ACFI Workshop on "Beta decays as a probe of new physics" Amherst, Nov I-3 2018

BSM and beta decay

Vincenzo Cirigliano Los Alamos National Laboratory

Outline

- New physics in beta decays: generalities and EFT framework
- Constraints on non-standard charged current interactions
 - global analysis of beta decays
 - collider input: LEP, LHC
 - comparison of sensitivities
- Summary and outlook

Special thanks to Martin Gonzalez-Alonso for sharing his slides from the WE-Heraeus-Seminar on "Particle Physics with Cold and UltraCold Neutrons" October 24-26, 2018, Bad Honnef

Semileptonic processes: SM and beyond

• In the SM, W exchange \Rightarrow V-A currents, universality

Semileptonic processes: SM and beyond

• In the SM, W exchange \Rightarrow V-A currents, universality

- Broad sensitivity to BSM scenarios
- Experimental and theoretical precision at or approaching 0.1% level Probe effective scale Λ in the 5-10 TeV range

Connecting scales — EFT

To connect UV physics to neutron and nuclear beta decays, use EFT

Connecting scales — EFT

To connect UV physics to neutron and nuclear beta decays, use EFT

• New physics effects are encoded in ten quark-level couplings

 Quark-level version of Lee-Yang effective Lagrangian, allows us to connect nuclear & high energy probes

Bhattacharya et al., 1110.6448

VC, Graesser, Gonzalez-Alonso 1210.4553

New physics effects are encoded in ten quark-level couplings

Bhattacharya et al., 1110.6448

VC, Graesser, Gonzalez-Alonso 1210.4553

New physics effects are encoded in ten quark-level couplings

$$\mathcal{L}_{CC} = -\frac{G_F^{(\beta)}}{\sqrt{2}} V_{ud} \\ \times \left[\left(1 + \epsilon_L \right) \ \bar{\ell} \gamma_\mu (1 - \gamma_5) \nu_\ell \ \bar{u} \gamma^\mu (1 - \gamma_5) d \right. \\ \left. + \ \epsilon_R \ \bar{\ell} \gamma_\mu (1 - \gamma_5) \nu_\ell \ \bar{u} \gamma^\mu (1 + \gamma_5) d \right. \\ \left. + \ \epsilon_S \ \bar{\ell} (1 - \gamma_5) \nu_\ell \ \bar{u} \gamma_5 d \right. \\ \left. + \ \epsilon_T \ \bar{\ell} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \ \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right] + \text{h.c.} \right]$$

$$\left. + \ \epsilon_i \rightarrow \tilde{\epsilon}_i \quad (1 - \gamma_5) \nu_\ell \rightarrow (1 + \gamma_5) \nu_\ell \quad \longleftarrow \quad \text{Interference with SM suppressed by m_V/E: quadratic sensitivity to } \tilde{\epsilon}_i \right]$$

Bhattacharya et al., 1110.6448

VC, Graesser, Gonzalez-Alonso 1210.4553

Marciano-Sirlin 1981

Sirlin 1982

• Work to first order in rad. corr. and new physics

$$\mathcal{L}_{CC} = -\frac{G_F^{(\mu)}}{\sqrt{2}} V_{ud} \left(1 + \delta_{RC} \right) \left(1 - \frac{\delta G_F^{(\mu)}}{G_F^{(\mu)}} \right) \left(1 + \epsilon_L + \epsilon_R \right)$$

$$\times \left[\bar{\ell} \gamma_\mu (1 - \gamma_5) \nu_\ell \ \bar{u} \gamma^\mu \left(1 - (1 - 2 \epsilon_R) \gamma_5 \right) d \right]$$

$$+ \epsilon_S \ \bar{\ell} (1 - \gamma_5) \nu_\ell \ \bar{u} \gamma_5 d$$

$$+ \epsilon_T \ \bar{\ell} \sigma_{\mu\nu} (1 - \gamma_5) \nu_\ell \ \bar{u} \sigma^{\mu\nu} (1 - \gamma_5) d \right] + h.c.$$

$$\mathcal{S}_{RC}$$

$$SM \ rad. \ corr. \ \Im \ ``large \ log" (\alpha/\pi) \times Log(M_Z/\mu)$$

Note: besides the pre-factor, ϵ_R appears in nuclear decays in the combination $\overline{g}_A = g_A \times (I - 2\epsilon_R)$

