Vector vs. Scalar NSI's, Light Mediators, and other considerations

Tatsu Takeuchi, Virginia Tech
April 27, 2019
Amherst Center for Fundamental Interactions
"Neutrino-Electron Scattering at Low Energies"

V 7 VIRGINIA TECH

Collaborators

Sofiane M. Boucenna (INFN, Italy)

* David Vanegas Forero (U. of Campinas, Brazil)
* Patrick Huber (Virginia Tech)
* Ian Shoemaker (Virginia Tech)
- Chen Sun (Brown)

Non-Standard Interactions:

* Effects of new physics at low energies can be expressed via dimension-six four-fermion operators

There are five types:

$$
\begin{aligned}
& e_{S}(1234)=\left(\bar{\psi}_{1} \psi_{2}\right)\left(\bar{\psi}_{3} \psi_{4}\right) \\
& e_{V}(1234)=\left(\bar{\psi}_{1} \gamma_{\mu} \psi_{2}\right)\left(\bar{\psi}_{3} \gamma^{\mu} \psi_{4}\right) \\
& e_{T}(1234)=\left(\bar{\psi}_{1} \sigma_{\mu \nu} \psi_{2}\right)\left(\bar{\psi}_{3} \sigma^{\mu v} \psi_{4}\right) \\
& e_{A}(1234)=\left(\bar{\psi}_{1} \gamma_{\mu} \gamma^{5} \psi_{2}\right)\left(\bar{\psi}_{3} \gamma^{\mu} \gamma^{5} \psi_{4}\right) \\
& e_{P}(1234)=\left(\bar{\psi}_{1} \gamma^{5} \psi_{2}\right)\left(\bar{\psi}_{3} \gamma^{5} \psi_{4}\right)
\end{aligned}
$$

* Operators relevant for neutrino-electron scattering are those in which two of the operators are neutrinos and the other two operators are electrons

Fierz Identities

$e_{S}(1234)=-\frac{1}{4} e_{S}(1432)-\frac{1}{4} e_{V}(1432)-\frac{1}{8} e_{T}(1432)+\frac{1}{4} e_{A}(1432)-\frac{1}{4} e_{P}(1432)$
$e_{V}(1234)=-e_{S}(1432)+\frac{1}{2} e_{V}(1432)+\frac{1}{2} e_{A}(1432)+e_{P}(1432)$
$e_{T}(1234)=-3 e_{S}(1432)+\frac{1}{2} e_{T}(1432)-3 e_{P}(1432)$
$e_{A}(1234)=+e_{S}(1432)+\frac{1}{2} e_{V}(1432)+\frac{1}{2} e_{A}(1432)-e_{P}(1432)$
$e_{P}(1234)=-\frac{1}{4} e_{S}(1432)+\frac{1}{4} e_{V}(1432)-\frac{1}{8} e_{T}(1432)-\frac{1}{4} e_{A}(1432)-\frac{1}{4} e_{P}(1432)$

Fierz Identities for Chiral Fields
LL, RR cases
$e_{S}\left(12_{L / R} 34_{L / R}\right)=-\frac{1}{2} e_{S}\left(14_{L / R} 32_{L / R}\right)-\frac{1}{8} e_{T}\left(14_{L / R} 32_{L / R}\right)$
$e_{V}\left(12_{L / R} 34_{L / R}\right)=+e_{V}\left(14_{L / R} 32_{L / R}\right)$
$e_{T}\left(12_{L / R} 34_{L / R}\right)=-6 e_{S}\left(14_{L / R} 32_{L / R}\right)+\frac{1}{2} e_{T}\left(14_{L / R} 32_{L / R}\right)$

LR, RL cases
$e_{S}\left(12_{L / R} 34_{R / L}\right)=-\frac{1}{2} e_{V}\left(14_{R / L} 32_{L / R}\right)$
$e_{T}\left(12_{L / R} 34_{R / L}\right)=0$

