Neutrino mass physics at lepton colliders

Oliver Fischer

University of Basel, Switzerland *soon:* Karlsruhe Institute of Technology, Germany

ACFI workshop, July the 19th, 2017, Amherst

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Motivation for sterile neutrinos

Shaposhnikov et al.

Neutrino oscillations: at least two massive light neutrinos.

- No renormalisable way in the SM therefore;
 - \Rightarrow evidence for new physics.
- ► Focus: type I seesaw mechanism.

Oliver Fischer

3

< ロ > < 同 > < 回 > < 回 > < 回 > <

Type I seesaw

The "naïve" version:

• The simplified version: $(1 \nu_L, 1 \nu_R)$

* Mass matrix
$$\sim \begin{pmatrix} 0 & m \\ m & M \end{pmatrix}$$
, with $m = y_{\nu} v_{\rm EW} \ll M$.

* Light neutrino mass:
$$m_{\nu} = \frac{1}{2} \frac{v_{\rm EW}^2 |y_{\nu}|^2}{M_R}$$
.

The symmetry protected scenario:

- Symmetry: for instance lepton number or B L.
- A (2 ν_L , 2 ν_R) example:

$$egin{aligned} y_
u &
ightarrow egin{pmatrix} \mathcal{O}(y_
u) & 0 \ \mathcal{O}(y_
u) & 0 \ \end{pmatrix}, & M &
ightarrow egin{pmatrix} 0 & M_R \ M_R & arepsilon \ \end{pmatrix} \ &\Rightarrow m_{
u_i} = 0 + arepsilon rac{v_{
m EW}^2 \mathcal{O}(y_
u^2)}{M_R^2} \end{aligned}$$

⇒ Large ratio of y_{ν} and M_R can be compatible with m_{ν_i} .

The Big Picture

Neutrino mass physics at lepton colliders

ヨー わくぐ

Symmetry Protected Seesaw Scenario

Benchmark model for future collider studies, defined in Antusch, OF, JHEP **1505** (2015) 053. Similar to e.g.: Mohapatra, Valle (1986); Shaposhnikov (2007); Gavela, Hambye, Hernandez (2009)

 Collider phenomenology dominated by two sterile neutrinos N_i with protective symmetry, such that

$$\mathscr{L}_{N} = -\frac{1}{2}\overline{\mathcal{N}_{R}^{1}}\mathcal{M}(\mathcal{N}_{R}^{2})^{\mathsf{c}} - y_{\nu_{\alpha}}\overline{\mathcal{N}_{R}^{1}}\widetilde{\phi}^{\dagger}\mathcal{L}^{\alpha} + \mathrm{H.c.}$$

- Further "decoupled" sterile neutrinos may exist.
- Active-sterile mixing: $\theta_{\alpha} = y_{\nu_{\alpha}} \frac{v_{\text{EW}}}{\sqrt{2}M}, \ \theta^2 \equiv \sum_{\alpha} |\theta_{\alpha}|^2$
- The leptonic mixing matrix to leading order in θ_{α} :

Oliver Fischer

Neutrino mass physics at lepton colliders

4 / 24

Heavy neutrino interactions

Charged current (CC):

$$j_{\mu}^{\pm} = \frac{g}{2} \,\theta_{\alpha} \,\bar{\ell}_{\alpha} \,\gamma_{\mu} \left(-\mathrm{i} N_{1} + N_{2}\right)$$

Neutral current (NC):

$$j_{\mu}^{0} = \frac{g}{2 c_{W}} \left[\theta^{2} \bar{N}_{2} \gamma_{\mu} N_{2} + (\bar{\nu}_{i} \gamma_{\mu} \xi_{\alpha 1} N_{1} + \bar{\nu}_{i} \gamma_{\mu} \xi_{\alpha 2} N_{2} + \text{H.c}) \right]$$

Higgs boson Yukawa interaction:

$$\mathscr{L}_{\text{Yukawa}} = \sum_{i=1}^{3} \xi_{\alpha 2} \frac{\sqrt{2} M}{v_{\text{EW}}} \nu_{i} \phi^{0} \left(\overline{N}_{1} + \overline{N}_{2} \right)$$

• With the mixing parameters: $\xi_{\alpha 1} = (-i) \mathcal{N}^*_{\alpha \beta} \frac{\theta_{\beta}}{\sqrt{2}}, \ \xi_{\alpha 2} = i \xi_{\alpha 1}$

Oliver Fischer

Neutrino mass physics at lepton colliders

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Precision observables in seesaw scenarii

Input parameters: M_Z , $\alpha(M_Z)$, G_F .

