Vector vs. Scalar NSI's, Light Mediators, and other considerations

Tatsu Takeuchi, Virginia Tech April 27, 2019 Amherst Center for Fundamental Interactions "Neutrino-Electron Scattering at Low Energies"

Collaborators

- Sofiane M. Boucenna (INFN, Italy)
- David Vanegas Forero (U. of Campinas, Brazil)
- Patrick Huber (Virginia Tech)
- Ian Shoemaker (Virginia Tech)
- Chen Sun (Brown)

Non-Standard Interactions:

Effects of new physics at low energies can be expressed via dimension-six four-fermion operators

There are five types:

$$e_{S}(1234) = (\overline{\psi}_{1}\psi_{2})(\overline{\psi}_{3}\psi_{4})$$

$$e_{V}(1234) = (\overline{\psi}_{1}\gamma_{\mu}\psi_{2})(\overline{\psi}_{3}\gamma^{\mu}\psi_{4})$$

$$e_{T}(1234) = (\overline{\psi}_{1}\sigma_{\mu\nu}\psi_{2})(\overline{\psi}_{3}\sigma^{\mu\nu}\psi_{4})$$

$$e_{A}(1234) = (\overline{\psi}_{1}\gamma_{\mu}\gamma^{5}\psi_{2})(\overline{\psi}_{3}\gamma^{\mu}\gamma^{5}\psi_{4})$$

$$e_{P}(1234) = (\overline{\psi}_{1}\gamma^{5}\psi_{2})(\overline{\psi}_{3}\gamma^{5}\psi_{4})$$

Operators relevant for neutrino-electron scattering are those in which two of the operators are neutrinos and the other two operators are electrons

Fierz Identities

$$\begin{split} e_{s}(1234) &= -\frac{1}{4}e_{s}(1432) - \frac{1}{4}e_{v}(1432) - \frac{1}{8}e_{T}(1432) + \frac{1}{4}e_{A}(1432) - \frac{1}{4}e_{p}(1432) \\ e_{v}(1234) &= -e_{s}(1432) + \frac{1}{2}e_{v}(1432) + \frac{1}{2}e_{A}(1432) + e_{p}(1432) \\ e_{T}(1234) &= -3e_{s}(1432) + \frac{1}{2}e_{T}(1432) - 3e_{p}(1432) \\ e_{A}(1234) &= +e_{s}(1432) + \frac{1}{2}e_{v}(1432) + \frac{1}{2}e_{A}(1432) - e_{p}(1432) \\ e_{p}(1234) &= -\frac{1}{4}e_{s}(1432) + \frac{1}{4}e_{v}(1432) - \frac{1}{8}e_{T}(1432) - \frac{1}{4}e_{A}(1432) - \frac{1}{4}e_{p}(1432) \end{split}$$

Fierz Identities for Chiral Fields

LL, RR cases $e_{S}(12_{L/R}34_{L/R}) = -\frac{1}{2}e_{S}(14_{L/R}32_{L/R}) - \frac{1}{8}e_{T}(14_{L/R}32_{L/R})$ $e_{V}(12_{L/R}34_{L/R}) = +e_{V}(14_{L/R}32_{L/R})$ $e_{T}(12_{L/R}34_{L/R}) = -6e_{S}(14_{L/R}32_{L/R}) + \frac{1}{2}e_{T}(14_{L/R}32_{L/R})$

LR, RL cases

$$e_{S}(12_{L/R}34_{R/L}) = -\frac{1}{2}e_{V}(14_{R/L}32_{L/R})$$
$$e_{T}(12_{L/R}34_{R/L}) = 0$$

neutrino-electron interaction from W exchange :

$$2\sqrt{2}G_{F}\left(\overline{\nu}_{eL}\gamma_{\mu}e_{L}\right)\left(\overline{e}_{L}\gamma^{\mu}\nu_{eL}\right) \rightarrow 2\sqrt{2}G_{F}\left(\overline{\nu}_{eL}\gamma_{\mu}\nu_{eL}\right)\left(\overline{e}_{L}\gamma^{\mu}e_{L}\right)$$

neutrino-electron interaction from Z exchange :

$$2\sqrt{2}G_{F}\left(\overline{\nu}_{eL}\gamma_{\mu}\nu_{eL}\right)\left\{g_{LL}^{\nu e}\left(\overline{e}_{L}\gamma^{\mu}e_{L}\right)+g_{LR}^{\nu e}\left(\overline{e}_{R}\gamma^{\mu}e_{R}\right)\right\}$$

