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Analyzing Power and Polarization Polarization Transfer Coefficient
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14 Chapter 2. Discrete symmetry violation in a compound nucleus

due to the relation Γn
p = Γn

p,j= 1
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+ Γn
p,j= 3

2

. A mixing angle φ of j = 1/2 and j = 3/2 components can
then be defined as

x = cosφ, y = sinφ. (2.17)

κ(J) is given as a function of x and y for the case of J = I − 1
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The formula indicates that the T-violation sensitivity strongly depends on the value of x and y or φ. As
examples, φ dependencies of κ(J) of 139La, 131Xe, 81Br and 117Sn are shown in Fig 2.3. The value
of κ(J) has not yet been measured in all nuclei, and it is necessary to determine κ(J) to estimate the
T-violating cross section by measuring x.
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Figure 2.3: Comparison of the φ dependence of κ(J) for 139La (black line),131Xe (pink line) ,117Sn (blue
line) and 81Br (red line).

2.2. Enhancement of T-violation in a compound nucleus 13

obtain N ∼ 105. Therefore the weak matrix element can be described as

|W | = | ⟨s|HPNC |p⟩ |
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Here, the condition that the phase of ai and bj appear at random are used in Eq 2.12. Therefore
2W/Ep − Es in Eq 2.7 can be written as
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where ⟨i|HPNC |j⟩/∆E is the magnitude of the P-violating effect in the single particle state which
is order of ∼ 10−7, and

√
N = 102 ∼ 103. The factor 2W/(Ep − Es) is referred to as "dynamic

enhancement".
On the other hand,

√
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s /Γ

n
p in Eq 2.7 is referred to as "structural enhancement". The neutron width

is proportional to a factor of the centrifugal potential, (kR)2l+1. If we use typical values of k ∼ 2 ×
10−4 fm−1 and R ∼10 fm, this enhancement factor

√
Γn
s /Γ

n
p is approximately 103. If we assume that x

is the order of 1, we can obtain AL ∼ 10−1, and the large enhancement in the compound nucleus can be
explained theoretically. However, x has not been determined.

2.2 Enhancement of T-violation in a compound nucleus

V. P. Gudkov predicted that CP-violation can be also enhanced through the same mechanism of P-
violation enhancement [48]. The T-violating cross section ∆σT is written as

∆σT = κ(J)
WT

W
∆σP (2.14)

where ∆σP is the P-violating cross section, WT and W are the T-violating and P-violating matrix ele-
ments, and κ(J) is a spin factor. κ(J) is represented by two channel spin components of S = I + 1/2

and S = I − 1/2 and the spin of the target nucleus I , and represented as
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(3,4) Details of Entrance Channel
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Flambaum, Nucl. Phys. A435 (1985) 352
(3,4) Details of Entrance Channel
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(3,4) Details of Entrance Channel
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5.3. Measurement of the angular distribution in 139La(n, γ) reactions 59
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Figure 5.8: Magnified 2-dimensional histogram. The p-wave resonance is observed at only 5161 keV
and 5131 keV and/or 5126 keV photo-peaks.

γ-ray energy (keV)

Neutro
n energy (eV)

Ground state

First, Second excited state

Third excited state

p-wave 
resonance

γ-
ra

y 
yi

el
d 

(a
rb

itr
ar

y 
un

it)

139La+n

ground  3-

30 keV 2-
35 keV 5-

140La

63 keV 4-

N
eu

tr
on

 E
ne

rg
y

γ-
ra

y 
En

er
gy

0.758 eV p-wave

-48.63 eV s-wave

72.30 eV s-wave

5161 keV

(3,4) Details of Entrance Channel



page

Title(T Violation in n-A Reactions) 
Conf(Theoretical Issues and Experimental Opportunities in Searches for Time Reversal Invariance Violation) 
Date(2018/12/07) At(Amherst)  20

