

Neutrinos at the High Energy Frontier

Charged Lepton Flavour Violation

Adrian Signer

Paul Scherrer Institut / Universität Zürich

18-20 July 2017, ACFI UMASS Amherst

why cLFV at a neutrino workshop?

• BR
$$(\mu \to e\gamma) \sim \alpha \left(\frac{\Delta m^2}{m_W^2}\right)^2$$

- LFV in neutrino sector \rightarrow cLFV
- there is nothing sacred about cLF
- but $\Delta m \to {\rm BR}(\mu \to e \gamma) \sim 10^{-54}$
- could cLFV be much larger?
- in general: certainly yes
- cLFV through neutrinos / seesaw ?

•
$$\mathcal{L} = \mathcal{L}_{SM} + \underbrace{\mathcal{L}^{(5)}}_{\Delta m \neq 0} + \underbrace{\mathcal{L}^{(6)}}_{\text{additional cLFV}} + \dots$$

• additional cLFV naturally present, neutrinos \leftrightarrow cLFV

A. Signer, July 2017 - p.2/34

• introduction

- the obvious
- EFT vs models; above m_W vs below m_W
- $\bullet \ neutrinos \leftrightarrow cLFV$
 - above m_W : seesaw $ightarrow { t cLFV}$
 - below m_W : NSI below $m_W
 ightarrow \mathsf{cLFV}$
- cLFV
 - the golden channels $\mu
 ightarrow e\gamma, \quad \mu
 ightarrow 3e, \quad \mu N
 ightarrow eN$
 - EFT above m_W , $\mathcal{L}_{\mathrm{smeft}}$
 - EFT below m_W , $\mathcal{L}_{ ext{eff}}$
 - beyond the golden channels
- conclusion

introduction

playing with SM fields only:

dim 4: SM = most general gauge and Lorentz invariant Lagrangian

$$\begin{split} \mathcal{L}_{\mathrm{SM}} &= -\frac{1}{4} G^{\mu\nu} G_{\mu\nu} - \frac{1}{4} W^{\mu\nu} W_{\mu\nu} - \frac{1}{4} B^{\mu\nu} B_{\mu\nu} + \hat{\theta} \, G^{\mu\nu} \tilde{G}_{\mu\nu} \\ &+ (D_{\mu} \Phi)^{\dagger} (D^{\mu} \Phi) - m_{H}^{2} \Phi^{\dagger} \Phi - \frac{\lambda}{2} (\Phi^{\dagger} \Phi)^{2} \\ &+ i \left(\bar{l} \not{\mathcal{D}} \, l + \bar{e} \not{\mathcal{D}} \, e + \ldots \right) - \left(Y_{e} \, \bar{l} \, \Phi \, e + \ldots + \mathrm{h.c.} \right) \\ &+ \mathrm{nothing \ with} \ \nu_{R} \quad \rightarrow \quad \mathrm{no\ cLFV} \end{split}$$

dim 5 violates lepton number, but might not affect SM much dim 6, either we have cLFV or a 'problem' (i.e. need an explanation)

cLFV a unique window with a view deep into the UV

scale of cLFV experiments $m_{
m mu} \leq \mu \leq m_W$

high-energy behaviour might reveal properties of underlying theory

need to evolve from to $m_{\rm mu}$ to m_W (to combine experiments) and from m_W to $\Lambda_{\rm uv} \gg m_W$ (to get information on BSM)

EFT vs models

$$\psi_{3} \qquad \psi_{4} \qquad \psi_{4} \qquad \qquad \mathcal{O}^{i} = \frac{1}{\Lambda_{\rm NP}^{2}} (\bar{\psi}_{3} \Gamma^{a} \psi_{1}) (\bar{\psi}_{4} \Gamma^{b} \psi_{2}) \qquad \qquad \psi_{3} \qquad \psi_{4} \qquad \psi_$$

$$\mathcal{L}_{\mathrm{BSM}}^{\mathrm{ET}} = \mathcal{L}_{\mathrm{SM}} + \sum \frac{c_i^{(5)}}{\Lambda_{\mathrm{NP}}} \, \mathcal{O}_i^{(5)} + \sum \frac{c_i^{(6)}}{\Lambda_{\mathrm{NP}}^{22}} \, \mathcal{O}_i^{(6)} + \dots$$