Vector exchange:

$$\left(\overline{\boldsymbol{v}}_{\alpha L} \boldsymbol{\gamma}_{\mu} \boldsymbol{v}_{\beta L}\right) \frac{(g')^{2}}{m_{Z'}^{2}} \left(\overline{\boldsymbol{e}}_{L/R} \boldsymbol{\gamma}^{\mu} \boldsymbol{e}_{L/R}\right) \quad \Rightarrow \quad 2\sqrt{2} G_{F} \varepsilon_{\alpha\beta}^{eL/R} \left(\overline{\boldsymbol{v}}_{\alpha L} \boldsymbol{\gamma}_{\mu} \boldsymbol{v}_{\beta L}\right) \left(\overline{\boldsymbol{e}}_{L/R} \boldsymbol{\gamma}^{\mu} \boldsymbol{e}_{L/R}\right)$$

Scalar exchange:

$$\left(\overline{\boldsymbol{v}}_{\alpha L} \boldsymbol{v}_{\beta R} + \overline{\boldsymbol{v}}_{\alpha R} \boldsymbol{v}_{\beta L}\right) \frac{\mathcal{Y}_{\alpha \beta} \mathcal{Y}_{e}}{m_{\phi}^{2}} \left(\overline{\boldsymbol{e}}_{L} \boldsymbol{e}_{R} + \overline{\boldsymbol{e}}_{R} \boldsymbol{e}_{L}\right)$$

Fierz Transformed New Physics:

Charged vector exchange:

$$\left(\overline{\nu}_{\alpha R/L}\gamma_{\mu}e_{R/L}\right)\left(\overline{e}_{L/R}\gamma^{\mu}\nu_{\beta L/R}\right) = -2\left(\overline{\nu}_{\alpha R/L}\nu_{\beta L/R}\right)\left(\overline{e}_{L/R}e_{R/L}\right)$$

Charged scalar exchange:

$$(\overline{\boldsymbol{v}}_{\alpha R/L} \boldsymbol{e}_{L/R}) (\overline{\boldsymbol{e}}_{R/L} \boldsymbol{v}_{\beta L/R})$$

$$= -\frac{1}{2} (\overline{\boldsymbol{v}}_{\alpha R/L} \boldsymbol{v}_{\beta L/R}) (\overline{\boldsymbol{e}}_{R/L} \boldsymbol{e}_{L/R}) - \frac{1}{8} (\overline{\boldsymbol{v}}_{\alpha R/L} \boldsymbol{\sigma}_{\mu\nu} \boldsymbol{v}_{\beta L/R}) (\overline{\boldsymbol{e}}_{R/L} \boldsymbol{\sigma}^{\mu\nu} \boldsymbol{e}_{L/R})$$

Vector and Scalar NSI:

Vector NSI's :

$$-2\sqrt{2}G_{F}\varepsilon_{\alpha\beta}^{eL/R}\left(\overline{\nu}_{\alpha L}\gamma_{\mu}\nu_{\beta L}\right)\left(\overline{e}_{L/R}\gamma^{\mu}e_{L/R}\right)$$

See talk by Chen Sun from yesterday

$$\left(\overline{\boldsymbol{\nu}}_{\alpha L} \boldsymbol{\nu}_{\beta R} + \overline{\boldsymbol{\nu}}_{\alpha R} \boldsymbol{\nu}_{\beta L}\right) \frac{\mathcal{Y}_{\alpha \beta} \mathcal{Y}_{e}}{m_{\phi}^{2}} \left(\overline{e}_{L} e_{R} + \overline{e}_{R} e_{L}\right)$$

Shao-Feng Ge and Stephen J. Parke, arXiv:1812.08376

In matter:

$$\frac{y_{\alpha\beta}y_e}{m_{\phi}^2}(\bar{v}_{\alpha}v_{\beta})(\underline{\bar{e}}\,e) \longrightarrow \frac{n_e y_{\alpha\beta}y_e}{m_{\phi}^2}(\bar{v}_{\alpha}v_{\beta}) = M_s = \sqrt{\Delta m_{31}^2} \begin{bmatrix} \eta_{ee} & \eta_{\mu e}^* & \eta_{\tau e}^* \\ \eta_{\mu e} & \eta_{\mu \mu} & \eta_{\tau \mu}^* \\ \eta_{\tau e} & \eta_{\tau \mu} & \eta_{\tau \tau} \end{bmatrix}$$