71 °

36°

72 °108°
90 °

109°

144°

Downstream
[eV] lapE

0.2 0.4 0.6 0.8 1 1.2 1.4

[a
rb

itr
ar

y 
un

it]
 

la
p

 E∂
 / γ

 I∂

0

1

2

3

4

5

 = 36 degγθ

[eV] lapE
0.2 0.4 0.6 0.8 1 1.2 1.4

[a
rb

itr
ar

y 
un

it]
 

la
p

 E∂
 / γ

 I∂

0

1

2

3

4

5

 = 71 degγθ

[eV] lapE
0.2 0.4 0.6 0.8 1 1.2 1.4

[a
rb

itr
ar

y 
un

it]
 

la
p

 E∂
 / γ

 I∂

0

1

2

3

4

5

 = 72 degγθ

[eV] lapE
0.2 0.4 0.6 0.8 1 1.2 1.4

[a
rb

itr
ar

y 
un

it]
 

la
p

 E∂
 / γ

 I∂

0

1

2

3

4

5

 = 90 degγθ

[eV] lapE
0.2 0.4 0.6 0.8 1 1.2 1.4

[a
rb

itr
ar

y 
un

it]
 

la
p

 E∂
 / γ

 I∂

0

1

2

3

4

5

 = 108 degγθ

[eV] lapE
0.2 0.4 0.6 0.8 1 1.2 1.4

[a
rb

itr
ar

y 
un

it]
 

la
p

 E∂
 / γ

 I∂

0

1

2

3

4

5

 = 144 degγθ

[eV] lapE
0.2 0.4 0.6 0.8 1 1.2 1.4

[a
rb

itr
ar

y 
un

it]
 

la
p

 E∂
 / γ

 I∂

0

1

2

3

4

5

 = 109 degγθ

Neutron Energy[eV] Neutron Energy[eV] Neutron Energy[eV]

Neutron Energy[eV]

Neutron Energy[eV]Neutron Energy[eV]

Neutron Energy[eV]



page

Title(T Violation in n-A Reactions) 
Conf(Theoretical Issues and Experimental Opportunities in Searches for Time Reversal Invariance Violation) 
Date(2018/12/07) At(Amherst)  21

γθcos
0.5− 0 0.5

LH
Α

0.4−

0.2−

0

0.2

7

71°

36°

72°108°
90°

109°

144°

Downstream

[eV] lapE
0.2 0.4 0.6 0.8 1 1.2 1.4

[a
rb

itr
ar

y 
un

it]
 

la
p

 E∂
 / γ

 I∂

0

1

2

3

4

5

 = 36 degγθ

[eV] lapE
0.2 0.4 0.6 0.8 1 1.2 1.4

[a
rb

itr
ar

y 
un

it]
 

la
p

 E∂
 / γ

 I∂

0

1

2

3

4

5

 = 71 degγθ

[eV] lapE
0.2 0.4 0.6 0.8 1 1.2 1.4

[a
rb

itr
ar

y 
un

it]
 

la
p

 E∂
 / γ

 I∂

0

1

2

3

4

5

 = 72 degγθ

[eV] lapE
0.2 0.4 0.6 0.8 1 1.2 1.4

[a
rb

itr
ar

y 
un

it]
 

la
p

 E∂
 / γ

 I∂

0

1

2

3

4

5

 = 90 degγθ

[eV] lapE
0.2 0.4 0.6 0.8 1 1.2 1.4

[a
rb

itr
ar

y 
un

it]
 

la
p

 E∂
 / γ

 I∂

0

1

2

3

4

5

 = 108 degγθ

[eV] lapE
0.2 0.4 0.6 0.8 1 1.2 1.4

[a
rb

itr
ar

y 
un

it]
 

la
p

 E∂
 / γ

 I∂

0

1

2

3

4

5

 = 144 degγθ

[eV] lapE
0.2 0.4 0.6 0.8 1 1.2 1.4

[a
rb

itr
ar

y 
un

it]
 

la
p

 E∂
 / γ

 I∂

0

1

2

3

4

5

 = 109 degγθ
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[eV] lapE
0.2 0.4 0.6 0.8 1 1.2 1.4

[a
rb

itr
ar

y 
un

it]
 

la
p

 E∂
 / γ

 I∂

0

1

2

3

4

5

HΝLΝ

FIG. 14. Visualization of the definition of NL and NH.

by unpolarized neutrons can be written as1

dσnγf

dΩγ
=

1

2

(
a0 + a1 cos θγ + a3

(
cos2θγ − 1

3

))
,

a0 =
∑

rs

|Vrs |
2 +

∑

rp

∣∣Vrp

∣∣2 ,

a1 = 2Re
∑

rsipj

VrsV
∗
rpzrpjP (JrsJrp

1

2
j1IF ),

a3 = 3
√
10 Re

∑

rpjr′pj
′

VrpV
∗
r′p
zrpjzrpj′

×P (JrpJr′pjj
′2IF )

