Neutron Lifetime Experiments

J.C. Hardy and I.S. Towner, PRC 91, 025501 (2015)

Chen-Yu Liu

V_{ud} from neutron decays

To math the theoretical uncertainty: 4×10^{-4} , it requires experimental uncertainties of: $\Delta A/A = 4\Delta \lambda/\lambda < 2 \times 10^{-3}$ and $\Delta \tau/\tau = 4 \times 10^{-4}$.

The confusing situation of V_{ud}

Czarnecki, arXiv:1802.01804 [hep-ph] (2018)

Cross-comparisons of Vud favors the neutron lifetime value measured by the bottle experiments.

An updated EWRC gives an 3.6 σ discrepancy between the Vud derived from the unitarity condition and the direct measurements from superallowed nuclear decays. Seng, Gorchtein, Patel, Ramsey-Musolf, arXiv:1807.10197 [hep-ph]

History of τ_n measurements: a new discrepancy!

A.P. Serebrov, UFN, 175:9 (2005), 905-924; Phys. Usp., 48:9 (2005), 867-885

Big Bang Nucleosynthesis (BBN): Neutron lifetime & the primordial ⁴He abundance (Y_p)

Rev. Mod. Phys. 88, 015004 (2016)

Big Bang Nucleosynthesis (BBN): Neutron lifetime & the primordial ⁴He abundance (Y_p)

0.2

0.0

12

1

2

3

1010×7Li/H

10

10⁶×³He/H

5

7

-R. H. Cyburt, B.D. Fields, K.A. Olive, T-H Yeh, Rev. Mod. Phys. 88, 015004 (2016)

-L. Salvati et al. JCAP 1603 (2016) no.03, 055

Beam vs Bottle: Appearance vs Disappearance

- Neutrons decay in flight
- Counts decay charge particles (e or p)
- Absolute efficiency required.

1. The Beam Method

The best beam experiment is at NIST

- Cold neutron beam, collimated to 2 mm (BL2) \rightarrow 30mm (BL3).
- A quasi-penning trap electrostatically traps beta-decay protons. When the door electrodes are set to ground, the protons are guided by a B field to an external detector (surface barrier Si detector).
- Neutron monitor measures the incident neutron flux by counting $n+^6Li \rightarrow \alpha+t$.

I Measure the absolute activity of an alpha source

2 Use this source to determine solid angle of alpha detector

3 Use an (n,αγ) reaction to transfer the calibration to the gamma detectors

n rate

amma

α

 $l_{\rm AG}$

٩/

4 Measure neutron rate

Thin foil replaced with thick ¹⁰B foil

- all neutrons absorbed
- observed gamma rate and established gamma efficiency determine incident neutron rate

886.3 \pm 1.2 [stat] \pm 3.4 [sys] secondsNico et al 2005887.7 \pm 1.2 [stat] \pm 1.9 [sys] secondsYue et al 2013

Source of uncertainty	BL1 [s]	BL2 projected [s]	BL3 projected [s]
Neutron flux monitor efficiency	2.7	0.5	0.2
Absorption of neutrons by ⁶ Li	0.8	0.1	< 0.1
Neutron beam profile and detector solid angle	0.1	0.1	< 0.1
Neutron beam profile and ⁶ Li deposit shape	0.1	0.1	< 0.1
Neutron beam halo	1.0	0.1	< 0.1
Absorption of neutrons by Si substrate	0.1	0.1	< 0.1
Scattering of neutrons by Si substrate	0.5	0.1	< 0.1
Trap nonlinearity	0.8	0.2	0.1
Proton backscatter calculation	0.4	0.4	< 0.1
Neutron counting dead time	0.1	0.1	< 0.1
Proton counting statistics	1.2	0.6	< 0.1
Neutron counting statistics	0.1	0.1	< 0.1
Total	3.4	1	0.3

Systematic Effects for the NIST Beam Lifetime (BL) Experiments

BL1: 886.3 \pm 1.2 [stat] \pm 3.4 [sys] seconds Nico et al 2005 BL1: 887.7 \pm 1.2 [stat] \pm 1.9 [sys] seconds Yue et al 2013 (improved n monitor)

BL2: on-going data-taking; expect to finish in 2019.