I. Differential decay distribution

$$d\Gamma \propto F(E_e) \left\{ 1 + \frac{b}{E_e} \frac{m_e}{E_e} + \frac{a}{E_e} \frac{\vec{p_e} \cdot \vec{p_{\nu}}}{E_e E_{\nu}} + \langle \vec{J} \rangle \cdot \left[A \frac{\vec{p_e}}{E_e} + B \frac{\vec{p_{\nu}}}{E_{\nu}} + \cdots \right] \right\}$$

Lee-Yang, 1956 Jackson-Treiman-Wyld 1957

 $a(g_A), A(g_A), B(g_A, g_{\alpha} \epsilon_{\alpha}), ...$ isolated via suitable experimental asymmetries

Theory input: gv,A,S,T (from lattice QCD) + rad. corr.

Nucleon charges from lattice QCD

With estimates of all systematic errors $(m_q, a, V, excited states)$

2. Total decay rates

 $\Gamma_k = (G_F^{(\mu)})^2 \times |\bar{V}_{ij}|^2 \times |M_{\text{had}}|^2 \times (1 + \delta_{RC}) \times F_{\text{kin}}$

2. Total decay rates

$$\Gamma_k = (G_F^{(\mu)})^2 \times |\bar{V}_{ij}|^2 \times |M_{\text{had}}|^2 \times (1 + \delta_{RC}) \times F_{\text{kin}}$$

For nuclei, rate traditionally written in terms of "corrected FT values"

2. Total decay rates

$$\Gamma_k = (G_F^{(\mu)})^2 \times |\bar{V}_{ij}|^2 \times |M_{\text{had}}|^2 \times (1 + \delta_{RC}) \times F_{\text{kin}}$$

For nuclei, rate traditionally written in terms of "corrected FT values"

Snapshot of the field

Experimental precision between ~0.01% and few %

Ft	(0+→0+)	va	lues

$\begin{array}{cccc} {}^{10}{\rm C} & 3078.0 \pm \\ {}^{14}{\rm O} & 3071.4 \pm \\ {}^{22}{\rm Mg} & 3077.9 \pm \\ {}^{26m}{\rm Al} & 3072.9 \pm \\ {}^{34}{\rm Cl} & 3070.7 \pm \\ {}^{34}{\rm Ar} & 3065.6 \pm \\ {}^{26m}{\rm Al} & 3075.6 \pm \\ {}^{26m}{\rm Al} & 3065.6 \pm \\$	5)
	4.5
$\begin{array}{ccc} ^{22}\mathrm{Mg} & 3077.9 \pm \\ ^{26m}\mathrm{Al} & 3072.9 \pm \\ ^{34}\mathrm{Cl} & 3070.7 \pm \\ ^{34}\mathrm{Ar} & 3065.6 \pm \\ \end{array}$	3.2
$\begin{array}{ccc} ^{26m}{\rm Al} & 3072.9 \pm \\ ^{34}{\rm Cl} & 3070.7 \pm \\ ^{34}{\rm Ar} & 3065.6 \pm \\ ^{28m}{\rm Al} & & \end{array}$	7.3
	: 1.0
34 Ar 3065.6 ±	1.8
20 m × z	8.4
38m K 3071.6 ±	2.0
38 Ca $3076.4 \pm$	7.2
^{42}Sc 3072.4 ±	2.3
^{46}V 3074.1 ±	2.0
^{50}Mn 3071.2 ±	2.1
54 Co 3069.8 ±	2.6
62 Ga 3071.5 ±	6.7
74 Rb 3076.0 \pm	11.0
	/