 $\mathcal{O}_{\text{eff}}^{1} = \left(\overline{e_L}\gamma^{\rho}\mu_L\right)\left(\overline{e_R}\gamma_{\rho}e_R\right)$ $\mathcal{O}_{\text{eff}}^{2} = \left(\overline{\nu_e}\gamma^{\rho}\nu_{\mu}\right)\left(\overline{e_R}\gamma_{\rho}e_R\right)$

$$\mathcal{O}_{\text{smeft}} = \overline{\left(\begin{array}{c} \nu_e \\ e_L \end{array}\right)} \gamma^{\rho} \left(\begin{array}{c} \nu_{\mu} \\ \mu_L \end{array}\right) \left(\overline{e_R} \gamma_{\rho} e_R\right)$$

 $SU(3)_{\rm QCD} \times U(1)_{\rm QED}$

 $SU(3)_{\rm QCD} \times SU(2) \times U(1)_Y$

A. Signer, July 2017 - p.6/34

Example: doubly charged Higgs

- as UV complete model: embed in multiplet, sort out ρ parameter ...
 ++ valid ∀p², explains everything -- requires divine inspiration
- as simplified model: $\mathcal{L}_{int} = \lambda_{fi} (\overline{l_f^c} l_i) \phi^{++} \dots$ few couplings, 1 mass +- valid for $p^2 > m_{\phi}^2$ -+ more or less general
- via effective theory: $\mathcal{L}_{int} = c_{fijk} \left(\overline{l_f} \gamma^{\mu} l_i\right) \left(\overline{l_j} \gamma_{\mu} l_k\right) \dots c's \leftrightarrow \lambda's$ -- valid only for $p^2 \ll m_{\phi}^2$ ++ completely general

the EFT is never the goal, only the tool (cp. $C_9 = -C_{10}$ scenario for B anomalies)

add fermion singlet(s) $N_p: \mathcal{L} \supset Y_e \bar{l} \Phi e + Y_N \bar{l} \tilde{\Phi} N - \frac{1}{2} \bar{N} m_N N^c$ assuming $m_N \gg m_W$ integrate out $N \equiv \nu_B$

apart from usual $\mathcal{L}^{(5)} \sim \frac{c_{pr}^{(5)}}{m_N} \, (\bar{l}_p^c \tilde{\Phi}^*) (\tilde{\Phi}^\dagger l_r)$ we get also

$$\mathcal{L}^{(6)} \supset \frac{c_{pr}^{(6)}}{m_N^2} \left\{ \underbrace{(\Phi^{\dagger}i \overleftrightarrow{D}_{\mu} \Phi)(\bar{l}_p \gamma^{\mu} l_r)}_{Q_{\Phi l(1)} \to \mathsf{cLFV}}; \quad \underbrace{(\Phi^{\dagger}i \overleftrightarrow{D}_{\mu}^I \Phi)(\bar{l}_p \tau^I \gamma^{\mu} l_r)}_{Q_{\Phi l(3)} \to \mathsf{cLFV}}; \quad \underbrace{\operatorname{dipole}}_{Q_{e\gamma}} \right\}$$

- $\mathcal{L}^{(5)}$ violates L (lepton number), $\mathcal{L}^{(6)}$ does not violate L.
- not unnatural to expect $c^{(5)} \ll c^{(6)}$ in general
- e.g. $Q_{\Phi l(1)}$ leads to cLFV $Z
 ightarrow l_p l_r$ (and $Z
 ightarrow
 u_p
 u_r$)

seesaw II

add scalar triplet
$$\vec{\Delta} \supset (\Delta^{++}, \Delta^{+}, \Delta^{0})$$

 $\mathcal{L} \supset Y_{\Delta} \, \bar{l}^{c} \, \vec{\tau} \cdot \vec{\Delta} \, l + \mu_{\Delta} \, \tilde{\Phi}^{\dagger} \, \vec{\tau} \cdot \vec{\Delta} \, \Phi + \vec{\Delta}^{\dagger} m_{\Delta}^{2} \vec{\Delta}$
assuming $m_{\Delta} \gg m_{W}$ integrate out $\vec{\Delta}$

$$\mathcal{L}^{(4)} + \mathcal{L}^{(5)} + \mathcal{L}^{(6)}$$
 with $c^{(5)} \sim rac{Y_\Delta \mu_\Delta}{m_\Delta^2}$

two couplings: Y_Δ and μ_Δ/m_Δ can be very different !