Information provided by N. Fomin

2. The Bottle Method

Experiment with Gravitational trap for UCN (PNPI,Gatchina)

Pis'ma Zh. Eksp. Teor. Fiz. 52, No. 7, 984–989 (10 October 1990)

FIG. 1. 1—Trap for confining ultracold neutrons; 2—liquid-nitrogen screen; 3—distribution valve; 4,9 inlet and outlet guides for ultracold neutrons; 5—inlet valve; 6—detector; 7—detector shielding; 8—valve and trap drive mechanism; 10—cryogenic conductors; 11—volume held at cryogenic temperature; 12—lock for the coating-freezing system. V. P. Alfimenkov,¹⁾ V. E. Varlamov, A. V. Vasil'ev, V. P. Gudkov, V. I. Lushchikov,¹⁾ V. V. Nesvizhevskiĭ, A. P. Serebrov, A. V. Strelkov,¹⁾ S. O. Sumbaev, R. R. Tal'daev, A. G. Kharitonov, and V. N. Shvetsov¹⁾

5 liters

FIG. 2. Results of the measurements of τ_{sr}^{-1} versus the calculation parameter γ . 1(Be)—Extrapolation to the neutron lifetime according to data from traps with a beryllium coating; 2(O₂)—extrapolation to the neutron lifetime according to data for traps with an oxygen coating and a beryllium sublayer. O—Results for a spherical trap; •—results for a cylindrical trap.

The Gravitrap Experiment

PHYSICAL REVIEW C 78, 035505 (2008)

Gravitrap experiment

A.Serebrov et al., Phys Lett B 605, (2005) 72-78 :

A. P. SEREBROV et al.

7 liters

FIG. 1. Schematic of the gravitational UCN storage system: 1—input neutron guide for UCN, 2—inlet valve, 3—selector valve (shown in the position in which the trap is being filled with neutrons), 4—foil unit, 5—vacuum volume, 6—separate vacuum volume of the cryostat, 7—cooling system for the thermal shields, 8—UCN storage trap (with the dashed lines depicting a narrow cylindrical trap), 9—cryostat, 10—trap rotation drive, 11—step motor, 12—UCN detector, 13—detector shield, and 14—vaporizer.

$\textbf{878.5} \pm \textbf{0.8 s}$

2002-2004 (PNPI-JINR-ILL), ILL reactor, Grenoble

Fig.1. Gravitational spectrometer with service platforms

Filling of the trap with UCN: θ =90°.

Monitoring: θ =15°.

Holding: $\theta = 0^{\circ}$.

Registration of UCN 1: θ =19°.

Registration of UCN 2: θ =24°.

Registration of UCN 3: θ =33°.

Registration of UCN 4: θ =90°.

Background: θ =90°.

New GraviTrap (at ILL)

A. Serebrov et al.,(2017) arXiv:1712.05663 [nucl-ex]

Gravitrap (2017): $\tau_n = (881.5 \pm 0.7 \pm 0.6) s$

Material Potential

$V_F = \frac{2\pi\hbar^2 N b_C}{m_n}$

Fermi potential

Material	V _F (neV)	v _c (m/s)	η (×10-4)
D ₂ O	170	5.6	
Be (BeO)	250	6.9	2.0-8.5
С	180	5.8	
Mg	60	3.4	
Al	50	3.2	2.9-10
SiO_2 (quartz)	110	4.6	
Cu	170	5.6	2.1-16
Fe	220	6.5	1.7-28
Со	70	3.7	
Ni	230	6.8	5.1

Critical velocity

$$v_c = \sqrt{\frac{2V_F}{m_n}}$$

Different ways to manipulate UCN

Nuclear force (max: 350neV)

 Gravitational force (100neV/m)

UCNτ: Magneto-Gravitational Trap

- **Magnetic trapping**: Halbach array of permanent magnets along trap floor repels spin polarized neutrons.
- **Minimize UCN spin-depolarization loss**: EM Coils arranged on the toroidal axis generates holding **B** field throughout the trap (perpendicular to the Halbach array field).