The Fermi constant:

- Muon decay $\propto (NN^{\dagger})_{ee} (NN^{\dagger})_{\mu\mu}$
- Fermi constant $G_F \neq$ muon decay constant G_{μ} .
- Tree-level relation: $G_F = \frac{G_{\mu}}{\sqrt{(NN^{\dagger})_{ee}(NN^{\dagger})_{\mu\mu}}} = \frac{\alpha \pi}{\sqrt{2}s_W^2 c_W^2 m_Z^2}$
- Analogous: Observables involving weak decays.
- \Rightarrow Theory prediction for electroweak observables.

Constraints on PMNS non-unitarity from precision data

- Analysis of non-unitarity of the PMNS matrix.
- 34 precision observables: Electroweak Precision Observables (EWPO), lepton universality, charged lepton flavour violation, CKM unitarity

Lots of details in the backup - please ask!

► Highest posterior density intervals at 90% Bayesian C.L.:

-0.0021	$\leq \varepsilon_{ee} \leq$	-0.0002	$ \varepsilon_{e\mu} $	<	$1.0 imes10^{-5}$
-0.0004	$\leq \varepsilon_{\mu\mu} \leq$	0	$ \varepsilon_{e\tau} $	<	$2.1 imes10^{-3}$
-0.0053	$\leq \varepsilon_{\tau\tau} \leq$	0	$ \varepsilon_{\mu\tau} $	<	$8.0 imes10^{-4}$

Antusch, OF, JHEP 1410 (2014) 094

- * Non-unitarity parameters: $\varepsilon_{\alpha\beta} = -\theta_{\alpha}^*\theta_{\beta}$.
- * Weak statistical preference for non-zero mixing for ε_{ee} .

Oliver Fischer

Neutrino mass physics at lepton colliders

・ロト・西ト・西ト・西ト・日・

► Z pole search: limits from Z branching ratios .

Abreu et al. Z.Phys. C74 (1997) 57-71

- Higgs decays: Best constraints from $h \rightarrow \gamma \gamma$.
- WW production cross section: $\delta \sigma_{SM}^{WW} = 0.011_{stat} + 0.007_{syst}$

OPAL collaboration, Abbiendi et al. (2007)

Oliver Fischer

Neutrino mass physics at lepton colliders

Heavy Neutrino Production in electron-positron collisions

- ► Z pole: production via s-channel Z, sensitive to $|\theta|^2$.
- At higher energies: t-channel W, production sensitive to $|\theta_e|^2$.
- ► At Z pole very large instantaneous luminosities are feasible.

Oliver Fischer

≣ *) Q (*

Luminosities at lepton colliders (old)

Neutrino mass physics at lepton colliders

10 / 24

Signatures for direct searches

Name	Final State	$ \theta , Z$ pole	$ \theta , \sqrt{s} > m_Z$
lepton-dijet	$\ell_{lpha} u$ jj	$ heta_{lpha} ^2$	$\frac{ \theta_e \theta_\alpha ^2}{\theta^2}$
mixed flavour dilepton	$\ell_{lpha}\ell_{eta} u u$	$ heta_{lpha} ^2$	$\frac{ \theta_e \theta_\alpha ^2}{\theta^2}$
same flavour dilepton	$\ell_{\alpha}\ell_{\alpha}\nu\nu$	$ \theta ^2$	$ \theta_e ^2$
dijet	ννjj	$ \theta ^2$	$ \theta_e ^2$
invisible	νννν	$ \theta ^2$	$ \theta_e ^2$

S. Antusch, E. Cazzato and OF, Int. J. Mod. Phys. A 32 (2017) no.14, 1750078

- Measurement of LNV not straightforward.
- The dependency on the active-sterile mixing is determined by the center-of-mass energy, i.e. by the physics run.
- For masses below m_W lepton isolation becomes an issue.