Fierz Transformation Example:

neutrino-electron interaction from W exchange :

$$
2 \sqrt{2} G_{F}\left(\bar{v}_{e L} \gamma_{\mu} e_{L}\right)\left(\bar{e}_{L} \gamma^{\mu} v_{e L}\right) \rightarrow 2 \sqrt{2} G_{F}\left(\bar{v}_{e L} \gamma_{\mu} v_{e L}\right)\left(\bar{e}_{L} \gamma^{\mu} e_{L}\right)
$$

neutrino-electron interaction from Z exchange :

$$
2 \sqrt{2} G_{F}\left(\bar{v}_{e L} \gamma_{\mu} v_{e L}\right)\left\{g_{L L}^{v e}\left(\bar{e}_{L} \gamma^{\mu} e_{L}\right)+g_{L R}^{v e}\left(\bar{e}_{R} \gamma^{\mu} e_{R}\right)\right\}
$$

New Physics:

Vector exchange:

$$
\left(\bar{v}_{\alpha L} \gamma_{\mu} v_{\beta L}\right) \frac{\left(g^{\prime}\right)^{2}}{m_{Z^{\prime}}^{2}}\left(\bar{e}_{L / R} \gamma^{\mu} e_{L / R}\right) \rightarrow 2 \sqrt{2} G_{F} \varepsilon_{\alpha \beta}^{e L / R}\left(\bar{v}_{\alpha L} \gamma_{\mu} v_{\beta L}\right)\left(\bar{e}_{L / R} \gamma^{\mu} e_{L / R}\right)
$$

Scalar exchange:

$$
\left(\bar{v}_{\alpha L} v_{\beta R}+\bar{v}_{\alpha R} v_{\beta L}\right) \frac{y_{\alpha \beta} y_{e}}{m_{\phi}^{2}}\left(\bar{e}_{L} e_{R}+\bar{e}_{R} e_{L}\right)
$$

Fierz Transformed New Physics:

Charged vector exchange:
$\left(\bar{v}_{\alpha R / L} \gamma_{\mu} e_{R / L}\right)\left(\bar{e}_{L / R} \gamma^{\mu} v_{\beta L / R}\right)=-2\left(\bar{v}_{\alpha R / L} v_{\beta L / R}\right)\left(\bar{e}_{L / R} e_{R / L}\right)$

- Charged scalar exchange:
$\left(\bar{v}_{\alpha R / L} e_{L / R}\right)\left(\bar{e}_{R / L} v_{\beta L / R}\right)$
$=-\frac{1}{2}\left(\bar{v}_{\alpha R / L} v_{\beta L / R}\right)\left(\bar{e}_{R / L} e_{L / R}\right)-\frac{1}{8}\left(\bar{v}_{\alpha R / L} \sigma_{\mu v} v_{\beta L / R}\right)\left(\bar{e}_{R / L} \sigma^{\mu v} e_{L / R}\right)$

Vector and Scalar NSI:

- Vector NSI's :
$-2 \sqrt{2} G_{F} \varepsilon_{\alpha \beta}^{e L / R}\left(\bar{v}_{\alpha L} \gamma_{\mu} v_{\beta L}\right)\left(\bar{e}_{L / R} \gamma^{\mu} e_{L / R}\right)$
See talk by Chen Sun from yesterday
- Scalar NSI's :
$\left(\bar{v}_{\alpha L} v_{\beta R}+\bar{v}_{\alpha R} v_{\beta L}\right) \frac{y_{\alpha \beta} y_{e}}{m_{\phi}^{2}}\left(\bar{e}_{L} e_{R}+\bar{e}_{R} e_{L}\right)$
Shao-Feng Ge and Stephen J. Parke, arXiv:1812.08376

Effect of Scalar NSI to Neutrino Propagation:

* Shao-Feng Ge and Stephen J. Parke, arXiv:1812.08376
- In matter:

$$
\frac{y_{\alpha \beta} y_{e}}{m_{\phi}^{2}}\left(\bar{v}_{\alpha} v_{\beta}\right) \underbrace{(\bar{e} e)}_{n_{e}} \rightarrow \frac{n_{e} y_{\alpha \beta} y_{e}}{m_{\phi}^{2}}\left(\bar{v}_{\alpha} v_{\beta}\right) \equiv M_{s}=\sqrt{\Delta m_{31}^{2}}\left[\begin{array}{ccc}
\eta_{e e} & \eta_{\mu e}^{*} & \eta_{\tau e}^{*} \\
\eta_{\mu e} & \eta_{\mu \mu} & \eta_{\tau \mu}^{*} \\
\eta_{\tau e} & \eta_{\tau \mu} & \eta_{\tau \tau}
\end{array}\right]
$$

Mass matrix is shifted:
$M \rightarrow M+M_{S}$
$\frac{M^{2}}{2 E_{v}} \rightarrow \frac{\left(M+M_{S}\right)\left(M+M_{S}\right)^{\dagger}}{2 E_{v}}$

Bounds from Borexino:

Shao-Feng Ge and Stephen J. Parke, arXiv:1812.08376
electron-neutrino survival probability:

Scalar NSI's

Vector NSI's

Further points to consider:

The Ge-Parke analysis assumes Dirac masses
If neutrino masses are Majorana

$$
M=\frac{M_{\text {Dirac }}^{2}}{M_{\text {Majorana }}} \rightarrow \frac{\left(M_{\text {Dirac }}+M_{S}\right)^{2}}{M_{\text {Majorana }}}
$$

There is also a matter potential effect:

Can we generate large NSl's?

* Generating large NSI's from heavy mediators is very difficult
- Can light mediators help us?

Interactions must be $\mathrm{SU}(2) \times \mathrm{U}(1)$ invariant:

$$
\mathcal{L}=-2 \sqrt{2} G_{F} \varepsilon_{\mu \tau}^{e L}\left(\overline{\nu_{\mu}} \gamma^{\mu} P_{L} \nu_{\tau}\right)\left(\bar{e} \gamma_{\mu} P_{L} e\right)
$$

Case 1: $\left(\overline{L_{\mu}} \gamma^{\mu} L_{\tau}\right)\left(\overline{L_{e}} \gamma_{\mu} L_{e}\right)$

$$
\begin{aligned}
& =\left[\left(\overline{\nu_{\mu}} \gamma^{\mu} P_{L} \nu_{\tau}\right)\left(\overline{\nu_{e}} \gamma_{\mu} P_{L} \nu_{e}\right)+\left(\overline{\nu_{\mu}} \gamma^{\mu} P_{L} \nu_{\tau}\right)\left(\bar{e} \gamma_{\mu} P_{L} e\right)\right. \\
& \left.\quad+\left(\bar{\mu} \gamma_{\mu} P_{L} \tau\right)\left(\overline{\nu_{e}} \gamma^{\mu} P_{L} \nu_{e}\right)+\left(\bar{\mu} \gamma^{\mu} P_{L} \tau\right)\left(\bar{e} \gamma_{\mu} P_{L} e\right)\right]
\end{aligned}
$$

Constrained by $\tau \rightarrow \mu e e:\left|\varepsilon_{\mu \tau}^{e L}\right|<10^{-4}$

Case 2: $\quad\left(\overline{L_{\mu}} i \sigma_{2} L_{e}^{c}\right)\left(\overline{L_{\tau}^{c}} i \sigma_{2} L_{e}\right)$

$$
\begin{aligned}
= & \frac{1}{2}\left(\overline{\nu_{\mu}} \gamma^{\mu} P_{L} \nu_{\tau}\right)\left(\bar{e} \gamma_{\mu} P_{L} e\right)-\frac{1}{2}\left(\overline{\nu_{e}} \gamma^{\mu} P_{L} \nu_{\tau}\right)\left(\bar{\mu} \gamma_{\mu} P_{L} e\right) \\
& -\frac{1}{2}\left(\overline{\nu_{\mu}} \gamma^{\mu} P_{L} \nu_{e}\right)\left(\bar{e} \gamma_{\mu} P_{L} \tau\right)+\frac{1}{2}\left(\overline{\nu_{e}} \gamma^{\mu} P_{L} \nu_{e}\right)\left(\bar{\mu} \gamma_{\mu} P_{L} \tau\right)
\end{aligned}
$$