$$\begin{split} \mathcal{L}^{(6)} \supset & \left\{ \frac{c_{pqrs}^{ll}}{m_{\Delta}^{2}} \underbrace{(\bar{l}_{p}\gamma^{\mu}l_{q})(\bar{l}_{r}\gamma^{\mu}l_{s})}_{Q_{ll} \rightarrow \mathsf{cLFV}}; \quad \frac{c^{\phi\,D}}{m_{\Delta}^{2}} \underbrace{(\Phi^{\dagger}D^{\rho}\Phi)^{\dagger}(\Phi^{\dagger}D_{\rho}\Phi)}_{Q_{\phi D}}; \quad \underbrace{\mathrm{dipole}}_{Q_{e\gamma}} \right\} \\ & \text{with } c_{pqrs}^{ll} \sim Y_{\Delta}^{2} \text{ and } c^{\phi\,D} \sim \frac{\mu_{\Delta}^{2}}{m_{\Delta}^{2}} \text{ and } m_{\nu} \sim \frac{Y_{\Delta}\,v^{2}}{m_{\Delta}} \frac{\mu_{\Delta}}{m_{\Delta}} \end{split}$$

add fermion triplet $ec{\Sigma} \supset (\Sigma^{\pm}, \Sigma^0)$

 $\mathcal{L} \supset Y_{\Sigma} \,\bar{\Sigma} \,\bar{\Phi}^{\dagger} \vec{\tau} \,l - \frac{1}{2} \bar{\Sigma} \,m_{\Sigma} \,\Sigma^{c}$

assuming $m_\Sigma \gg m_W$ integrate out Σ

apart from $\mathcal{L}^{(5)}$

we get
$$\mathcal{L}^{(6)} \supset \left\{ \underbrace{(\Phi^{\dagger}i\overleftrightarrow{D}_{\mu}\Phi)(\overline{l}_{p}\gamma^{\mu}l_{r})}_{Q_{\Phi l(1)} \to \mathsf{cLFV}}; \underbrace{(\Phi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\Phi)(\overline{l}_{p}\tau^{I}\gamma^{\mu}l_{r})}_{Q_{\Phi l(3)} \to \mathsf{cLFV}}; \underbrace{\operatorname{dipole}}_{Q_{e\gamma}} \right\}$$

compare to seesaw I:

EFT does not care any longer where operators come from possible 'conspiracies' are lost

(e.g. $Q_{\Phi l(1)} - Q_{\Phi l(3)}/2$ of seesaw I does not produce $Z \to l_p \, l_r$)

- just write down any dim 6 operator that can lead to cLFV
- worry about interpretation, once something is found (recall B anomalies)
- above $m_W: \to \mathcal{L}_{\mathrm{smeft}}$ related to seesaw, 'low scale' means $c^{(6)}/m_X^2$ not too small
- below $m_W: \to \mathcal{L}_{\text{eff}}$ related to NSI $\mathcal{L} \sim G_F \sum (\bar{\nu}_i \gamma^{\rho} \nu_j) (\bar{f} \gamma_{\rho} f) \to \sim G_F \sum (\bar{l}_i \gamma^{\rho} l_j) (\bar{f} \gamma_{\rho} f)$
- for $\mathcal{L}_{ ext{eff}}$ (below m_W) might need to work with simplified models

evolution of limits \rightarrow very rich experimental programme with substantial improvements on all muon-related processes expected in near future

- π E5 beamline at PSI: $10^8 \text{ mu/s} \rightarrow \sim 10^{15} \text{ mu/y}$
 - $\tau_{\rm mu}\sim 2.2~\mu{\rm s}~
 ightarrow~\sim 5 imes 10^{12}~{
 m mu/y}$ for single μ in target
 - operate with many μ in target $\,
 ightarrow \,$ accidental bg
- $\mu
 ightarrow e \gamma$

Universität

- current MEG (2016) ${\rm Br}(\mu
 ightarrow e \, \gamma) < 4.2 imes 10^{-13}$
- MEG II: (2018-2021) expect: ${\rm Br}(\mu o e\,\gamma) \sim imes 10^{-14}$
- $\mu \rightarrow eee$
 - current Sindrum (1988) ${\rm Br}(\mu \rightarrow eee) < 1 \times 10^{-12}$
 - new experiment Mu3e
 - Phase 1 (2020++): Br $\sim \text{few} \times 10^{-15}$,
 - Phase 2 (20??++): new beamline $Br \sim 10^{-16}$