⎧
⎨

⎩

2 1 1
0 1/2 1/2
2 rp j′

⎫
⎬

⎭

(20)

NL NH

Neutron Energy[eV]

8

possible contamination since the estimated upper limit of1

0.08% is smaller than the statistical error of the photo-2

peak.3

According to the data acquisition system, two pulses4

detected within 4µs did not have amplitude information,5

which amounted 2% of the total γ-ray counts in the vicin-6

ity of the p-wave resonance. The 2% loss was corrected7

in following analysis.8

Two pulses detected within 0.4µs were processed as a9

single pulse. Corresponding event loss was estimated as10

0.2% of the total γ-ray counts in the vicinity of the p-11

wave resonance, which is negligibly small compared with12

the statistical error of the corresponding γ-ray counts and13

is ignored in following analysis.14

We extend Eq. 44 to describe the angular distribution15

γ-rays as16

∂2Iγ
∂tlap∂Ωγ

(tlap,Ωγ)

= I0

∫
dE′d3pA

∂2φ

∂En∂t

(
E′, tlap − L

√
mn

2E′

)

× 1

(2πmAkBT )3/2
e−p2

A/2mAkBT dσnγ
dΩγ

(E,Ωγ)

× 1

σt(E)

(
1− e−nσt(E)∆z

)
.

(21)

We write this definition as17

∂2Iγ
∂tlap∂Ωγ

(tlap,Ωγ)

= I0

∫
dE′d3pAΦ(tlap, E

′,pA)
dσnγ
dΩγ

(E,Ωγ),

Φ(tlap, E
′,pA)

=
∂2φ

∂En∂t

(
E′, tlap − L

√
mn

2E′

)

× 1

(2πmAkBT )3/2
e−p2

A/2mAkBT

× 1

σt(E)

(
1− e−nσt(E)∆z

)
.

(22)

The γ-ray count to be measured by the d-th detector can18

be written as19

∂N

∂tlap
(tlap, θ̄d) =

∫

Ωd

dΩγ

∫ f(1/4)+
d

f(1/4)−
d

dfd

× ∂2Iγ
∂tlap∂Ωγ

(tlap,Ωγ)ψd(Eγ ,Ωγ , fd),

(23)

where the photo-peak region is taken as the full-width at20

quarter-maximum, that implies w = 1/4. Fig. 16 shows21

the N(tlap, θ̄γ) for 5161 keV γ-rays. The peak shape of2223

the p-wave resonance varies according to θ̄γ . Here we24

define the NL and NH as25

NL(θγ) =

∫ Ep

Ep−2Γp

∂N

∂tlap
(t′, θ̄γ)dtlap,

NH(θγ) =

∫ Ep+2Γp

Ep

∂N

∂tlap
(t′, θ̄γ)dtlap,

∂N

∂En
=

dtlap
dEn

∂N

∂tlap
. (24)

We define the asymmetry between NL and NH as2627

ALH =
NL −NH

NL +NH
. (25)

The angular dependence of the NL−NH and NL+NH is28

shown in Fig. 18. The asymmetry ALH has a correlation2930

with cos θ̄γ as31

ALH = (B +A cos θ̄γ) (26)

where32

B = −0.0747± 0.0105, A = −0.3881± 0.0236. (27)

III. ANALYSIS33

We analyze our experimental result using the formula-34

tion of possible angular correlations of individual γ-rays35

emitted in (n,γ) reactions induced by low energy neutrons36

according to s- and p-wave amplitudes [22]. We put I as37

the spin of target nuclei, J the spin of the compound38

nucleus, F the spin of the final state of γ-ray transition,39

l the orbital angular momentum of the incident neutron.40

We define the total neutron spin as j = s + l where s41

is the neutron spin. The j equals to 1/2 for s-wave neu-42

trons (l=0) and j=1/2,3/2 for p-wave neutrons (l=1).43

The differential cross section of (n,γ) reaction induced44

by unpolarized neutrons can be written as45
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Measured angular dependence Flambaum parametrization
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As shown in Fig. 19 and Eq. 36, the branching ratio from1

s2-wave resonance to the ground state is very small. The2

negative s-wave amplitude V1, p-wave amplitude V2 and3

positive s-wave amplitude V3 can be written as4

V1f = −λ1f
(
|E1|
E

) 1
4 Γ1/2

E − E1 + iΓ1/2
,

V2f = −λ2f
(

E

E2

) 1
4 Γ2/2

E − E2 + iΓ2/2
,

V3f = −λ3f
(
E3

E

) 1
4 Γ3/2

E − E3 + iΓ3/2
.