Mass matrix is shifted:

$$\frac{M \rightarrow M + M_S}{\frac{M^2}{2E_v}} \rightarrow \frac{(M + M_S)(M + M_S)^{\dagger}}{\frac{2E_v}{2E_v}}$$

Bounds from Borexino:

Shao-Feng Ge and Stephen J. Parke, arXiv:1812.08376

electron-neutrino survival probability:

Scalar NSI's

Vector NSI's

Further points to consider:

The Ge-Parke analysis assumes Dirac masses

If neutrino masses are Majorana

$$M = \frac{M_{Dirac}^2}{M_{Majorana}} \rightarrow \frac{(M_{Dirac} + M_S)^2}{M_{Majorana}}$$

There is also a matter potential effect:

Can we generate large NSI's?

Generating large NSI's from heavy mediators is very difficult

Can light mediators help us?

Interactions must be SU(2) x U(1) invariant:

$$\mathcal{L} = -2\sqrt{2}G_F \varepsilon^{eL}_{\mu\tau} \left(\overline{\nu_{\mu}}\gamma^{\mu} P_L \nu_{\tau}\right) \left(\overline{e}\gamma_{\mu} P_L e\right)$$

$$\text{ Case 1: } (\overline{L_{\mu}}\gamma^{\mu}L_{\tau})(\overline{L_{e}}\gamma_{\mu}L_{e}) \\ = \left[(\overline{\nu_{\mu}}\gamma^{\mu}P_{L}\nu_{\tau})(\overline{\nu_{e}}\gamma_{\mu}P_{L}\nu_{e}) + (\overline{\nu_{\mu}}\gamma^{\mu}P_{L}\nu_{\tau})(\overline{e}\gamma_{\mu}P_{L}e) \right. \\ \left. + (\overline{\mu}\gamma_{\mu}P_{L}\tau)(\overline{\nu_{e}}\gamma^{\mu}P_{L}\nu_{e}) + (\overline{\mu}\gamma^{\mu}P_{L}\tau)(\overline{e}\gamma_{\mu}P_{L}e) \right]$$

Constrained by $\tau \to \mu ee$: $|\varepsilon_{\mu\tau}^{eL}| < 10^{-4}$

Constrained by $\mu \to e \nu_e \nu_\tau, \tau \to e \nu_e \nu_\mu, \tau \to \mu \nu_e \nu_e : |\varepsilon_{\mu\tau}^{eL}| < 10^{-3}$

Farzan-Shoemaker Model

Y. Farzan and I. M. Shoemaker, "Lepton Flavor Violating Non-Standard Interactions via Light Mediators," JHEP07(2016)033, arXiv:1512.09147

Is the model truely viable?

Farzan-Shoemaker Model : Fermion Content $\text{ $$$ SU(3)_{C} \times SU(2)_{L} \times U(1)_{Y} \times U(1)'$ gauge theory$}$ \$\$Quarks:

$$Q_{i} = \begin{bmatrix} u_{Li} \\ d_{Li} \end{bmatrix} \sim \left(3, 2, +\frac{1}{6}, 1\right), \quad u_{Ri} \sim \left(3, 1, +\frac{2}{3}, 1\right), \quad d_{Ri} \sim \left(3, 1, -\frac{1}{3}, 1\right)$$

***** Leptons:

$$\begin{split} L_{0} &= \begin{bmatrix} \nu_{L0} \\ \ell_{L0} \end{bmatrix} \sim \left(1, 2, -\frac{1}{2}, 0 \right) , \quad \ell_{R0} \sim (1, 1, -1, 0) , \\ L_{+} &= \begin{bmatrix} \nu_{L+} \\ \ell_{L+} \end{bmatrix} \sim \left(1, 2, -\frac{1}{2}, +\zeta \right) , \quad \ell_{R+} \sim (1, 1, -1, +\zeta) , \\ L_{-} &= \begin{bmatrix} \nu_{L-} \\ \ell_{L-} \end{bmatrix} \sim \left(1, 2, -\frac{1}{2}, -\zeta \right) , \quad \ell_{R-} \sim (1, 1, -1, -\zeta) , \end{split}$$

Extra (heavy) fermions for anomaly cancellation (?)

