

Radiative Corrections in Free Neutron Decays

Chien-Yeah Seng

Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics,

Universität Bonn

"Beta Decay as a Probe of New Physics" workshop, ACFI, University of Massachusetts Amherst 1 November, 2018

Outline

Error Budget in First-Row CKM Unitarity
 Nucleus-Independent RC: Current Status
 Dispersive Approach: Formalism
 Dispersive Approach: Separation of Regions
 Connection to Scattering Data
 Implications and Final Discussions

• An important prediction of SM is that the flavor eigenstates and mass eigenstates of quarks are different and are related by a **unitary** transformation:

$$\psi_{d,f} = \begin{pmatrix} d \\ s \\ b \end{pmatrix}_{f} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}_{m}$$

The CKM matrix

• **First-row CKM unitarity** reads:

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

• A significant deviation from 1 will be a signal for the existence of BSM physics!

• Current status (PDG 2018): $|V_{ud}| = 0.97420(21), |V_{us}| = 0.2243(5), |V_{ub}| = 0.00394(36)$ which gives: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9994(5)$ Negligible

in good agreement with unitarity.

• Breaking down the contribution from each uncertainty:

$$|V_{ud}|| \delta V_{ud} \models 0.00020$$

 $|V_{us}|| \delta V_{us} \models 0.00011$

The main source of uncertainty comes from V_{ud} .

• Current status (PDG 2018): $|V_{ud}| = 0.97420(21), |V_{us}| = 0.2243(5), |V_{ub}| = 0.00394(36)$ which gives: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9994(5)$

Negligible

in good agreement with unitarity.

- But how trustable is this?
 - Experimental uncertainties can be systematically improved.
 - **Theory uncertainty** is the main issue. Need to thoroughly examine how each theoretical uncertainty is assigned.
 - Is there any theory systematics that is not accounted for in the theory uncertainty?

• Currently the most precise determination of V_{ud} is through superallowed (0+ \rightarrow 0+) beta decay (normalized by muon decay):

Tree-level matrix element completely fixed by isospin symmetry!

Correction occurs only at higher order.

Experimental results are expressed in terms of the "ft-value": half time + Fermi function correction. One introduces a **nucleusindependent "Ft-value"**:

$$\mathcal{F}t = ft(1+\delta_R')(1+\delta_{NS}-\delta_C)$$

• So that V_{ud} is given by:

$$|V_{ud}|^2 = \frac{2984.432(3)\,\mathrm{s}}{\mathcal{F}t(1+\Delta_R^V)}$$

• Meaning of each term:

$$\mathcal{F}t = ft(1+\delta_R')(1+\delta_{NS}-\delta_C)$$

 $\delta_{NS}: \text{ Nuclear Structure Correction} \\ \delta_{C}: \text{ Isospin-Breaking Correction} \\ \delta_{R}': \text{ "Outer" Radiative Correction (RC)}$

• Nuclear-structure-related corrections (δ_{NS} and δ_{C}) have been studied extensively for decades. That, combining with 14 best-measured superallowed beta decays, give:

 $\mathcal{F}t = 3072.27(72)s$

Hardy and Towner, PRC91,025501 (2015)

or, more recently

 $\mathcal{F}t = 3072.07(63)s$

Implied from Czarnecki, Marciano and Sirlin, PRL 120, 202002 (2018)

- Most parts in the nucleus-independent RC Δ_{R}^{v} (up to 10⁻⁴) are either:
 - 1. Process-independent so they cancel out when taking ratio with muon decay
 - 2. Exactly calculable through current algebra Sirlin, Rev. Mod. Phys 50, 573 (1978)
 - 3. Depend only the physics in the **UV regime** so that they are **perturbatively calculable**
- The only exception is the γ **W-BOX DIAGRAM**:

which is sensitive to the loop momentum q at ALL SCALES!