(37)

The terms a0, a1 and a3 is given as5

a0 = λ21f

√
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E
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33

280

(
−
√
35xy + y2

)
.

(38)

We define6

(a0,1,3)L =

∫ Ep

Ep−2Γp

dE′
∫

d3pA a0,1,3Φ(tlap, E
′,pA),

(a0,1,3)H =

∫ Ep+2Γp

Ep

dE′
∫

d3pA a0,1,3Φ(tlap, E
′,pA).

(39)

Here we ignore the a3 term since it is proportional7

to λ22f and is suppressed relative to the s-wave neutron8

width according to the centrifugal potential by the fac-9

tor of (kR)2. Under this approximation, the Eq. 28 is10

reduced as11

dσnγf

dΩγ
=

1

2
(a0 + a1 cos θγ) ,

(40)

Substituting Eq. 40 into Eq. 21, the angular dependence12

of the γ-ray count in the neutron energy regions Ep −13

2Γp ≤ E ≤ Ep and Ep ≤ E ≤ Ep + 2Γp can be written14

as15

(
∂2Iγ

∂tlap∂Ωγ
(tlap,Ωγ)

)

L,H

=
I0
2
((a0)L,H + (a1)L,HP1(cos θγ)) .

(41)

Convoluting with Eq. 23, the γ-ray count to be measured16

by the d-th detector can be written as17

(Iγ,d)L,H =
I0
2

(
(a0)L,HP 0,d + (a1)L,HP 1,d

)
.

(42)

Since the energy dependence of x1 and y1 is negligibly18

small in the vicinity of the p-wave resonance (ip = 2),19

(a1)L,H is a linear function of x1 and y1, thus a function20

of φ1. φ is determined by comparing (Iγ,d)L−(Iγ,d)H and21

(Iγ,d)L + (Iγ,d)H with the measured values NL −NH and22

NL+NH in Eq. 25 shown in Fig. 18. The angular depen-23

dences ofNL−NH andNL+NH are fitted by the functions24

of f(P̄d,1/P̄d,0) = A′P̄d,1/P̄d,0+B′ and g(P̄d,1/P̄d,0) = C ′
25

respectively. A′, B′ and C ′ are fitting parameters. Since26

the a1 is a odd function at E = E2, (a0)L,H, (a0)L,H can27

be written as28

C ′ =
I0
2
((a0)L + (a0)H) (43)

A′

C ′ =
(a1)L − (a1)H
(a0)L + (a0)H

= 0.295 cosφ1 − 0.345 sinφ1. (44)

The fitting results of C ′ and A′/C ′ are29

C ′ = 5.071± 0.0052,
A′

C ′ = −0.4285± 0.0255. (45)

Two solutions are obtained as30

φ1 = (111.0+15.2
−7.9 )◦, (150.1+7.9

−15.2)
◦. (46)

IV. DISCUSSION31

From the result, x1 is calculated as32

x1 = −0.342+0.132
−0.234, −0.867+0.161

−0.060. (47)

W which given in Eq. 1 is calculated from obtained x as33

W = (−1.743+0.798
−1.096) meV, (−0.688+0.044

−0.157) meV.(48)

The parameters in Table. II are used in the calculation.34

The ratio of the P-odd amplitude and P-odd T-odd35

amplitude is given as36

|fPT|
|fP|

= κ(J)
WT

W
, (49)

where fPT is the P-odd T-odd amplitude, fP the P-odd37

amplitude, WT the Podd T-odd matrix element and W38

c c

Comparison with Flambaum’s formalism

(3,4) Details of Entrance Channel
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76 Chapter 6. Analysis

regions Ep − 2Γp ≤ E ≤ Ep and Ep ≤ E ≤ Ep + 2Γp can be written as

(
∂2Iγ

∂tm∂Ωγ
(tm,Ωγ)

)

L,H

=
I0
2
((a0)L,H + (a1)L,HP1(cos θγ)) .