• $\mu N \rightarrow eN$

- current Sindrum II (2006) $Br(\mu Au \rightarrow e Au) < 7 \times 10^{-13}$
- new experiment DeeMe ? (2017++): $Br \sim 10^{-14}$
- new experiments Comet and Mu2e (2020++): ${
 m Br}\sim 10^{-16}$

A. Signer, July 2017 - p.13/34

signal: monoenergetic, simultaneous, back-to-back e and γ in SM (with massive ν): ${\rm BR}_{\rm SM}(\mu\to e\gamma)\sim 10^{-54}$

still, there is background ...

accidental background:

e and γ not quite back-to-back nor quite monoenergetic nor quite simultaneous \Rightarrow upgrade MEG II

SM process radiative decay

in region where ν very little energy

e and γ not quite back-to-back nor quite monoenergetic

 $\mu
ightarrow e + \gamma + 2
u$ in the SM

radiative decay, fully differential

polarization: $\vec{s} = -0.85\hat{z}$ and toy cuts: $E_{\gamma} > 40$ MeV, $E_e > 45$ MeV $|\cos \theta_{\gamma}| < 0.35, |\phi_{\gamma}| > 2\pi/3, |\cos \theta_e| < 0.5, |\phi_{\gamma}| < \pi/3$ no 2^{nd} photon with $E_{\gamma} > 2$ MeV

[Pruna, AS, Ulrich; 1705.03782]

A. Signer, July 2017 - p.15/34

signal: 2 e^+ + 1 e^- , simultaneous, from same vertex, $\sum p_e = m_{
m mu}$ dipole part 'same' as $\mu o e \gamma$

contact part completely new

accidental background:

 $e \, \, {\rm and} \, \, \gamma \, \, {\rm not} \, {\rm quite} \, \, {\rm from} \, \, {\rm same} \, \, {\rm vertex} \, \, {\rm nor} \, {\rm quite} \, {\rm simultaneous} \, {\rm and} \, {\rm with} \, {\rm miss-} \, {\rm ing} \, \, {\rm momentum}$

 \Rightarrow timing, vertex and momentum resolution very important

SM process rare decay in region where ν very little energy missing momentum $\sum p_e \neq m_{\rm mu}$

 $\mu
ightarrow 3e + 2
u$ in the SM

fully differential NLO calculation

polarization: $\vec{s} = -0.85\hat{z}$

toy cuts: $E_i > 10 \text{ MeV}, |\cos \theta_i| < 0.8$

e.g. the invisible energy spectrum $E = m_{\rm mu} - \sum E_i$ [Pruna,AS,Ulrich; 1611.03617]

A. Signer, July 2017 - p.17/34

- better suited for small-coupling small-mass scenario
- simplified-model scenario better suited?
 e.g. doubly charged Higgs or dark photon or neutrinos

[Pruna,AS,Ulrich: 1611.03617] e.g. $\cos \theta$ of hard e^+ , soft e^+ , $e^$ no stringent cuts: $\Delta_{\rm theory} < 0.1\%$

diagnostics @ Mu3e very useful

 $\mu N
ightarrow eN$

 $\begin{array}{l} \mu \mbox{ conversion: } \mu^- \, N^A_Z \rightarrow e^- \, N^A_Z \\ \mbox{signal: single 105 MeV } e^- \\ \mbox{photonic part 'same' as } \mu \rightarrow e \gamma \\ \mbox{contact part completely new} \\ \mu \mbox{ capture: } \mu^- \, N^A_Z \rightarrow \nu_\mu \, N^A_{Z-1} \\ \mbox{denominator of 'branching' ratio} \end{array}$

for larger Z, shorter life time

DIO: $\mu^- N_Z^A \rightarrow e^- \bar{\nu}_e \nu_\mu N_Z^A$ (decay in orbit) $\sum p_e > m_{\rm mu}/2 \rightarrow m_{\rm mu}$ possible nuclear recoil

which Z? [Fässler et al; Cirigliano et al.]

SINDRUM with Au, COMET/Mu2e plan Al (initially) large $Z \rightarrow$ increase sensitivity \rightarrow small life time (?? pulsed beams ??)

'old' and <mark>'new</mark>' operators , e.g.