The UCNτ apparatus

Multi-step detections & Monte-Carlo studies

Tunable Parameters:

- Input UCN: energy spectrum (x', Ecut), angular distribution (y')
- Detector: Boron thickness, oxide layer, damage depth

Pairs of short-long storage times

1

Global fit into a single exponential function

Systematic uncertainties for the "current mode" counting

R. W. Pattie Jr. et al., Science 360, 627 (2018)

	Upper bound		
Effect	(s)	Direction	Method of evaluation
Depolarization	0.07	+	Varied external holding field
Microphonic heating	0.24	+	Detector for heated neutrons
Insufficient cleaning	0.07	+	Detector for uncleaned neutrons
Dead time/pileup	0.04	±	Known hardware dead time
Phase space evolution	0.10	±	Measured neutron arrival time
Residual gas interactions	0.03	±	Measured gas cross sections and pressure
			Measured background as function of
Background variations	< 0.01	±	detector position
Total	0.28		(uncorrelated sum)

Time [s]

Insufficient Cleaning Limit established by short holding time excess 20s hold $10^3 - 20s$ hold $\Delta \tau_{cleaning}$

Heating

Limit established by long holding time excess

36

1550s hold

Chaotic Motion & Spectral Cleaning

Set	δau [s]	Statistical Uncertainty [s]			
Cleaning					
100% Absorption	0.034	0.0006			
50% Absorption	0.050	0.0007			
200 s Cleaning	0.0017	0.0001			
35 cm Cleaning	8×10^{-5}	3×10^{-5}			
Heating					
Accelerometer	0.031	0.005			
x40 (\sim 40 μ m)	0.151	0.009			
×80	7 68	0.06			

N. Callahan et al, (2018) arXiv:1810.07691

We tried three options of UCN spectral cleaners:

UCN dynamics in the trap

⁽c) $\theta_0 > 45^{\circ}$

UCNtau results

- 1. 2015 commission data (RSI)
- 2. 2015-2016 data
- 3. 2016-2017 data (Science, 2018)

UCNtau: Moving forward

Effect	Upper bound (s) Direction		rection	Method of evaluation	
Depolarization	0.07		+	Varied external holding field	
Microphonic heating	-0.24 -	0.05	+	Detector for heated neutrons	
Insufficient cleaning	- 0.07 -	0.02	+	Detector for uncleaned neutrons	
Dead time/pileup	0.04		±	Known hardware dead time	
Phase space evolution	- 0.10 -	0.02	±	Measured neutron arrival time	
Residual gas interactions	- 0.03 -	0.01	±	Measured gas cross sections and pressure	
				Measured background as function of detector	
Background shifts	<0.01		±	position	
Total	- 0.28 -	0.10		(uncorrelated sum)	

Last beam cycle (2017-2018):

1.0E+00

Projected statistical uncertainty: 0.15 s systematic uncertainty: 0.10 s → total uncertainty: 0.18 s

Are neutrons disappearing at a rate faster than the rate of beta-decay?

INT workshop on Neutron-Antineutron Oscillations: Appearance, Disappearance, and Baryogenesis (Oct 2017)

Mirror matters

T. D. Lee and C. N. Yang, Phys. Rev. 104, 254 (1956); I. Y. Kobzarev, L. B. Okun and I. Y. Pomeranchuk, Yad. Fiz. 3, 1154 (1966); R. Foot, H. Lew and R. R. Volkas, Phys. Lett. B 272 (1991) 67. For a historical overview, see L. B. Okun, Phys. Usp. 50, 380 (2007)

Chen-Yu Liu

Ezhov : $\tau_n = (878.3 \pm 1.6_{\text{stat}} \pm 1.0_{\text{syst}})$

Jetp Lett. (2018) 107: 671

Decay into dark matter?

Fornal & Grinstein, Phys. Rev. Lett. 120, 191801 (2018)

A possible way to lose protons: Formation of boundstate hydrogen as a final state of beta-decay?

Beta spectrum measured in the UCNA experiment. Brown et al., Phys. Rev. C 97, 035505 (2018)

Yuri Pokotilovski

Beta loses energy with bremsstrahlung

If the proton captures the beta, then it will evade the charged particle detection.

Need to revisit the atomic calculations to estimate the probability of bound-state formation, under a high magnetic field (1 T, used in the NIST experiment)

``Bound-state β - decay of the neutron reexamined," A. N. Ivanov, M. Pitschmann, N. I. Troitskaya, and Ya. A. Berdnikov Phys. Rev. C 89, 055502 (2014) 45

Measurements better than 10⁻³ are challenging

In UCNtau, we store N_1 =25,000 neutrons, and count N_2 =6000 neutrons after storing them for t_2 - t_1 =1000 s.