Correlation coefficients

Parent	Type	Parameter	Value
⁶ He	GT/β^-	a	$-0.3308(30)^{a}$
^{32}Ar	F/β^+	\tilde{a}	0.9989(65)
38m K	F/β^+	\tilde{a}	0.9981(48)
60 Co	GT/β^-	Ã	-1.014(20)
⁶⁷ Cu	GT/β^-	Ã	0.587(14)
114 In	GT/β^-	Ã	-0.994(14)
$^{14}O/^{10}C$	$F-GT/\beta^+$	P_F/P_{GT}	0.9996(37)
$^{26}Al/^{30}P$	$F-GT/\beta^+$	P_F/P_{GT}	1.0030(40)
⁸ Li	GT/β^-	R	0.0009(22)
			_

Neutron data

Parameter	Value
τ_n (s)	879.75(76) * (S = 1.9!!)
a_n	-0.1034(37) *
\tilde{a}_n	-0.1090(41)
\tilde{A}_n	-0.11869(99) * (5 = 2.6!!)
\tilde{B}_n	0.9805(30) ×
λ_{AB}	-1.2686(47)
D_n	-0.00012(20) ×
R_n	0.004(13)
	* Average

Nuclei

Gonzalez-Alonso, Naviliat-Cuncic, Severijns, 1803.08732 & M. Gonzalez-Alonso slides

Snapshot of the field

Experimental precision between ~0.01% and few %

Hardy-Towner 1411.5987

Snapshot of the field

Experimental precision between ~0.01% and few %

Results of global fit to low-E data

Gonzalez-Alonso, Naviliat-Cuncic, Severijns, 1803.08732

• Standard Model fit ($\lambda = g_A/g_V$)

Experimental Radiative corrections (
$$\Delta_R$$
)
 $|V_{ud}| = 0.97416(11)(19) = 0.97416(21)$
 $\lambda = 1.27510(66)$
 $\rho = -0.13$
 $\chi^2_{min}/\nu = 0.57.$

• Fit driven by \mathcal{F} t's $(0^+ \rightarrow 0^+)$ and τ_n (not A_n)

Results of global fit to low-E data

Gonzalez-Alonso, Naviliat-Cuncic, Severijns, 1803.08732

• Standard Model fit ($\lambda = g_A/g_V$)

• Fit driven by \mathcal{F} t's $(0^+ \rightarrow 0^+)$ and τ_n (not A_n)

Results of global fit to low-E data

Gonzalez-Alonso, Naviliat-Cuncic, Severijns, 1803.08732

• Fit including BSM couplings (driven by $\mathcal{F}t$'s (0⁺ \rightarrow 0⁺), τ_n , and A_n)

$$\rho = \begin{pmatrix}
1.00 & & \\
0.00 & 1.00 & \\
0.83 & 0.00 & 1.00 & \\
0.28 & -0.04 & 0.31 & 1.00
\end{pmatrix}$$

** CalLat 1805.12030

Cabibbo universality test

$$|\bar{V}_{ud}|^2 + |\bar{V}_{us}|^2 + |\bar{V}_{us}|^2 = 1 + \Delta_{\mathrm{CKM}}(\epsilon_i)$$

$$V_{us} \text{ from } K \rightarrow \mu \nu$$

$$\Delta_{CKM} = -(4 \pm 5) * 10^{-4} \sim 1\sigma$$

$$\Delta_{CKM} = -(12 \pm 6) * 10^{-4} \sim 2\sigma$$

$$V_{us} \text{ from } K \rightarrow \pi l \nu$$

Cabibbo universality test

$$|\bar{V}_{ud}|^2 + |\bar{V}_{us}|^2 + |\bar{V}_{us}|^2 = 1 + \Delta_{\mathrm{CKM}}(\epsilon_i)$$

V_{us} from
$$K \rightarrow \mu \nu$$

$$\Delta_{CKM} = -(4 \pm 5) * 10^{-4} \sim 1\sigma$$

$$\Delta_{CKM} = -(12 \pm 6) * 10^{-4} \sim 2\sigma$$
V_{us} from $K \rightarrow \pi l \nu$

Hint of something [ϵ 's \neq 0] or SM theory input?