(6.13)

By convoluting with Eq. 5.9, the γ-ray count to be measured by the d-th detector can be written as

(Iγ,d)L,H =
I0
2

(
(a0)L,HP d,0 + (a1)L,HP d,1

)
. (6.14)

As the energy dependence of x and y is negligibly small in the vicinity of the p-wave resonance (r = 2),
(a1)L,H is a linear function of x and y, thus a function of φ. The value of φ is determined by comparing(
(Iγ,d)L − (Iγ,d)H

)
/
(
(Iγ,d)L + (Iγ,d)H

)
with the measured values ALH in Eq. 5.14.

ALH =
(a1)L − (a1)H
(a0)L + (a0)H

= 0.295 cosφ− 0.345 sinφ

= 0.295x− 0.345y. (6.15)

Two solutions can be obtained as

φ = (99.2+6.3
−5.3)

◦, (161.9+5.3
−6.3)

◦. (6.16)

We also obtain x from Eq. 6.16 as

x = −0.16+0.09
−0.11, −0.95+0.03

−0.04. (6.17)

To visualize the solutions, Eq. 6.15 is drawn in the xy-plain and the crossing points of the Eq. 6.15 and
a unit circle imply the solutions.
The value of W , which is given in Eq. 2.7, is also obtained as

W = (13.2+18.1
−5.3 ) meV, (2.21+0.10

−0.06) meV. (6.18)

The published value of AL = (9.56 ± 0.35) × 10−2 in Ref. [64] and the parameters in Table. 5.1 are
used in the calculation.
The J = I + 1

2 case corresponds to the p-wave of the 139La at E = E2. Finally, the value of |κ(J)|
corresponding to the φ obtained is determined as

κ(J) = 4.84+5.58
−1.69, 0.99+0.08

−0.07 (6.19)

and |κ(J)| is shown in Fig. 6.4. The experimental sensitivity for the T-violation search is discussed using
this κ(J) of 139La in Section 7.3.
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As shown in Fig. 19 and Eq. 36, the branching ratio from1

s2-wave resonance to the ground state is very small. The2

negative s-wave amplitude V1, p-wave amplitude V2 and3

positive s-wave amplitude V3 can be written as4

V1f = −λ1f
(
|E1|
E

) 1
4 Γ1/2

E − E1 + iΓ1/2
,

V2f = −λ2f
(

E

E2

) 1
4 Γ2/2

E − E2 + iΓ2/2
,

V3f = −λ3f
(
E3

E

) 1
4 Γ3/2

E − E3 + iΓ3/2
.

(37)

The terms a0, a1 and a3 is given as5

a0 = λ21f

√
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E
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3/4
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E

Γ2
2/4

(E − E2)2 + Γ2
2/4
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(
−
√
35xy + y2

)
.

(38)

We define6

(a0,1,3)L =

∫ Ep

Ep−2Γp

dE′
∫

d3pA a0,1,3Φ(tlap, E
′,pA),

(a0,1,3)H =

∫ Ep+2Γp

Ep

dE′
∫

d3pA a0,1,3Φ(tlap, E
′,pA).

(39)

Here we ignore the a3 term since it is proportional7

to λ22f and is suppressed relative to the s-wave neutron8

width according to the centrifugal potential by the fac-9

tor of (kR)2. Under this approximation, the Eq. 28 is10

reduced as11

dσnγf

dΩγ
=

1

2
(a0 + a1 cos θγ) ,

(40)

Substituting Eq. 40 into Eq. 21, the angular dependence12

of the γ-ray count in the neutron energy regions Ep −13

2Γp ≤ E ≤ Ep and Ep ≤ E ≤ Ep + 2Γp can be written14

as15

(
∂2Iγ

∂tlap∂Ωγ
(tlap,Ωγ)

)

L,H

=
I0
2
((a0)L,H + (a1)L,HP1(cos θγ)) .

(41)

Convoluting with Eq. 23, the γ-ray count to be measured16

by the d-th detector can be written as17

(Iγ,d)L,H =
I0
2

(
(a0)L,HP 0,d + (a1)L,HP 1,d

)
.