100 neutrons unaccounted for (due to upscatter, spin flip, or heating) will *decrease* the measured neutron lifetime by 10 s.

$$\frac{1}{\tau_{mea}} = \frac{1}{\tau_{\beta}} + \frac{1}{\tau_{ab}} + \frac{1}{\tau_{up}} + \frac{1}{\tau_{sf}} + \frac{1}{\tau_{heat}} + \frac{1}{\tau_{qb}} + \dots$$

To reach 1 s, we can miss no more than 10 neutrons (per run). To reach 0.1 s, no more than 1 neutron.

In the beam experiment, underestimate the proton efficiency (storage, transport, detection) by 1 % will *increase* the measured neutron lifetime by 8 s.

BL1: Proton Backscattering Studies

Nico et al., Phys.Rev.C71:055502,2005

Proton Backscattering

·			
Source of uncertainty	BL1 [s]	BL2 projected [s]	BL3 projected [s]
Proton backscatter calculation	0.4	0.4	< 0.1

Proton Backscattering

Ongoing efforts of n lifetime experiments

Experiment	Methods	Status	Current s	ensitivity	Projected
			Stat (s)	Sys (s)	sensitivity (s)
BL @ NIST	Beam	BL2: Data-taking	1.2	1.9	1
		BL3: R&D	-	-	0.3
JParc	Beam	Data-taking	4.4	+7.6/-8.6	1
Gravitrap	Bottle-material	Data-taking	0.7	0.6	
UCNtau I	Bottle-magnetic (perm. Magnets)	Data-taking	0.7	+0.3/-0.1	0.2
		tau2: conceptual	-	-	< 0.1
Норе	Bottle-magnetic (Perm. Magnets)	UCN Source R&D Trap commissioned	39		0.7
Ezhov	Bottle-magnetic (perm. Magnets)	Data-taking finished; Large trap upgrade	1.6	1.0	0.2
Penelope	Bottle-magnetic (superconducting magnets)	R&D	-	-	0.1
UCNProBe	Beam w/ UCN	R&D	-	-	3

UCNProBe: measures the proton branching Zhaowen Tang et al ratio

- Ultra-Cold Neutron Experiment for Proton Branching Ratio in Neutron Beta Decay (UCNProBe)
- Aims to understand the discrepancy between the beam and the bottle lifetime experiments; precision goal: sub %.
- Need to measure the neutron density and the number of decays absolutely
- Two methods for measuring the number of decays:
 - Protons
 - Electrons
- Required to know the efficiencies of the neutron detector and the decay product detector to ~0.1% level
- We are currently scoping out different experiment ideas

UCNProBe Experimental Concept

Measure τ_{β} using UCNs

- if $\tau_{\beta} = \tau_n$ (from Bottle), then unaccounted systematic error in beam method
- $\tau_{\beta} > \tau_n$, then possible new physics

Requires absolute measurements of two quantities

- Number of neutrons in the trap
- Number of neutrons that decayed (measurement of charged particles)

Charged particle detection

- Electron (Using deuterated polystyrene (dPS) as a UCN trap and detector)
- dPS scintillator (Eljen 299-2D) potential measured at 168 neV

Neutron detection

• UCN capture on ³He gas

Jparc Beam Experiment

The method of neutron lifetime measurement

Electron-Counting method

•

Neutron lifetime is obtained from neutron β decay and flux (³He capture).

 \Rightarrow Final goal : 1 sec accuracy

2

Background against beta decay

Time of Flight

Energy and Range cut 55

Separation of β decay and ³He(n, p)³H

two kinds of signal events (*β* decay and ³H(n, p)³H) in the TPC can be separated by maximum energy deposit among all wires

V.F. Ezhov et. al. JETP Letters, 2018, Vol. 107, No. 11, pp. 671–675

Magnetic shutter in lower part of trap permits to collect depolarized UCN during storage time

V.F. Ezhov, et al, Technical Physics Letters, Vol. 44, No. 7, pp. 602–604, 2018.

 $\Box \tau_n = (878.3 \pm 1.6 \pm 1.0) s$

Trap is filled using elevator in upper part of trap. There are an absorber inside elevator for preliminary preparation of UCN spectrum. Final cleaning proceeds inside the trap throw magnetic shutter in lower part of trap

Trap is filled with unpolarized UCN. In this case half of neutrons are leaking during trap filling and they will be detected just during the filling. So before each run real quantity of UCN in trap is measured.