Worth a closer look: at the level of the best LEP EW precision tests, probing scale A~10 TeV

Cabibbo universality test

$$|\bar{V}_{ud}|^2 + |\bar{V}_{us}|^2 + |\bar{V}_{us}|^2 = 1 + \Delta_{\mathrm{CKM}}(\epsilon_i)$$

V_{us} from K→ μν

$$\Delta_{CKM} = -(14 \pm 4) * 10^{-4}$$
 ~3.5σ
 $\Delta_{CKM} = -(22 \pm 5) * 10^{-4}$ ~4.5σ
V_{us} from K→ πlv

With new radiative corrections [Seng et al. 1807.10197]

Impact of neutrons

• Independent extraction of V_{ud} @ 0.02% requires:

• Need to know high-scale origin of the various ε_{α}

• Model-independent statements possible in <u>"heavy BSM" scenarios</u>: $M_{BSM} > TeV \rightarrow$ new physics looks point-like at collider

• Need to know high-scale origin of the various ε_{α}

E.g. from W_L - W_R mixing in Left-Right symmetric models

• Need to know high-scale origin of the various ε_{α}

 $\mathcal{E}_{L,R}$ originate from SU(2)xU(1) invariant vertex corrections

 $\epsilon_{S,P,T}$ and one contribution to ϵ_L arise from SU(2)xU(1) invariant 4-fermion operators

$$O_{lq}^{(3)} = (\bar{l}\gamma^{\mu}\sigma^{a}l)(\bar{q}\gamma_{\mu}\sigma^{a}q)$$
$$O_{qde} = (\bar{\ell}e)(\bar{d}q) + \text{h.c.}$$

. . .

• Need to know high-scale origin of the various ε_{α}

- LEP:
 - Strong constraints (<0.1%) on L-handed vertex corrections (Z-pole)
 - Weaker constraints on 4-fermion interactions (σ_{had})
- What about LHC?

LHC sensitivity: 4-fermions

Bhattacharya et al., 1110.6448,

VC, Graesser, Gonzalez-Alonso 1210.4553

• The effective couplings ϵ_{α} contribute to the process $pp \rightarrow ev + X$

 No excess events in transverse mass distribution: bounds on ε_α

LHC sensitivity: vertex corrections

S. Alioli, VC, W. Dekens, J. de Vries, E. Mereghetti 1703.04751

 Vertex corrections inducing ε_{L,R} in the SM-EFT involve the Higgs field (due to SU(2) gauge invariance)

• Can be probed at the LHC by associated Higgs + W production

Example $I: \varepsilon_L$ and ε_R couplings

S. Alioli, VC, W. Dekens, J. de Vries, E. Mereghetti 1703.04751

Neutron decay: $\lambda = g_A (I - 2 \epsilon_R)$

Constraint on ε_R uses g_A =1.271(13) (CalLat 1805.12030)

Example $I: \varepsilon_L$ and ε_R couplings

S. Alioli, VC, W. Dekens, J. de Vries, E. Mereghetti 1703.04751

Several lessons:

- Beta decays can be quite competitive with collider
- Connection between CC and NC (gauge invariance!)
- Caveat: going beyond a 2-operator analysis relaxes some of these constraints (but not the one on ϵ_R from λ)
- All in all, beta decays provide independent competitive constraints in a global analysis

Example 2: ϵ_s and ϵ_T couplings

Example 2: Es and ET couplings

LHC puts very strong constraints on 4-fermion interactions

Prospective beta decay measurements competitive, probing $\Lambda_{S,T} \sim 5-10 \text{ TeV}$

Beta decays in specific models

- Model \rightarrow set overall size and pattern of effective couplings
- Beta decays can play very useful diagnosing role
- Qualitative picture: "DNA matrix"