Farzan-Shoemaker Model : Scalar Content Higgses: $H = \begin{bmatrix} H^+\\ H^0 \end{bmatrix} \sim \left(1, 2, +\frac{1}{2}, 0\right) ,$ $H_{++} = \begin{bmatrix} H^+_{++}\\ H^0_{++} \end{bmatrix} \sim \left(1, 2, +\frac{1}{2}, +2\zeta\right) ,$ $H_{--} = \begin{bmatrix} H^+_{--}\\ H^0_{--} \end{bmatrix} \sim \left(1, 2, +\frac{1}{2}, -2\zeta\right) .$

Yukawa couplings:

$$\sum_{i=1}^{3} \sum_{j=1}^{3} \left(\lambda_{ij} \overline{d_{Ri}} H^{\dagger} Q_{j} + \tilde{\lambda}_{ij} \overline{u_{Ri}} \widetilde{H}^{\dagger} Q_{j} \right) + h.c.$$
$$+ \sum_{j=0,+,-} \left(f_{j} \overline{\ell_{Rj}} H^{\dagger} L_{j} \right) + h.c.$$
$$+ \left(c_{-} \overline{\ell_{R+}} H^{\dagger}_{--} L_{-} + c_{+} \overline{\ell_{R-}} H^{\dagger}_{++} L_{+} \right) + h.c.$$

$$\langle H^0 \rangle = \frac{v}{\sqrt{2}}, \quad \langle H^0_{++} \rangle = \frac{v_+}{\sqrt{2}}, \quad \langle H^0_{--} \rangle = \frac{v_-}{\sqrt{2}},$$

Assume $v_+ = v_- = \frac{w}{\sqrt{2}}$ (no Z-Z' or γ -Z' mixing at tree-level)

Gauge boson masses:

$$M_W = \frac{g_2}{2}\sqrt{v^2 + w^2}, \quad M_Z = \frac{\sqrt{g_1^2 + g_2^2}}{2}\sqrt{v^2 + w^2}, \quad M_{Z'} = 2\zeta g' w$$

Farzan-Shoemaker Model : Z' Mass & Coupling

The mass of the Z' is chosen to be:

 $135\,{
m MeV}\ <\ M_{Z'}\ <\ 200\,{
m MeV}$

so that the decays

$$\pi^0 \rightarrow \gamma + Z', \qquad Z' \rightarrow \mu^+ + \mu^-$$

cannot occur

♦ Range of the Z'-exchange force comparable to that of strong interactions \rightarrow Z' interactions between quarks can be sizable but still be masked by the strong force (?)

Z' coupling to the leptons are strongly constrained by:

$$\tau \rightarrow \mu + Z'$$

Farzan-Shoemaker Model : Problems

♦ U(1) charges are ill defined in models with multiple U(1)'s
 → They necessarily mix under renormalization group running
 (See W. A. Loinaz and T. Takeuchi, Phys.Rev. D60 (1999) 115008)

♦ Constraint on $\zeta g'$ does not allow the generation of Z' mass in the 135~200 MeV range without making the Higgs VEV w too large for the W and Z masses \rightarrow Need to introduce a SM-singlet scalar

❖ Full MNS neutrino mixing matrix cannot be generated.
 The U(1)' singlet lepton cannot mix with the non-singlet leptons.
 → Need to introduce a more scalars

* Not clear whether the fermions necessary for anomaly cancelation can be made heavy \rightarrow Even more scalars?

Constraints on the Z' couplings revisited:

- Z'-quark coupling
- Z'-lepton coupling

Semi-Empirical Mass Formula of Nuclei:

$$E_B = a_V A - a_S A^{2/3} - a_C \frac{Z^2}{A^{1/3}} - a_A \frac{(A - 2Z)^2}{A} \pm \delta(A, Z)$$

Coulomb term:

$$E_C = \frac{3}{5} \frac{Q^2}{R} = \frac{3}{5} \frac{(eZ)^2}{(r_0 A^{1/3})} = (0.691 \,\mathrm{MeV}) \frac{(1.25 \,\mathrm{fm})}{r_0} \frac{Z^2}{A^{1/3}}$$