(42)

Since the energy dependence of x1 and y1 is negligibly18

small in the vicinity of the p-wave resonance (ip = 2),19

(a1)L,H is a linear function of x1 and y1, thus a function20

of φ1. φ is determined by comparing (Iγ,d)L−(Iγ,d)H and21

(Iγ,d)L + (Iγ,d)H with the measured values NL −NH and22

NL+NH in Eq. 25 shown in Fig. 18. The angular depen-23

dences ofNL−NH andNL+NH are fitted by the functions24

of f(P̄d,1/P̄d,0) = A′P̄d,1/P̄d,0+B′ and g(P̄d,1/P̄d,0) = C ′
25

respectively. A′, B′ and C ′ are fitting parameters. Since26

the a1 is a odd function at E = E2, (a0)L,H, (a0)L,H can27

be written as28

C ′ =
I0
2
((a0)L + (a0)H) (43)

A′

C ′ =
(a1)L − (a1)H
(a0)L + (a0)H

= 0.295 cosφ1 − 0.345 sinφ1. (44)

The fitting results of C ′ and A′/C ′ are29

C ′ = 5.071± 0.0052,
A′

C ′ = −0.4285± 0.0255. (45)

Two solutions are obtained as30

φ1 = (111.0+15.2
−7.9 )◦, (150.1+7.9

−15.2)
◦. (46)

IV. DISCUSSION31

From the result, x1 is calculated as32

x1 = −0.342+0.132
−0.234, −0.867+0.161

−0.060. (47)

W which given in Eq. 1 is calculated from obtained x as33

W = (−1.743+0.798
−1.096) meV, (−0.688+0.044

−0.157) meV.(48)

The parameters in Table. II are used in the calculation.34

The ratio of the P-odd amplitude and P-odd T-odd35

amplitude is given as36

|fPT|
|fP|

= κ(J)
WT

W
, (49)

where fPT is the P-odd T-odd amplitude, fP the P-odd37

amplitude, WT the Podd T-odd matrix element and W38

(3,4) Details of Entrance Channel
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76 Chapter 6. Analysis

regions Ep − 2Γp ≤ E ≤ Ep and Ep ≤ E ≤ Ep + 2Γp can be written as

(
∂2Iγ

∂tm∂Ωγ
(tm,Ωγ)

)

L,H

=
I0
2
((a0)L,H + (a1)L,HP1(cos θγ)) .

(6.13)

By convoluting with Eq. 5.9, the γ-ray count to be measured by the d-th detector can be written as

(Iγ,d)L,H =
I0
2

(
(a0)L,HP d,0 + (a1)L,HP d,1

)
. (6.14)

As the energy dependence of x and y is negligibly small in the vicinity of the p-wave resonance (r = 2),
(a1)L,H is a linear function of x and y, thus a function of φ. The value of φ is determined by comparing(
(Iγ,d)L − (Iγ,d)H

)
/
(
(Iγ,d)L + (Iγ,d)H

)
with the measured values ALH in Eq. 5.14.

ALH =
(a1)L − (a1)H
(a0)L + (a0)H

= 0.295 cosφ− 0.345 sinφ

= 0.295x− 0.345y. (6.15)

Two solutions can be obtained as

φ = (99.2+6.3
−5.3)

◦, (161.9+5.3
−6.3)

◦. (6.16)

We also obtain x from Eq. 6.16 as

x = −0.16+0.09
−0.11, −0.95+0.03

−0.04. (6.17)

To visualize the solutions, Eq. 6.15 is drawn in the xy-plain and the crossing points of the Eq. 6.15 and
a unit circle imply the solutions.
The value of W , which is given in Eq. 2.7, is also obtained as

W = (13.2+18.1
−5.3 ) meV, (2.21+0.10

−0.06) meV. (6.18)

The published value of AL = (9.56 ± 0.35) × 10−2 in Ref. [64] and the parameters in Table. 5.1 are
used in the calculation.
The J = I + 1

2 case corresponds to the p-wave of the 139La at E = E2. Finally, the value of |κ(J)|
corresponding to the φ obtained is determined as

κ(J) = 4.84+5.58
−1.69, 0.99+0.08

−0.07 (6.19)

and |κ(J)| is shown in Fig. 6.4. The experimental sensitivity for the T-violation search is discussed using
this κ(J) of 139La in Section 7.3.

11

As shown in Fig. 19 and Eq. 36, the branching ratio from1

s2-wave resonance to the ground state is very small. The2

negative s-wave amplitude V1, p-wave amplitude V2 and3

positive s-wave amplitude V3 can be written as4

V1f = −λ1f
(
|E1|
E

) 1
4 Γ1/2

E − E1 + iΓ1/2
,

V2f = −λ2f
(

E

E2

) 1
4 Γ2/2

E − E2 + iΓ2/2
,

V3f = −λ3f
(
E3

E

) 1
4 Γ3/2

E − E3 + iΓ3/2
.