Can be made quantitative, including LHC constraints on each model		٤L	ε _R	٤ _P	٤s	٤ _T	
	LRSM	x	<	x	x	x	
	LQ	√	x	√	√	√	d LQ e d V
	2HDM	x	x	<	√	x	H^{\dagger}
	MSSM	√	1	4	4	4	$u \xrightarrow{\chi_k^+} \nu_I$ $\widetilde{d_i^-} \xrightarrow{I} \widetilde{L_j^-}$ $d \xrightarrow{\chi_m^0} \ell_I$
YC	DUR FAVOR MODEL	TE	•••		•••		W^+ χ_i^0 ν_I $\tilde{\nu}_J$ $\tilde{\nu}_J$ $\chi_i^ \ell_z$

Summary

- β decays with sufficient th. and expt. precision (< 0.1%) remain a very competitive probe of new physics
- Discovery potential depends on the underlying model. However, for heavy mediators, EFT shows that a discovery window exists well into the LHC era (simple examples: \mathcal{E}_L - \mathcal{E}_R and \mathcal{E}_S - \mathcal{E}_T plots)
- Beta decays play unique role in probing vertex corrections ε_L-ε_R (not enough precision at the LHC)
- Beta decays can be competitive probes of scalar and tensor interactions if precision reaches < 0.1%

Outlook

- The next frontier in beta decays will likely include
 - Experiment:
 - $\delta \tau_n \sim 0.1 s$
 - <0.1% precision in decay correlation coefficients
 - Theory:
 - g_A at sub-percent level from LQCD
 - Radiative corrections: improved data for dispersive method and lattice QCD analysis

Summary table

- This table summarizes a large number of measurements and th. input
- Already quite impressive. Effective scales in the range Λ = 1-10 TeV ($\Lambda_{SM} \approx 0.2$ TeV)

$$\tilde{Y}(E_e) = \frac{Y(E_e)}{1 + b \, m_e/E_e + \dots}$$

Non-standard	Observable	Current	Prospective
coupling		sensitivity	sensitivity
$\frac{\operatorname{Re}(\epsilon_L + \epsilon_R)}{\operatorname{Im}(\epsilon_R)}$	$\Delta_{ m CKM}$ D_n	$\sim 0.05\%$ $\sim 0.05\%$	< 0.05% *
$\epsilon_P, \ \tilde{\epsilon}_P$	$R_{\pi} = \frac{\Gamma(\pi \to e\nu)}{\Gamma(\pi \to \mu\nu)}$	$\sim 0.05\%$	
$\operatorname{Re}(\epsilon_S)$	$b, B, [\tilde{a}, \tilde{A}, \tilde{G}]$	$\sim 0.5\%$	< 0.3%
$\operatorname{Im}(\epsilon_S)$	R_n	$\sim 10\%$	
$\operatorname{Re}(\epsilon_T)$	b, B, [\tilde{a} , \tilde{A} , \tilde{G}], $\pi \to e\nu\gamma$	$\sim 0.1\%$	< 0.03%
$\operatorname{Im}(\epsilon_T)$	$R_{^{8}Li}$	$\sim 0.2\%$	$\sim 0.05\%$
$\tilde{\epsilon}_{\alpha \neq P}$	a, b, B, A	$\sim 5-10\%$	

VC, S.Gardner, B.Holstein 1303.6953 Gonzalez-Alonso & Naviliat-Cuncic 1304.1759 Gonzalez-Alonso, Naviliat-Cuncic, Severijns, 1803.08732

$R_{\pi} = \Gamma(\pi \rightarrow e\nu[\gamma]) / \Gamma(\pi \rightarrow \mu\nu[\gamma])$

• Helicity suppressed in the SM (V-A)

• Predicted very precisely in the SM (0.01%): $R_{\pi} = 1.2352(1) \times 10^{-4}$

Marciano-Sirlin 93 VC-Rosell '07

- Experiment: $R_{\pi} = 1.2300(40) \times 10^{-4}$ will go down to 0.05% level TRIUME and PSI
- This ratio probes a whole set of ε_P couplings (V flavor not observed)