Constrained by $\mu \rightarrow e v_{e} v_{\tau}, \tau \rightarrow e v_{e} v_{\mu}, \tau \rightarrow \mu \nu_{e} v_{e}:\left|\varepsilon_{\mu \tau}^{e L}\right|<10^{-3}$

Farzan-Shoemaker Model

* Y. Farzan and I. M. Shoemaker, "Lepton Flavor Violating NonStandard Interactions via Light Mediators," JHEPO7(2016)033, arXiv:1512.09147
$\varepsilon=2\left(\frac{g^{\prime}}{g}\right)^{2}\left(\frac{M_{W}}{M_{Z^{\prime}}}\right)^{2}=0.03 g^{\prime 2}\left(\frac{1000 \mathrm{GeV}}{M_{Z^{\prime}}}\right)^{2}=0.03\left(\frac{g^{\prime}}{10^{-4}}\right)^{2}\left(\frac{100 \mathrm{MeV}}{M_{Z^{\prime}}}\right)^{2}$

$$
\varepsilon_{\mu \tau}^{q C} \sim 0.005 \quad \rightarrow \quad \varepsilon_{\mu \tau} \sim 0.06
$$

Is the model truely viable?

Farzan-Shoemaker Model : Fermion Content

$S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y} \times U(1)^{\prime}$ gauge theory
Quarks:
$Q_{i}=\left[\begin{array}{l}u_{L i} \\ d_{L i}\end{array}\right] \sim\left(3,2,+\frac{1}{6}, 1\right), \quad u_{R i} \sim\left(3,1,+\frac{2}{3}, 1\right), \quad d_{R i} \sim\left(3,1,-\frac{1}{3}, 1\right)$
Leptons:
$L_{0}=\left[\begin{array}{l}\nu_{L 0} \\ \ell_{L 0}\end{array}\right] \sim\left(1,2,-\frac{1}{2}, 0\right), \quad \ell_{R 0} \sim(1,1,-1,0)$,
$L_{+}=\left[\begin{array}{l}\nu_{L+} \\ \ell_{L+}\end{array}\right] \sim\left(1,2,-\frac{1}{2},+\zeta\right), \quad \ell_{R+} \sim(1,1,-1,+\zeta)$,
$L_{-}=\left[\begin{array}{l}\nu_{L-} \\ \ell_{L-}\end{array}\right] \sim\left(1,2,-\frac{1}{2},-\zeta\right), \quad \ell_{R-} \sim(1,1,-1,-\zeta)$,
Extra (heavy) fermions for anomaly cancellation (?)

Farzan-Shoemaker Model : Scalar Content
Higgses:

$$
\begin{aligned}
& H=\left[\begin{array}{c}
H^{+} \\
H^{0}
\end{array}\right] \sim\left(1,2,+\frac{1}{2}, 0\right), \\
& H_{++}=\left[\begin{array}{c}
H_{++}^{+} \\
H_{++}^{0}
\end{array}\right] \sim\left(1,2,+\frac{1}{2},+2 \zeta\right), \\
& H_{--}=\left[\begin{array}{l}
H_{--}^{+} \\
H_{--}^{0}
\end{array}\right] \sim\left(1,2,+\frac{1}{2},-2 \zeta\right) .
\end{aligned}
$$

Yukawa couplings:

$$
\begin{aligned}
& \sum_{i=1}^{3} \sum_{j=1}^{3}\left(\lambda_{i j} \overline{d_{R i}} H^{\dagger} Q_{j}+\tilde{\lambda}_{i j} \overline{u_{R i}} \widetilde{H}^{\dagger} Q_{j}\right)+\text { h.c. } \\
& +\sum_{j=0,+,-}\left(f_{j} \overline{\ell_{R j}} H^{\dagger} L_{j}\right)+h . c . \\
& +\left(c_{-} \overline{\ell_{R+}} H_{--}^{\dagger} L_{-}+c_{+} \overline{\ell_{R-}} H_{++}^{\dagger} L_{+}\right)+\text {h.c. }
\end{aligned}
$$