(37)

The terms a0, a1 and a3 is given as5

a0 = λ21f

√
|E1|
E

Γ2
1/4

(E − E1)2 + Γ2
1/4

+λ22f

√
E2

E

Γ2
2/4

(E − E2)2 + Γ2
2/4

+λ23f

√
E3

E

Γ2
3/4

(E − E3)2 + Γ2
3/4

a1 = λ1fλ2f
Γ1Γ2(E − E1)(E − E2) + Γ2

1Γ
2
2/4

2 ((E − E1)2 + Γ2
1/4) ((E − E2)2 + Γ2

2/4)

×5

4

(
−x+

√
7

5
y

)

+λ3fλ2f
Γ3Γ2(E − E3)(E − E2) + Γ2

3Γ
2
2/4

2 ((E − E3)2 + Γ2
3/4) ((E − E3)2 + Γ2

2/4)

×3
√
3

4

(
x+

√
5

7
y

)

a3 = λ22f

√
E2

E

Γ2
2/4

(E − E2)2 + Γ2
2/4
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(
−
√
35xy + y2

)
.

(38)

We define6

(a0,1,3)L =

∫ Ep

Ep−2Γp

dE′
∫

d3pA a0,1,3Φ(tlap, E
′,pA),

(a0,1,3)H =

∫ Ep+2Γp

Ep

dE′
∫

d3pA a0,1,3Φ(tlap, E
′,pA).

(39)

Here we ignore the a3 term since it is proportional7

to λ22f and is suppressed relative to the s-wave neutron8

width according to the centrifugal potential by the fac-9

tor of (kR)2. Under this approximation, the Eq. 28 is10

reduced as11

dσnγf

dΩγ
=

1

2
(a0 + a1 cos θγ) ,

(40)

Substituting Eq. 40 into Eq. 21, the angular dependence12

of the γ-ray count in the neutron energy regions Ep −13

2Γp ≤ E ≤ Ep and Ep ≤ E ≤ Ep + 2Γp can be written14

as15

(
∂2Iγ

∂tlap∂Ωγ
(tlap,Ωγ)

)

L,H

=
I0
2
((a0)L,H + (a1)L,HP1(cos θγ)) .

(41)

Convoluting with Eq. 23, the γ-ray count to be measured16

by the d-th detector can be written as17

(Iγ,d)L,H =
I0
2

(
(a0)L,HP 0,d + (a1)L,HP 1,d

)
.

(42)

Since the energy dependence of x1 and y1 is negligibly18

small in the vicinity of the p-wave resonance (ip = 2),19

(a1)L,H is a linear function of x1 and y1, thus a function20

of φ1. φ is determined by comparing (Iγ,d)L−(Iγ,d)H and21

(Iγ,d)L + (Iγ,d)H with the measured values NL −NH and22

NL+NH in Eq. 25 shown in Fig. 18. The angular depen-23

dences ofNL−NH andNL+NH are fitted by the functions24

of f(P̄d,1/P̄d,0) = A′P̄d,1/P̄d,0+B′ and g(P̄d,1/P̄d,0) = C ′
25

respectively. A′, B′ and C ′ are fitting parameters. Since26

the a1 is a odd function at E = E2, (a0)L,H, (a0)L,H can27

be written as28

C ′ =
I0
2
((a0)L + (a0)H) (43)

A′

C ′ =
(a1)L − (a1)H
(a0)L + (a0)H

= 0.295 cosφ1 − 0.345 sinφ1. (44)

The fitting results of C ′ and A′/C ′ are29

C ′ = 5.071± 0.0052,
A′

C ′ = −0.4285± 0.0255. (45)

Two solutions are obtained as30

φ1 = (111.0+15.2
−7.9 )◦, (150.1+7.9

−15.2)
◦. (46)

IV. DISCUSSION31

From the result, x1 is calculated as32

x1 = −0.342+0.132
−0.234, −0.867+0.161

−0.060. (47)

W which given in Eq. 1 is calculated from obtained x as33

W = (−1.743+0.798
−1.096) meV, (−0.688+0.044

−0.157) meV.(48)

The parameters in Table. II are used in the calculation.34

The ratio of the P-odd amplitude and P-odd T-odd35

amplitude is given as36

|fPT|
|fP|

= κ(J)
WT

W
, (49)

where fPT is the P-odd T-odd amplitude, fP the P-odd37

amplitude, WT the Podd T-odd matrix element and W38

(3,4) Details of Entrance Channel
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