Neglecting non-enhanced EL-ER terms:

$$\frac{R_{\pi}}{R_{\pi}^{\rm SM}} = \frac{\left[\left(1 - \frac{B_0}{m_e} \epsilon_P^{ee} \right)^2 + \left(\frac{B_0}{m_e} \epsilon_P^{e\mu} \right)^2 + \left(\frac{B_0}{m_e} \epsilon_P^{e\tau} \right)^2 \right]}{\left[\left(1 - \frac{B_0}{m_\mu} \epsilon_P^{\mu\mu} \right)^2 + \left(\frac{B_0}{m_\mu} \epsilon_P^{\mue} \right)^2 + \left(\frac{B_0}{m_\mu} \epsilon_P^{\mu\tau} \right)^2 \right]} \qquad B_0(\mu) \equiv \frac{M_{\pi}^2}{m_u(\mu) + m_d(\mu)}$$

• No constraint if

$$\epsilon_P^{e\alpha}/m_e = \epsilon_P^{\mu\alpha}/m_{\mu_1}$$

- Assume all ε_P of similar size (neglect m_e/m_µ)
- Allowed region is an annulus of thickness 1.38 × 10⁻⁶
- Marginalize wrt ε_P^{ex}

$$-1.4 \times 10^{-7} < \epsilon_P^{ee} < 5.5 \times 10^{-4}$$

• Constraint on $\epsilon_{S,T}$ via EW radiative corrections: P operator, generated at high scale Λ , induces S and T operators at low scale μ

• With $\log(\Lambda/\mu) \sim 10$, $|\epsilon_{S}| < 8 \times 10^{-2}$ and $|\epsilon_{T}| < 10^{-3}$

Standard Model analysis

• $\epsilon_{\alpha}=0$ and take V_{ud} from $0^+ \rightarrow 0^+$:

$$\tau_n(1+3g_A^2) = 5172.0(1.1)s$$

Czarnecki, Marciano, Sirlin 1802.01804

- UCN lifetime and post-2002 g_A consistent with SM (blue line) \Rightarrow
- "favored values" within the SM
- if confirmed, will put tightest constraints on BSM interactions

Standard Model analysis

• $\epsilon_{\alpha}=0$ and take V_{ud} from $0^+ \rightarrow 0^+$:

$$\tau_n(1+3g_A^2) = 5172.0(1.1)s$$

Czarnecki, Marciano, Sirlin 1802.01804

Impact of $\epsilon_R = 0.003$

- UCN lifetime and post-2002 g_A consistent with SM (blue line) \Rightarrow
- "favored values" within the SM
- if confirmed, will put tightest constraints on BSM interactions

Status of scalar and tensor charges

Martin Gonzalez-Alonso

V_{ud} from $0^+ \rightarrow 0^+$ nuclear decays

• V_{ud} from $0^+ \rightarrow 0^+$ nuclear β decays

dispersion relations, Lattice QCD?

Ab initio methods?

V_{ud} from $0^+ \rightarrow 0^+$ nuclear decays

• V_{ud} from $0^+ \rightarrow 0^+$ nuclear β decays

Hardy-Towner 1411.5987

Vus from K decays

Lattice QCD calculations (summaries from FLAG 2016)

Vus from K decays

$K \rightarrow \mu \nu \nu s \pi \rightarrow \mu \nu$

$$\langle 0|A_{\mu}|K\rangle \propto F_{K}(p_{K})_{\mu}$$
$$A_{\mu} = \bar{s}\gamma_{\mu}\gamma_{5}u$$

• Lattice QCD calculations

 $f_{+}^{K \to \pi}(0) = 0.959(5) \to 0.970(3)$ $V_{us} = 0.2254(13) \to 0.2231(9)$

 $m_{\pi} \rightarrow m_{\pi}^{phys}$, $a \rightarrow 0$, dynamical charm

 $F_K/F_{\pi} = 1.1960(25)$ [stable] $V_{us} / V_{ud} = 0.2313(7)$

FLAG 2016 1607.00299 and refs therein

Radiative corrections computed to O(e²p²) in ChPT

VC, H. Neufeld 1107.6001 VC, M. Giannotti, H. Neufeld 0807.4507

• World data: FLAVIANET report 1005.2323 and refs therein