 $Q_{eW} = (\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \Phi W^I_{\mu\nu} = -Q_{e\gamma} s_W - Q_{eZ} c_W$ $Q_{eB} = (\bar{l}_p \sigma^{\mu\nu} e_r) \Phi B_{\mu\nu} = Q_{e\gamma} c_W - Q_{eZ} s_W$

$$\begin{split} Q_{\Phi l(1)} &= (\Phi^{\dagger} i \, \overleftrightarrow{D}_{\mu} \, \Phi)(\bar{l}_{p} \gamma^{\mu} l_{r}) & Q_{\Phi e} &= (\Phi^{\dagger} i \, \overleftrightarrow{D}_{\mu} \, \Phi)(\bar{e}_{p} \gamma^{\mu} e_{r}) \\ Q_{le} &= (\bar{l}_{p} \gamma_{\mu} l_{r})(\bar{e}_{s} \gamma^{\mu} e_{t}) & Q_{e\Phi} &= (\Phi^{\dagger} \Phi)(\bar{l}_{p} e_{r} \Phi) \\ Q_{lequ(3)} &= (\bar{l}_{p}^{j} \sigma_{\mu\nu} e_{r}) \epsilon_{jk}(\bar{q}_{s}^{k} \sigma^{\mu\nu} u_{t}) & Q_{lequ(1)} &= (\bar{l}_{p}^{j} e_{r}) \epsilon_{jk}(\bar{q}_{s}^{k} u_{t}) \end{split}$$

$\mu \to e \gamma$ in SMEFT at NLO

- only two dim-6 operators can produce $\mu \rightarrow e + \gamma$ at tree-level: dipole operators Q_{eW}, Q_{eB} or $Q_{e\gamma}, Q_{eZ}$
- direct limit on $C^{\mu e}_{e\gamma}/\Lambda^2_{
 m uv}$ from MEG
- can we get more information from $\mu \rightarrow e\,\gamma$? \rightarrow yes
- contributions through mixing in rge (and matching at one-loop)

- O one-loop: $\sim C^{\mu e}_{e\gamma}$, $\sim C^{\mu e}_{eZ}$ and $\sim C^{(3)}_{lequ}$ divergent ightarrow rg-running
- others finite $(C_{le}^{\mu\ell\ell e}$, $C_{\Phi l}^{(1)}$, $C_{\Phi l}^{(3)}$, $C_{e\Phi}^{\mu e}$ and $C_{\Phi e}$) or zero

- closed system of operators (rge at one-loop, matching at tree level) $C^{(1)}_{\mu ett} \longrightarrow C^{(3)}_{\mu ett} \longrightarrow C^{\mu e}_{e\gamma}$ and $C^{\mu e}_{eZ}$
- rge not (yet) a precision issue, but induces qualitatively new effects
- obtain limits on $c_i(\Lambda_{\mathrm{uv}}) \implies \mathsf{most}$ direct link to underlying theory
- limits not to be understood as strict limits, merely indications:
 e.g. Barr-Zee effect not considered (could be important numerically)
 e.g. naive one-at-a-time limits (not very realistic)

$\mu ightarrow e \gamma$ [Pruna,AS: 1408:3565]							
Coefficient	at $\Lambda=10^3~{\rm GeV}$	at $\Lambda=10^5~{\rm GeV}$	at $\Lambda=10^7~{\rm GeV}$				
$C^{\mu e}_{e\gamma}$	$2.7 \cdot 10^{-10}$	$2.9 \cdot 10^{-6}$	$3.1 \cdot 10^{-2}$				
$C_{eZ}^{\mu e}$	$2.5 \cdot 10^{-8}$	$1.0 \cdot 10^{-4}$	$7.1 \cdot 10^{-1}$				
$C^{(3)}_{\mu ett}$	$3.6 \cdot 10^{-9}$	$1.4 \cdot 10^{-5}$	$9.8 \cdot 10^{-2}$				
$C_{\mu ett}^{(1)}$	$1.9 \cdot 10^{-6}$	$2.5 \cdot 10^{-3}$	n/a				

[Pruna, AS: 1408:3565]