• The part that depends on physics at the hadron scale comes from the **V*A component** of the **EM-weak current product**:

$$\Box_{\gamma W}^{VA} = \frac{\alpha}{8\pi} \int_0^\infty dQ^2 \frac{M_W^2}{M_W^2 + Q^2} \int_{-iQ}^{iQ} \frac{d\nu}{\nu} \frac{4(Q^2 + \nu^2)^{3/2}}{\pi m_N Q^4} T_3(\nu, Q^2)$$

where the forward Compton tensor is:

$$T_{VA}^{\mu\nu} = \frac{1}{2} \int d^4x e^{iq \cdot x} \left\langle p(\vec{p}) \right| T[J_{em}^{\mu}(x) J_{W,A}^{\nu}(0)] \left| n(\vec{p}) \right\rangle = \frac{i\epsilon^{\mu\nu\alpha\beta} p_{\alpha} q_{\beta}}{2p \cdot q} T_3$$

- Furthermore, crossing symmetry indicates that one only needs the **ISOSCALAR component of the EM current**.
- It is related to the nucleus-independent RC as:

$$\Delta_R^V = 2 \Box_{\gamma W}^{VA} + \dots$$

$$\uparrow$$
Other well-understood terms

- State-of-the-art study of box contribution (Marciano and Sirlin, M&S): Marciano and Sirlin, Phys.Rev.Lett. 96 (2006) 032002
- $\begin{tabular}{ll} \bullet & Write the RC as a single variable \\ & integral over Q^2, and identify the dominant \\ & physics as a function of Q^2. \end{tabular}$

$$\Box_{\gamma W}^{VA} = \frac{\alpha}{8\pi} \int_0^\infty dQ^2 \frac{M_W^2}{M_W^2 + Q^2} F(Q^2)$$

- State-of-the-art study of box contribution (Marciano and Sirlin, M&S): Marciano and Sirlin, Phys.Rev.Lett. 96 (2006) 032002
- $\begin{tabular}{ll} \bullet & Write the RC as a single variable \\ & integral over Q^2, and identify the dominant \\ & physics as a function of Q^2. \end{tabular}$

$$\Box_{\gamma W}^{VA} = \frac{\alpha}{8\pi} \int_0^\infty dQ^2 \frac{M_W^2}{M_W^2 + Q^2} F(Q^2)$$

1. Short distance: leading OPE + perturbative QCD

$$F(Q^{2}) = \frac{1}{Q^{2}} \left[1 - \frac{\alpha_{s}(Q^{2})_{\overline{MS}}}{\pi} - C_{2} \left(\frac{\alpha_{s}(Q^{2})_{\overline{MS}}}{\pi} \right)^{2} - C_{3} \left(\frac{\alpha_{s}(Q^{2})_{\overline{MS}}}{\pi} \right)^{3} \right] \qquad (1.5 \text{GeV})^{2} < Q^{2} < \infty$$
$$\Box_{\gamma W}^{VA(1)} = 2.14 \times 10^{-3} \quad \text{(negligible uncertainty)}$$

 C_2 and C_3 taken from existing calculations of pQCD corrections to the polarized Bjorken sum rule.

- State-of-the-art study of box contribution (Marciano and Sirlin, M&S): Marciano and Sirlin, Phys.Rev.Lett. 96 (2006) 032002
- $\begin{tabular}{ll} \bullet & Write the RC as a single variable \\ & integral over Q^2, and identify the dominant \\ & physics as a function of Q^2. \end{tabular}$

$$\Box_{\gamma W}^{VA} = \frac{\alpha}{8\pi} \int_0^\infty dQ^2 \frac{M_W^2}{M_W^2 + Q^2} F(Q^2)$$

3. Long distance: **Born/elastic contribution** with nucleon EM and axial current dipole FFs:

$$\Box_{\gamma W}^{VA(3)} = 0.96(9) \times 10^{-3} \quad 0 < Q^2 < (0.823 \text{GeV})^2$$

- State-of-the-art study of box contribution (Marciano and Sirlin, M&S): Marciano and Sirlin, Phys.Rev.Lett. 96 (2006) 032002
- $\begin{tabular}{ll} \bullet & Write the RC as a single variable \\ & integral over Q^2, and identify the dominant \\ & physics as a function of Q^2. \end{tabular}$

$$\Box_{\gamma W}^{VA} = \frac{\alpha}{8\pi} \int_0^\infty dQ^2 \frac{M_W^2}{M_W^2 + Q^2} F(Q^2)$$

