Liquid Argon Detectors at the Single(ish) Electron Limit

Graham Giovanetti Princeton University

argon has a naturally occurring betaemitting isotope, ³⁹Ar

DarkSide-50

located at LNGS Hall C

and installed in veto detector

liquid argon TPC concept

can we reduce the energy threshold?

S1 scintillation signal threshold at 2 keVee = 10 keVnr

S2 ionization signal threshold at <0.1 keVee = 0.4 keVnr

- PMTs have negligible dark rate at 88 K
- center PMT sees ~23 photoelectrons per electron
 - high trigger efficiency
 - single electron sensitivity
- lose PSD, Z-reconstruction, and S2/S1

Phys. Rev. Lett., vol. 121, 081307 (2018)

can we reduce the energy threshold?

S1 scintillation signal threshold at 2 keVee = 10 keVnr

S2 ionization signal threshold at <0.1 keVee = 0.4 keVnr

can we reduce the energy threshold?

S1 scintillation signal threshold at 2 keVee = 10 keVnr

S2 ionization signal threshold at <0.1 keVee = 0.4 keVnr

electron detection efficiency

electron recoil energy scale

electron recoil energy scale

background rates

13

background rates

continuum background

background rates

approximate - normalized at 10

Ċ

single electron events

background rates

18

 $4-7 e^{-} excess$

- incorrectly modeled beta spectrum?
- tritium?
- other

Kossert & Mougeot, Appl. Radiat. Isot., Vol. 101 (2015)

background rate in DarkSide-50

arXiv:1202.6073, see Scott's introductory talk

20

what about a future detector?

- we'll imagine an optimized electron recoil detector spun-off of DarkSide-20k (next-gen DarkSide TPC)
- ~200 kg fiducial mass

assume no ⁸⁵Kr and 100x reduction in ³⁹Ar

better handling at URANIA (UAr extraction in Colorado)
and/or cryogenic distillation at ARIA

reduce other internal backgrounds below ³⁹Ar

- larger volume improves fiducialization
- switch from PMTs to SiPMs
- optimize geometry to minimize number of SiPMs
- eliminate TPC cryostat and use a large argon buffer volume

ignore single e- and 4-7 e- excess

approximate bkg rate in new experiment

arXiv:1202.6073, see Scott's introductory talk