Farzan-Shoemaker Model : Symmetry Breaking

Higgs VEV's:

$$
\left\langle H^{0}\right\rangle=\frac{v}{\sqrt{2}}, \quad\left\langle H_{++}^{0}\right\rangle=\frac{v_{+}}{\sqrt{2}}, \quad\left\langle H_{--}^{0}\right\rangle=\frac{v_{-}}{\sqrt{2}},
$$

Assume $v_{+}=v_{-}=\frac{w}{\sqrt{2}}$ (no $Z-Z^{\prime}$ or $\gamma-Z^{\prime}$ mixing at tree-level)
Gauge boson masses:

$$
M_{W}=\frac{g_{2}}{2} \sqrt{v^{2}+w^{2}}, \quad M_{Z}=\frac{\sqrt{g_{1}^{2}+g_{2}^{2}}}{2} \sqrt{v^{2}+w^{2}}, \quad M_{Z^{\prime}}=2 \zeta g^{\prime} w
$$

Farzan-Shoemaker Model : Z’ Mass \& Coupling

The mass of the Z^{\prime} is chosen to be:

$$
135 \mathrm{MeV}<M_{Z^{\prime}}<200 \mathrm{MeV}
$$

so that the decays

$$
\pi^{0} \rightarrow \gamma+Z^{\prime}, \quad Z^{\prime} \rightarrow \mu^{+}+\mu^{-}
$$

cannot occur

* Range of the Z'-exchange force comparable to that of strong interactions \rightarrow Z' interactions between quarks can be sizable but still be masked by the strong force (?)
- Z' coupling to the leptons are strongly constrained by:

$$
\tau \rightarrow \mu+Z^{\prime}
$$

Farzan-Shoemaker Model : Problems

- $U(1)$ charges are ill defined in models with multiple $U(1)$'s \rightarrow They necessarily mix under renormalization group running (See W. A. Loinaz and T. Takeuchi, Phys.Rev. D60 (1999) 115008)
> * Constraint on ζg^{\prime} does not allow the generation of Z^{\prime} mass in the $135 \sim 200 \mathrm{MeV}$ range without making the Higgs VEV w too large for the W and Z masses
> \rightarrow Need to introduce a SM-singlet scalar

\% Full MNS neutrino mixing matrix cannot be generated. The $U(1)^{\prime}$ ' singlet lepton cannot mix with the non-singlet leptons. \rightarrow Need to introduce a more scalars

Not clear whether the fermions necessary for anomaly cancelation can be made heavy \rightarrow Even more scalars?

Constraints on the Z' couplings revisited:

* Z'-quark coupling

Z'-lepton coupling

Semi-Empirical Mass Formula of Nuclei:

$$
E_{B}=a_{V} A-a_{S} A^{2 / 3}-a_{C} \frac{Z^{2}}{A^{1 / 3}}-a_{A} \frac{(A-2 Z)^{2}}{A} \pm \delta(A, Z)
$$

Coulomb term:

$$
E_{C}=\frac{3}{5} \frac{Q^{2}}{R}=\frac{3}{5} \frac{(e Z)^{2}}{\left(r_{0} A^{1 / 3}\right)}=(0.691 \mathrm{MeV}) \frac{(1.25 \mathrm{fm})}{r_{0}} \frac{Z^{2}}{A^{1 / 3}}
$$

Z' potential energy:

Z' potential energy term:

$$
\begin{aligned}
E_{Z^{\prime}} & =\frac{3}{5} \frac{Q^{\prime 2}}{R} f(m R)=\frac{3}{5} \frac{\left(3 g^{\prime} A\right)^{2}}{\left(r_{0} A^{1 / 3}\right)} f\left(m r_{0} A^{1 / 3}\right) \\
& =(0.691 \mathrm{MeV}) \frac{(1.25 \mathrm{fm})}{r_{0}}\left(\frac{3 g^{\prime}}{e}\right)^{2} A^{5 / 3} f\left(m r_{0} A^{1 / 3}\right)
\end{aligned}
$$

where

Result of Fit:

- Our result from fit to stable nuclei (90\% C.L. left) compared to Figure from Farzan-Shoemaker paper (JHEP07(2016)033 right)

Result of Fit:

Coupling to the electron from photon-Z' mixing:
Recall that $\tau \rightarrow \mu e e$ is strongly bounded:

$$
B\left(\tau^{-} \rightarrow \mu^{-} e^{-} e^{+}\right)<1.8 \times 10^{-8}
$$

At tree level the Z^{\prime} does not couple to electrons
But Z' and the photon can mix!