2. Intermediate distance: VMD-inspired interpolating function

$$F(Q^{2}) = \frac{-1.490}{Q^{2} + m_{\rho}^{2}} + \frac{6.855}{Q^{2} + m_{A}^{2}} - \frac{4.414}{Q^{2} + m_{\rho}^{2}} \quad (0.823 \text{GeV})^{2} < Q^{2} < (1.5 \text{GeV})^{2}$$
$$\Box_{\gamma W}^{VA(2)} = 0.16(16) \times 10^{-3}$$
A 100% error is arbitrarily assigned!
All combine to give: $\Delta_{P}^{V}(M \& S) = 0.02361(38)$

14

• The "**intermediate distances**" contribution gives rise to most of the theoretical uncertainty:

 $\sqrt{0.16^2 + 0.09^2} \times 10^{-3} \approx 0.19 \times 10^{-3}$

- Some limitations in M&S approach:
 - **Conceptually**: separation of physical regions based on just Q^2 is questionable. E.g. how about many-particle virtual state effect at low Q^2 ? A more consistent separation of regions should also involve the variable $W^2=(p+q)^2$.
 - **Practically**: there is **almost no data input** during the estimation of the "intermediate distance" contribution, which means that its **error bar cannot be reduced** even with future experiments.
- Alternative approach: **dispersion relation**. The main spirit is to express T₃ in terms of **single-current on-shell matrix elements**, such that its uncertainty could be reduced following the **improvement of experimental precision/model** !

Dispersive Approach: Formalism

Dispersive Approach: Formalism

where $M_3^{(0)}(1,Q^2)$ is the first Nachtmann moment of $F_3^{(0)}$:

$$M_3^{(0)}(1,Q^2) = \frac{4}{3} \int_0^1 dx \frac{1+2r}{(1+r)^2} F_3^{(0)}(x,Q^2)$$
$$r = \sqrt{1+4m_N^2 x^2 / Q^2}$$
17

(1) Large Q²-limit (asymptotic region):

$$Q^2 \rightarrow \infty, \ \nu > \nu_{\pi} = \frac{m_{\pi}^2 + 2m_N m_{\pi} + Q^2}{2m_N} \rightarrow \infty$$

approaches DIS regime; Partonic description is appropriate

The ν -integral is simplified:

$$\Box_{\gamma W}^{VA, \text{asym}} = \frac{\alpha}{\pi} \int_{\Lambda^2}^{\infty} dQ^2 \frac{M_W^2}{M_W^2 + Q^2} \int_{\nu_{\pi}}^{\infty} d\nu \frac{1}{m_N \nu} \frac{2\sqrt{\nu^2 + Q^2 + \nu}}{\left(\sqrt{\nu^2 + Q^2} + \nu\right)^2} F_3^{(0)}(\nu, Q^2)$$
$$\rightarrow \frac{\alpha}{\pi} \int_{\Lambda^2}^{\infty} dQ^2 \frac{M_W^2}{M_W^2 + Q^2} \frac{1}{16Q^2} \int_{0}^{1} dx d_V^n(x) = \frac{\alpha}{8\pi} \int_{\Lambda^2}^{\infty} dQ^2 \frac{M_W^2}{M_W^2 + Q^2} \frac{1}{Q^2}$$

Same as the M&S result. PQCD correct is also identical.

Valence d-quark PDF in a neutron

description becomes valid

Scale at which PDF

(2) Born contribution:

$$\Box_{\gamma W}^{VA,\text{Born}} = -\frac{\alpha}{\pi} \int_0^\infty dQ \frac{2\sqrt{4M^2 + Q^2} + Q}{\left(\sqrt{4M^2 + Q^2} + Q\right)^2} G_A(Q^2) G_M^S(Q^2)$$

$$Axial \text{ F.F} \qquad \begin{cases} \text{Isosinglet magnetic} \\ \text{Sachs F.F} \end{cases}$$

Using the updated Sachs and axial FF, we obtain:

Z.Ye, J.Arrington, R.J.Hill and G.Lee, Phys.Lett.B777,8 (2018) B.Bhattacharya, R.J.Hill and G.Paz, Phys.Rev.D84,073006 (2011)

$$\Box_{\gamma W}^{VA,\text{Born}} = 1.05(6) \times 10^{-3}$$

Central value significantly larger than the M&S value $0.96(9)^*10^{-3}$ as we take $Q_{max} = \infty$ instead of cutting it off at some intermediate scale.