S. Dube, D. Gadkari and A. M. Thalapillil, arXiv:1707.00008 [hep-ph].

Oliver Fischer

Neutrino mass physics at lepton colliders

Indirect Signatures: Electroweak precision tests

S. Antusch and OF, JHEP 1410 (2014) 094

- Measuring the non-unitarity of the PMNS matrix.
- Improvement required: δ_{theory} and $\delta_{\text{syst.}}$
- Not included: lepton universality tests of W decays
- ▶ Not included: rare charged LFV ℓ decays

Oliver Fischer

イロト 不得下 イヨト イヨト

E nac

Indirect signatures: Higgs boson properties

Higgs boson branching ratios:

- New decay channel $h \rightarrow \nu N$
- ► Large branching ratio possible, modified Br_{h→SM}
- Precision ${\rm Br}_{h \to WW} \sim 10^{-3}$

M. Ruan, Nucl. Part. Phys. Proc. 273-275, 857 (2016)

Antusch, OF, JHEP 1505 (2015) 053

Higgs production:

- Additional production mechanism at high energies.
- Enhanced mono-Higgs production cross section.

S. Antusch, OF, JHEP **1604** (2016) 189

Neutrino mass physics at lepton colliders

Exotic signature: displaced vertices I

- Lifetime $\sim \mathcal{O}(1-100)$ ps.
- Assumption: no SM background for displacements > 0.1 mm.
- Considered ILC detector SiD as benchmark.

S. Antusch, E. Cazzato and OF, JHEP **1612**, 007 (2016) A. Blondel *et al.*, Nucl. Part. Phys. Proc. **273-275** (2016) 1883

Oliver Fischer

Neutrino mass physics at lepton colliders

イロト 不得下 イヨト イヨト

Exotic signature: displaced vertices II

heavy neutrino mass

Oliver Fischer

Neutrino mass physics at lepton colliders

4 ∰ ▶ < ≧ ▶ < ≧ ▶ 15 / 24 3

Summary: FCC-ee sensitivities

- Displaced vertex searches test $|\theta|^2 \sim 10^{-11}$ for $M \le m_W$.
- EWPOs test $|\theta|^2 \sim 10^{-5}$ up to $M \sim 60$ TeV with $\mathcal{O}(1)$ Yukawa couplings.

Oliver Fischer

Neutrino mass physics at lepton colliders

Promising search strategies at electron-proton colliders

Oliver Fischer

Neutrino mass physics at lepton colliders

17 / 24

・ロト・雪ト・雪ト・雪・ ろくぐ

Heavy neutrino production at electron-proton colliders

- Leading order production of heavy neutrino mass eigenstate.
- ► W_t^(q): dominant at lower center-of-mass energies.
- $W_t^{(\gamma)}$: relevant for larger masses.

Production cross sections $(\mathbf{W}_{t}^{(q)})$

For 60 GeV as benchmark for the electron beam E_e :

- $\sigma_{\nu N}$ increase of ~ 30% for $E_e \rightarrow 100$ GeV.
- \blacktriangleright Increased by $\sim 80\%$ when including polarisation.
- ► Consider 1 ab⁻¹ (for FCC-eh and LHeC).

Oliver Fischer

Signal channels from $\mathbf{W}_{t}^{(q)}$

Name	Final State	$ heta_{lpha} $ Dependency	LFV
lepton-trijet	jjj ℓ_{lpha}^-	$\frac{ \theta_e \theta_\alpha ^2}{\theta^2}$	\checkmark
jet-dilepton	$j\ell_{lpha}^{-}\ell_{eta}^{+} u$	$\frac{ \theta_e \theta_\alpha ^2}{\theta^2}^{(*)}$	\checkmark
trijet	jjj $ u$	$ \theta_e ^2$	×
monojet	ϳννν	$ \theta_e ^2$	×

- LFV (and LNV) signature for $\alpha \neq e, \beta \neq \alpha$, and $\gamma \neq \alpha, \beta$
- Unambiguous lepton-number-violating final states, e.g. e⁺jjj.
- More (and more complex) signatures from $W_t^{(\gamma)}$.