- constraints on $c_i(\Lambda_{
 m uv})$
- behaviour is not completely linear

- two couplings non-vanishing at Λ_{uv}
- large impact, can invalidate previous limits

effective Lagrangian \mathcal{L}_{eff} (below EW scale) for $\mu \to e$ processes allow for $\mu \to e$ but otherwise flavour diagonal (i.e. no small²)

what is often used: [Kuno,Okada:hep-ph/9909265] ok if coefficients are interpreted at $\mu = m_{
m mu}$ no link with e.g. $Z \to e\mu$

$$\begin{split} \mathcal{L}_{\text{eff}} &= \mathcal{L}_{\text{QED}} + \mathcal{L}_{\text{QCD}} \\ &+ \frac{4G_F}{\sqrt{2}} \bigg[A_R \, m_\mu \, \overline{\mu_R} \sigma^{\mu\nu} e_L \, F_{\mu\nu} + L \leftrightarrow R \\ &+ g_1(\overline{\mu_R} e_L)(\overline{e_R} e_L) + g_2(\overline{\mu_L} e_R)(\overline{e_L} e_R) \\ &+ g_3(\overline{\mu_R} \gamma^\mu e_R)(\overline{e_R} \gamma_\mu e_R) + g_4(\overline{\mu_L} \gamma^\mu e_L)(\overline{e_L} \gamma_\mu e_L) \\ &+ g_5(\overline{\mu_R} \gamma^\mu e_R)(\overline{e_L} \gamma_\mu e_L) + g_6(\overline{\mu_L} \gamma^\mu e_L)(\overline{e_R} \gamma_\mu e_R) + \text{h.c.} \bigg] \end{split}$$

effective Lagrangian \mathcal{L}_{eff} (below EW scale) for $\mu \to e$ processes allow for $\mu \to e$ but otherwise flavour diagonal (i.e. no small²)

what we use: [Crivellin,Davidson,Pruna,AS:1702.03020] needed if coefficients are to be evolved (e.g. up to $\mu = m_W$)

$$\begin{split} \mathcal{L}_{\text{eff}} &= \mathcal{L}_{\text{QED}} + \mathcal{L}_{\text{QCD}} \\ &+ \frac{1}{\Lambda^2} \bigg[C_L^D e \, m_\mu (\overline{e_L} \sigma^{\mu\nu} \mu_L) F_{\mu\nu} + \sum_{f=q,\ell} \bigg[C_{ff}^{S \, LL} \, (\overline{e_R} \mu_L) (\overline{f_R} f_L) \\ &+ C_{ff}^{V \, LL} (\overline{e_L} \gamma^\mu \mu_L) (\overline{f_L} \gamma_\mu f_L) + C_{ff}^{V \, LR} \, (\overline{e_L} \gamma^\mu \mu_L) (\overline{f_R} \gamma_\mu f_R) \bigg] \\ &+ \sum_{h=q,\tau} \bigg[C_{hh}^{T \, LL} (\overline{e_R} \sigma_{\mu\nu} \mu_L) (\overline{h_R} \sigma^{\mu\nu} h_L) + C_{hh}^{S \, LR} \, (\overline{e_R} \mu_L) (\overline{h_L} h_R) \bigg] \\ &+ \alpha_s \, m_\mu G_F (\overline{e_R} \mu_L) G_{\mu\nu}^a G_a^{\mu\nu} + L \leftrightarrow R + \text{h.c.} \bigg] \end{split}$$

A. Signer, July 2017 - p.25/34

 \sim

express observables $\mu \to e\gamma, \, \mu \to 3e, \, \mu N \to eN$ through $\mathcal{L}_{\mathrm{eff}}$

$$e \underbrace{C_{L/R}^{D}}_{\mu} \qquad \text{Br} \left(\mu \to e\gamma\right) \simeq \alpha_{e} m_{\mu}^{5} \left(\left|C_{L}^{D}\right|^{2} + \left|C_{R}^{D}\right|^{2}\right)$$

A. Signer, July 2017 - p.26/34

- express $BR(\mu \to e\gamma)$ and $BR(\mu \to 3e)$ through $C_i(m_{mu})$ and $BR(\mu N \to eN)$ through $C_i(\mu_N)$ (we choose $\mu_N = 1$ GeV)
- include 'leading' two-loop effects mixing of vectors into dipole as for b → sγ

Universität

- at low scale only few operators contribute, at high scale 'all' do
- operators mix under RGE: one loop