UCN Lifetime Experiment at the ILL

increase storage volume from 3.6 l to 15 l

Top view of the storage bottle made of permanent magnets.

- Neutrons from the ILL turbine.
- Trapped with permanent magnets and gravity.
- Surviving neutrons counted.

Analysis unpublished

V. Ezhov et al., J. Res. NIST 110 (2005) 345

⁴⁵

Dr. Who, an assistant, and a captured Dalek 60

New trap under construction

Calculated map of magnetic field for a new trap

B. A. Bazarov et al, Technical Physics Letters 42(7), 663-666, (2016)

Increasing of volume is about 15 times

Increasing of stored UCN energy in 2 times

Waited accuracy about 0.2 s.

System for new trap filling in ILL

HOPE – Halbach OctuPole neutron lifetime Experiment

Ph.D. theses: Felix Rosenau, Fabien Lafont, Loris Babin, Kent Leung

Experiments?

Start with well established "fill and empty" method

Full-bore access from top and bottom:

- insertion of diffusive paddle and absorber
- monitoring of depolarisation
- detection of marginally trapped neutrons

Couple experiment to superfluid-helium UCN source **SUN-2** at ILL (pessimistic estimate: 3000 UCN/fill)

 $\delta \tau_n \simeq 0.7 \text{ s}$ in 50 days (statistical)

Experiments @ PF2 performed in fall 2014 Experiments @ SUN-2 in preparation L. Babin

Neutron lifetime in magnetic trap - $\tau SPECT$

τ SPECT principle

CASCADE detector AFP spin flipper for neutron detection

Magnetic octupole for radial storage

SDD for decay proton detection

PENeLOPE

Precision Experiment on Neutron Lifetime Operating with Proton Extraction

- n lifetime measurement ± 0.1 s
- Magneto-gravitational trap for UCN
- On-line proton detection

Proposed large volume magnetic storage experiment

PENeLOPE

Magnetic storage of UCN & proton extraction

$$N(t) = N(t_0) \exp\left(-\frac{t}{\tau_{\rm n}}\right)$$

 $\rho_{\rm UCN}$ = 10^3 – 10^4 cm^{-3} (PSI /FRM II):

 $N_{\rm stored} = 10^7 - 10^8$

- Statistical accuracy:

 $\delta \tau_{\rm n}$ ~ 0.1 s in 2-4 days

- Systematics:
 - Spin flips negligible (simulation)
 - use different values B_{\max} to check expected E_{UCN} independence of τ

R. Picker et al., J. Res. NIST 110 (2005) 357

BL2 experiment is running now at NIST.

Trapezoid Filter Analysis

- Uses a convolution for pulse shape discrimination
- Retains information from the original pulse
- Able to identify multiple proton events

From Jimmy Caylor

Preamp pulse

0009 PDC

4000

2000

Lifetime fit example

From Jimmy Caylor

Critical Improvements over previous measurements

	_ past	present	future
Source of uncertainty	BL1 [s]	BL2 projected [s]	BL3 projected [s]
Neutron flux monitor efficiency	2.7	0.5	0.2
Absorption of neutrons by ⁶ Li	0.8	0.1	< 0.1
Neutron beam profile and detector solid angle	0.1	0.1	< 0.1
Neutron beam profile and ⁶ Li deposit shape	0.1	0.1	< 0.1
Neutron beam halo	1.0	0.1	< 0.1
Absorption of neutrons by Si substrate	0.1	0.1	< 0.1
Scattering of neutrons by Si substrate	0.5	0.1	< 0.1
Trap nonlinearity	0.8	0.2	0.1
Proton backscatter calculation	0.4	0.4	< 0.1
Neutron counting dead time	0.1	0.1	< 0.1
Proton counting statistics	1.2	0.6	< 0.1
Neutron counting statistics	0.1	0.1	< 0.1
Total	3.4	1	0.3

BL3: Bigger!

- Increased neutron beam diameter $7 \text{ mm} \rightarrow 35 \text{ mm}$
- Uniformity requirements:
 △B/B <10⁻³ (in proton trap)
- 50x increase in trapping volume

New Quasi-PenningTrap

- 50x increase in trapping volume
- UHV compatible materials
- Ultra-low expansion fused silica
 - High flux combined with increased volume
 → statistics accumulate quickly

Exists in Inventor, not just our imaginations

Depolarization in UCNtau

R. W. Pattie Jr. *et al.*, Science 360, 627 (2018).