Optical Theorem:

where

$$
R(s)=\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}
$$

photon-photon and photon-Z' correlations:

$$
\begin{aligned}
\Pi_{\gamma \gamma}^{\prime} \propto & \left\langle\left(\frac{2}{3} \bar{u} \gamma_{\mu} u-\frac{1}{3} \bar{d} \gamma_{\mu} d\right)\left(\frac{2}{3} \bar{u} \gamma_{\nu} u-\frac{1}{3} \bar{d} \gamma_{\nu} d\right)\right\rangle \\
\approx & \left(\frac{1}{6}\right)^{2}\left\langle\left(\bar{u} \gamma_{\mu} u+\bar{d} \gamma_{\mu} d\right)\left(\bar{u} \gamma_{\nu} u+\bar{d} \gamma_{\nu} d\right)\right\rangle \\
& +\left(\frac{1}{2}\right)^{2}\left\langle\left(\bar{u} \gamma_{\mu} u-\bar{d} \gamma_{\mu} d\right)\left(\bar{u} \gamma_{\nu} u-\bar{d} \gamma_{\nu} d\right)\right\rangle \\
& \\
\Pi_{\gamma Z^{\prime}}^{\prime} \propto & \left\langle\left(\frac{2}{3} \bar{u} \gamma_{\mu} u-\frac{1}{3} \bar{d} \gamma_{\mu} d\right)\left(\bar{u} \gamma_{\nu} u+\bar{d} \gamma_{\nu} d\right)\right\rangle \\
\approx & \frac{1}{6}\left\langle\left(\bar{u} \gamma_{\mu} u+\bar{d} \gamma_{\mu} d\right)\left(\bar{u} \gamma_{\nu} u+\bar{d} \gamma_{\nu} d\right)\right\rangle
\end{aligned}
$$

Separation of Isovector and Isoscalar parts:

Running of the effective coupling to electrons:

Resulting bounds:

$$
\operatorname{Br}(\tau \rightarrow \mu e e) \leq 1.8 \times 10^{-8}(\text { Belle, PDG }):
$$

Does this bound apply?

* For the Z' decay into an electron-positron decay to be observable, the Z^{\prime} must decay inside the detector

Belle central drift chamber:
Z' must decay within 0.88 m to 1.7 m

Fig. 22. Overview of the CDC structure. The lengths in the figure are in units of mm .

Two-body decay bound:

- Argus (1995)

$$
\begin{aligned}
B\left(\tau \rightarrow \mu+Z^{\prime}\right) & <5 \times 10^{-3} \\
& \downarrow \\
g^{\prime} \zeta & <6 \times 10^{-8}\left(\frac{M_{Z^{\prime}}}{200 \mathrm{MeV}}\right)
\end{aligned}
$$

Belle has 2000 times more statistics and is expected to improve the bound to 1×10^{-4} (Yoshinobu and Hayasaka, Nucl. Part. Phys. Proc. 287-288 (2017) 218-220)

$$
\begin{aligned}
B\left(\tau \rightarrow \mu+Z^{\prime}\right) & <1 \times 10^{-4} \\
& \downarrow \\
g^{\prime} \zeta & <9 \times 10^{-9}\left(\frac{M_{Z^{\prime}}}{200 \mathrm{MeV}}\right)
\end{aligned}
$$

Conclusion:

* Both g^{\prime} and $g^{\prime} \zeta$ are more tightly bound than originally assumed

* Constructing viable models that predict sizable neutrino NSI's is not easy!