 $(\overline{e_L}\gamma^{\mu}\mu_L)(\overline{b_L}\gamma_{\mu}b_L) \to (\overline{e_L}\gamma^{\mu}\mu_L)(\overline{e_L}\gamma_{\mu}e_L) \text{ or } (\overline{e_L}\sigma^{\mu\nu}\mu_L)F_{\mu\nu}$

Universität Zürich

	Br $(\mu^+ \to e^+ \gamma)$		$\operatorname{Br}\left(\mu^+ \to e^+ e^- e^+\right)$		$\operatorname{Br}_{\mu \to e}^{\operatorname{Au/Al}}$	
	$4.2 \cdot 10^{-13}$	$4.0\cdot 10^{-14}$	$1.0\cdot 10^{-12}$	$5.0\cdot 10^{-15}$	$7.0 \cdot 10^{-13}$	$1.0\cdot 10^{-16}$
C_L^D	$1.0 \cdot 10^{-8}$	$3.1\cdot 10^{-9}$	$2.0\cdot 10^{-7}$	$1.4\cdot 10^{-8}$	$2.0 \cdot 10^{-7}$	$2.9\cdot 10^{-9}$
$C_{ee}^{S \ LL}$	$4.8 \cdot 10^{-5}$	$1.5\cdot 10^{-5}$	$8.1\cdot 10^{-7}$	$5.8\cdot 10^{-8}$	$1.4\cdot10^{-3}$	$2.1\cdot 10^{-5}$
$C^{S \ LL}_{\mu\mu}$	$2.3 \cdot 10^{-7}$	$7.2\cdot 10^{-8}$	$4.6 \cdot 10^{-6}$	$3.3\cdot 10^{-7}$	$7.1 \cdot 10^{-6}$	$1.0\cdot 10^{-7}$
$C_{\tau\tau}^{S\ LL}$	$1.2 \cdot 10^{-6}$	$3.7\cdot 10^{-7}$	$2.4\cdot 10^{-5}$	$1.7\cdot 10^{-6}$	$2.4 \cdot 10^{-5}$	$3.5\cdot10^{-7}$
$C_{\tau\tau}^{T \ LL}$	$2.9 \cdot 10^{-9}$	$9.0\cdot10^{-10}$	$5.7\cdot 10^{-8}$	$4.1\cdot 10^{-9}$	$5.9\cdot10^{-8}$	$8.5\cdot10^{-10}$
$C_{bb}^{S \ LL}$	$2.8 \cdot 10^{-6}$	$8.6\cdot 10^{-7}$	$5.4\cdot10^{-5}$	$3.8\cdot 10^{-6}$	$9.0\cdot10^{-7}$	$1.2\cdot 10^{-8}$
$C_{bb}^{T \ LL}$	$2.1 \cdot 10^{-9}$	$6.4\cdot10^{-10}$	$4.1\cdot 10^{-8}$	$2.9\cdot 10^{-9}$	$4.2\cdot 10^{-8}$	$6.0\cdot10^{-10}$
$C_{ee}^{V RR}$	$3.0 \cdot 10^{-5}$	$9.4\cdot 10^{-6}$	$2.1\cdot 10^{-7}$	$1.5\cdot 10^{-8}$	$2.1\cdot 10^{-6}$	$3.5\cdot 10^{-8}$
$C_{bb}^{V\ RR}$	$3.5\cdot10^{-4}$	$1.1\cdot 10^{-4}$	$6.7\cdot 10^{-5}$	$4.8\cdot 10^{-6}$	$6.0\cdot10^{-6}$	$1.0\cdot 10^{-7}$
C_{bb}^{LP}	$4.7\cdot 10^{-6}$	$1.5\cdot 10^{-6}$	$9.3\cdot 10^{-5}$	$6.6\cdot 10^{-6}$	$9.6\cdot 10^{-5}$	$1.4\cdot 10^{-6}$
C_{bb}^{LS}	$6.7 \cdot 10^{-6}$	$2.1\cdot 10^{-6}$	$1.3\cdot 10^{-4}$	$9.2\cdot 10^{-6}$	$9.1\cdot 10^{-7}$	$1.2\cdot 10^{-8}$
C_{bb}^{RA}	$4.2 \cdot 10^{-4}$	$1.3\cdot 10^{-4}$	$6.5\cdot 10^{-3}$	$4.6\cdot 10^{-4}$	$1.3\cdot 10^{-3}$	$2.2\cdot 10^{-5}$
C_{bb}^{RV}	$2.1 \cdot 10^{-3}$	$6.4\cdot 10^{-4}$	$6.7\cdot 10^{-5}$	$4.7\cdot 10^{-6}$	$6.0 \cdot 10^{-6}$	$1.0\cdot 10^{-7}$

A. Signer, July 2017 - p.28/34

cLFV

what to read from these tables, and what not

- absolute value of Wilson coefficients is irrelevant (depends on conventional prefactors)
- limits are naive (no acceptance included) one-at-a-time (only for presentation !!)