Z' potential energy:

Z' potential energy term:

$$E_{Z'} = \frac{3}{5} \frac{Q'^2}{R} f(mR) = \frac{3}{5} \frac{(3g'A)^2}{(r_0 A^{1/3})} f(mr_0 A^{1/3})$$

= $(0.691 \,\mathrm{MeV}) \frac{(1.25 \,\mathrm{fm})}{r_0} \left(\frac{3g'}{e}\right)^2 A^{5/3} f(mr_0 A^{1/3})$

where

Result of Fit:

Our result from fit to stable nuclei (90% C.L. left) compared to Figure from Farzan-Shoemaker paper (JHEP07(2016)033 right)

Result of Fit:

Coupling to the electron from photon-Z' mixing: $Recall that \tau \rightarrow \mu ee$ is strongly bounded:

$$B(\tau^- \to \mu^- e^- e^+) < 1.8 \times 10^{-8}$$

At tree level the Z' does not couple to electrons
But Z' and the photon can mix!

Optical Theorem:

$$\Pi_{\gamma\gamma}'(q^2) - \Pi_{\gamma\gamma}'(0) = -\frac{1}{12\pi^2} \int_{4m_\pi^2}^\infty \frac{q^2}{s(s-q^2)} R(s) ds$$

where

$$R(s) = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)}$$

photon-photon and photon-Z' correlations:

$$\Pi_{\gamma\gamma}' \propto \left\langle \left(\frac{2}{3}\overline{u}\gamma_{\mu}u - \frac{1}{3}\overline{d}\gamma_{\mu}d\right) \left(\frac{2}{3}\overline{u}\gamma_{\nu}u - \frac{1}{3}\overline{d}\gamma_{\nu}d\right) \right\rangle \\\approx \left(\frac{1}{6}\right)^{2} \left\langle \left(\overline{u}\gamma_{\mu}u + \overline{d}\gamma_{\mu}d\right) \left(\overline{u}\gamma_{\nu}u + \overline{d}\gamma_{\nu}d\right) \right\rangle \\+ \left(\frac{1}{2}\right)^{2} \left\langle \left(\overline{u}\gamma_{\mu}u - \overline{d}\gamma_{\mu}d\right) \left(\overline{u}\gamma_{\nu}u - \overline{d}\gamma_{\nu}d\right) \right\rangle$$

$$\Pi_{\gamma Z'}' \propto \left\langle \left(\frac{2}{3} \overline{u} \gamma_{\mu} u - \frac{1}{3} \overline{d} \gamma_{\mu} d \right) \left(\overline{u} \gamma_{\nu} u + \overline{d} \gamma_{\nu} d \right) \right\rangle \\\approx \frac{1}{6} \left\langle \left(\overline{u} \gamma_{\mu} u + \overline{d} \gamma_{\mu} d \right) \left(\overline{u} \gamma_{\nu} u + \overline{d} \gamma_{\nu} d \right) \right\rangle$$

Separation of Isovector and Isoscalar parts:

Running of the effective coupling to electrons:

Resulting bounds:

 $Br(\tau \rightarrow \mu ee) \le 1.8 \times 10^{-8}$ (Belle, PDG):

Does this bound apply?

For the Z' decay into an electron-positron decay to be observable, the Z' must decay inside the detector

Belle central drift chamber: Z' must decay within 0.88 m to 1.7 m

Fig. 22. Overview of the CDC structure. The lengths in the figure are in units of mm.

Two-body decay bound: Argus (1995) $B(\tau \rightarrow \mu + Z') < 5 \times 10^{-3}$ \downarrow $g'\zeta < 6 \times 10^{-8} \left(\frac{M_{Z'}}{200 \text{MeV}}\right)$

Belle has 2000 times more statistics and is expected to improve the bound to 1×10⁻⁴ (Yoshinobu and Hayasaka, Nucl. Part. Phys. Proc. 287-288 (2017) 218-220)

$$B(\tau \to \mu + Z') < 1 \times 10^{-4}$$

$$\downarrow$$

$$g'\zeta < 9 \times 10^{-9} \left(\frac{M_{Z'}}{200 \text{MeV}}\right)$$

Conclusion :

* Both g' and $g'\zeta$ are more tightly bound than originally assumed

Constructing viable models that predict sizable neutrino NSI's is not easy!