions) Conf(Theoretical Issues and Experimental Opportunities in Searches for Time Reversal Invariance Violation) Date(2018/12/07) At(Amherst) page 36

7 Title(T Violation in n-A Reactions) Conf(Theoretical Issues and Experimental Opportunities in Searches for Time Reversal Invariance Violation) Date(2018/12/07) At(Amherst) page 37

leading nucleon-level P- and T-odd interaction

Conf(Theoretical Issues and L Date(2018/12/07) At(Amherst)

Issues and Experimental Opportur

$$\mathcal{L}_{N,PTodd} = -\frac{i}{2} \sum_{i=e,n,p} d_i \overline{\psi}_i \sigma_{\mu\nu} \gamma_5 \psi_i F^{\mu\nu} \\ +\overline{N} \left[\overline{g}_{\pi}^{(0)} \vec{\tau} \cdot \vec{\pi} + \overline{g}_{\pi}^{(1)} \pi^0 + \overline{g}_{\pi}^{(2)} \left(3\tau_3 \pi^0 - \vec{\tau} \cdot \vec{\pi} \right) \right] N \\ -\frac{G_F}{\sqrt{2}} \overline{e} i \gamma_5 e \overline{N} \left[C_{S}^{(0)} + C_{S}^{(1)} \tau_3 \right] N \\ -\frac{G_F}{\sqrt{2}} \epsilon^{\alpha \beta \mu \nu} \overline{e} \sigma_{\alpha \beta} e \overline{N} \sigma_{\mu \nu} \left[C_{T}^{(0)} + C_{T}^{(1)} \tau_3 \right] N \\ \overline{\sqrt{2}} e^{\alpha \beta \mu \nu} \overline{e} \sigma_{\alpha \beta} e \overline{N} \sigma_{\mu \nu} \left[C_{T}^{(0)} + C_{T}^{(1)} \tau_3 \right] N \\ \overline{\sqrt{2}} e^{\alpha \beta \mu \nu} \overline{e} \sigma_{\alpha \beta} e \overline{N} \sigma_{\mu \nu} \left[C_{T}^{(0)} + C_{T}^{(1)} \tau_3 \right] N \\ \overline{\sqrt{2}} e^{\alpha \beta \mu \nu} \overline{e} \sigma_{\alpha \beta} e \overline{N} \sigma_{\mu \nu} \left[C_{T}^{(0)} + C_{T}^{(1)} \tau_3 \right] N \\ \overline{\sqrt{2}} e^{\alpha \beta \mu \nu} \overline{e} \sigma_{\alpha \beta} e \overline{N} \sigma_{\mu \nu} \left[C_{T}^{(0)} + C_{T}^{(1)} \tau_3 \right] N \\ \overline{\sqrt{2}} e^{\alpha \beta \mu \nu} \overline{e} \sigma_{\alpha \beta} e \overline{N} \sigma_{\mu \nu} \left[C_{T}^{(0)} + C_{T}^{(1)} \tau_3 \right] N \\ \overline{\sqrt{2}} e^{\alpha \beta \mu \nu} \overline{e} \sigma_{\alpha \beta} e \overline{N} \sigma_{\mu \nu} \left[C_{T}^{(0)} + C_{T}^{(1)} \tau_3 \right] N \\ \overline{\sqrt{2}} e^{\alpha \beta \mu \nu} \overline{e} \sigma_{\alpha \beta} e^{\alpha \beta \mu} \overline{e} \sigma_{\alpha \beta} e^{\alpha \beta \mu \nu} \overline{e} \sigma_{\alpha \beta} e^{\alpha \beta \mu \nu}$$

n) Nordersteinen Aufter und Time-Reversal Fin

38

Dade