BUT

statements like

" $\mu \to e \gamma$ is not sensitive to contact interactions" " $\mu N \to e N$ is not sensitive to axial vector interactions"

are plain wrong, completley wrong, horrendously wrong

- if you have a new model and want to check it:
 - check all operators
 - match at high scale, use combined rge
 - check if there are numerically important (formally) higher-order contributions missing

naive one-at-a-time limits compare golden channels

naive one-at-a-time limits compare golden channels

many ways to go beyond the golden channels examples (ordered according to increasing energy): [Babar, Belle, LHCb, CMS, Atlas, many theorists ...]

- golden channels with au [Babar, Belle]
 - $BR(\tau \to 3\ell) \lesssim (1-2) \times 10^{-8}, \quad BR(\tau \to \ell\gamma) \lesssim 4 \times 10^{-8}$
- hadronic decays with τ such as $\tau \to \ell K^{(*)}$ or $\tau \to \ell \pi^+ \pi^-$
- involving B decays (very topical !!)

 $B \to K\ell\ell', \ B \to \pi\ell\ell', \ B_s \to \ell\ell'$

- involving Z and H or anything at $\Lambda\gtrsim m_{
m EW}$

 $Z \to \tau \mu, ~ H \to \tau \mu$

beyond μ

RGE and matching of $\mathcal{L}_{\mathrm{eff}}$ with $\mathcal{L}_{\mathrm{smeft}}$ combine processes from $\mu = m_{\mathrm{mu}}$ to $\mu = m_{\mathrm{EW}}$ obtain limits on Wilson coefficients at $\mu = \Lambda$, here $\lambda = m_Z$

Coeff.	$\tau^+ \to \mu^+ \gamma$	$Z \to \mu^\pm \tau^\mp$	$\tau^+ \to \mu^+ \mu^- \mu^+$
$\lambda = m_Z$	${\sf BR}{\leq}~4.4\cdot10^{-8}$	$BR{\leq}~1.2\cdot10^{-5}$	$BR{\leq}2.1\cdot10^{-8}$
$C_{e\gamma}^{32/23}$	$2.7\cdot 10^{-12}$		$3.8 \cdot 10^{-11}$
$C_{eZ}^{32/23}$	$1.5\cdot 10^{-9}$	$1.5\cdot 10^{-7}$	$8.7\cdot 10^{-7}$
$C^{23}_{\varphi l/\varphi e}$	$1.7 \cdot 10^{-7}$	$1.5\cdot 10^{-7}$	$1.3\cdot 10^{-8}$
Coeff.		$H \to \mu^{\pm} \tau^{\mp}$	
$\lambda = m_Z$		$BR{\leq}~1.8\cdot10^{-2}$	
$C_{e\varphi}^{32/23}$	$1.9 \cdot 10^{-6}$	$9.0 \cdot 10^{-8}$	$1.6\cdot 10^{-5}$
$C_{le}^{3112/2113}$	$4.8\cdot 10^{-4}$		
$C_{le}^{3222/2223}$	$2.3\cdot 10^{-6}$		$1.1 \cdot 10^{-8}$
$C_{le}^{3332/2333}$	$1.4 \cdot 10^{-7}$		
C_{ll}^{3222}			$4.0 \cdot 10^{-9}$

- cLFV is a window with a view deeply beyond EW scale
- suppressing cLFV in BSM models requires tweaking

Universität Zürich^{vor}

 not seeing cLFV could mean that new physics simply is at a very high scale

* * *

- EFT approach is ideal for investigating cLFV of course, we still want the explicit BSM in the end
- quantum corrections are essential, an EFT is a QFT here not a precision issue but qualitatively new effects
- huge experimental progress expected within $5-10~{
 m years}$

* * *

- what can cLFV tell us about light 'heavy' neutrinos ??
- can we agree on neutrino mixing \leftrightarrow limits on cLFV ??