Calculable using baryon chiral perturbation theory at tree level.

Q-dependence modeled by electroweak form factor insertion:

Numerically: with Λ^2 =2GeV² it gives: $\Box_{\gamma W}^{VA,N\pi} = 4.6 \times 10^{-5}$ Very small!

(4) Resonance contribution:

Only I=1/2 resonances contribute, but their sizes are negligibly small. Resonance parameters taken from: Drechsel, Kamalov and Tiator, EPJA 34 (2007) 69 Lalakulich, Paschos and Piranishvili, PRD 74 (2006) 014009

- The biggest problem is the large-W² multi-particle contributions, reflected by the large uncertainty in the M&S "interpolating function".
- Dispersion formalism in principle allows input from experimental data. (I=0)*(I=1) V*A structure function can in principle be obtained from parity-odd e-N scattering:

• Unfortunately, existing data do not cover intermediate region of W² and Q².

- Alternative approach: obtain input from (I=1)*(I=1) channel: neutrinoproton scattering processes.
- Strategy: Below asymptotic regime, one has:

(I=1)*(I=1): Born + N π + Resonances + Regge (I=0)*(I=1): Born + N π + Resonances + Regge

• The first three terms can be computed separately, while the last term for the two cases are related by simple **Regge-exchange picture**.

• Data exists for the **first Nachtmann moment** of the **P-odd SF for neutrino-proton/antineutrino-proton scattering**, which allows for a fitting to the Regge contribution:

which is equivalent to a fit of the Regge contribution to γ W, according to our simple Regge-exchange picture.

which represents a **significant reduction of theoretical uncertainty** as well as a **substantial upward shift in the central value** of the M&S result:

$$\Delta_R^V(\mathbf{M} \& \mathbf{S}) = 0.02361(38)$$

$$\Delta_R^V = \frac{3\alpha}{\pi} \int_0^\infty \frac{dQ^2}{Q^2} \frac{M_W^2}{M_W^2 + Q^2} M_3^{(0)}(1, Q^2) + \dots$$

Area under the curve measures the RC!

Reasons for the discrepancy:

- $\label{eq:sigma} \bullet \mbox{The M\&S's classification of dominant} \\ \mbox{physics based on only Q^2 misses the} \\ \mbox{contribution from multi-particle} \\ \mbox{intermediate states at low Q^2} \\ \end{tabular}$
- The M&S's choice of boundary conditions for their "interpolating function" leads to a discontinuity at the UV-matching point and a steep fall at intermediate Q².
- As a result, the M&S treatment leads to a significant UNDERESTIMATION of the nucleus-independent RC, and thus an OVERESTIMATION of $$V_{\rm ud}$$.

Implications and Final Discussions

• Implication of our work to V_{ud} :

```
|V_{ud}|: 0.97420(21) \rightarrow 0.97370(14)
```

provided all experimental results and other theoretical analysis remain unchanged.

• Implication to first-row CKM unitarity:

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2$: 0.9994(5) $\rightarrow 0.9984(4)$

An apparent 4σ -deviation from unitarity!

Implications and Final Discussions

- What could have happened?
 - Although M&S definitely underestimated Δ_R^V , did we go too far and overestimated it? (Although our analysis is a data-driven one)
 - Is the higher-order RC effects (i.e.2 loops and above) not calculated correctly?
 - Is the **nuclear-structure correction** analysis (by Hardy & Towner) incomplete? (see Misha's talk)
 - Is it due to the experimental V_{us} discrepancy?
 - ... or is it a signal of something new?

Summary

- 1. The γ W-box diagram uncertainty to V_{ud} constitutes the largest uncertainty in the first-row CKM unitarity. Current Marciano-Sirlin treatment does not allow a systematic improvement of precision.
- 2. We adopted a **dispersion-relation approach** that allows inputs from experimental data.
- 3. Utilizing neutrino-proton scattering data, we obtain a reduced uncertainty of V_{ud} but also a significant shift of its central value. This leads to an **apparent 4\sigma-deviation** from the first-row CKM unitarity.
- 4. Future **experimental data on e-N scattering** as well as **SM/BSM** calculations in **hadron/nuclear level** are required to address such anomaly.