Lepton-flavour-violating signatures

- Very sensitive tests of combinations $|\theta_e \theta_\alpha|$.
- Upper bounds: $|\theta_e \theta_\mu|$ from $\mu \to e\gamma$ (MEG); $|\theta_e \theta_\tau|$ from precision data.
- Requires $|\theta_{\alpha}| \stackrel{>}{\sim} |\theta_{e}|$ for sizeable branching ratios.

Oliver Fischer

Sensitivities: summary

《曰》 《聞》 《臣》 《臣》

2

ep and pp at parton level

The combination of *ee* with *pp* and *ep* colliders provides complementary tests for the neutrino mass mechanism.

Summary

- Present constraints: active-sterile mixing $|\theta|^2 \le 10^{-3}$.
- Search strategies at lepton colliders:
 - * Direct: lepton-dijet, dilepton, dijets
 - * Higgs: production and decay channels
 - * **EWPO:** measurement of PMNS non-unitarity
 - * **Displaced vertices:** best sensitivity for $M < m_W$
 - * pp/ep: LFV dilepton-dijet/lepton-trijet & displaced vertices
- Synergy: The combination of direct and indirect signatures at ee/pp/ep will allow to test model specific predictions.
- \Rightarrow Testing the origin of neutrino masses.

Conclusion

- CEPC CDR writeup this year
- FCC-ee CDR writeup next year
- ILC & LHeC seeking additional physics motivation (neutrinos NOT included yet)

Extremely important input for future collider projects!

・ロト・西ト・モト・モト ヨー ろくぐ

Thank you for your attention.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Backup I - EWPO

Experimental results and SM predictions for the EWPO, and the modification^{*}, to first order in the "non-unitarity" parameters $\varepsilon_{\alpha\alpha} = \theta_{\alpha}^* \theta_{\beta}$. (formulae for $M \gg m_Z$)

Prediction in MUV	SM Prediction	Experiment
$\left[R_\ell ight]_{ m SM} \left(1 - 0.15 (arepsilon_{ee} + arepsilon_{\mu\mu}) ight)$	20.744(11)	20.767(25)
$\left[R_b\right]_{ m SM}\left(1+0.03(arepsilon_{ee}+arepsilon_{\mu\mu}) ight)$	0.21577(4)	0.21629(66)
$\left[R_{c}\right]_{\mathrm{SM}}\left(1-0.06(arepsilon_{ee}+arepsilon_{\mu\mu}) ight)$	0.17226(6)	0.1721(30)
$\left[\sigma_{had}^{0}\right]_{\rm SM} \left(1 - 0.25(\varepsilon_{ee} + \varepsilon_{\mu\mu}) - 0.27\varepsilon_{\tau}\right)/{\rm nb}$	41.470(15)	41.541(37)
$\left[R_{inv}\right]_{\text{SM}} (1 + 0.75(\varepsilon_{ee} + \varepsilon_{\mu\mu}) + 0.67\varepsilon_{\tau})$	5.9723(10)	5.942(16)
$[M_W]_{ m SM}(1-0.11(arepsilon_{ee}+arepsilon_{\mu\mu}))/{ m GeV}$	80.359(11)	80.385(15)
$[{\sf \Gamma}_{ m lept}]_{ m SM}(1-0.59(arepsilon_{ee}+arepsilon_{\mu\mu}))/{\sf MeV}$	83.966(12)	83.984(86)
$[(s_{W,\mathrm{eff}}^{\ell,\mathrm{lep}})^2]_{\mathrm{SM}}(1+0.71(arepsilon_{ee}+arepsilon_{\mu\mu}))$	0.23150(1)	0.23113(21)
$[(s_{W,\mathrm{eff}}^{\ell,\mathrm{had}})^2]_\mathrm{SM}(1+0.71(arepsilon_{ee}+arepsilon_{\mu\mu}))$	0.23150(1)	0.23222(27)

* Minimal Unitarity Violation scheme: Antusch et al.; JHEP 0610 (2006) 084.

Oliver Fischer

Neutrino mass physics at lepton colliders

23 / 24

・ロト・日本・日本・日本・ 日本

Backup II - lepton universality

Modification due to sterile neutrinos (formulae for $M \gg m_Z$):

$$R_{lphaeta} = \sqrt{rac{(NN^{\dagger})_{lphalpha}}{(NN^{\dagger})_{etaeta}}} \simeq 1 + rac{1}{2} \left(arepsilon_{lphalpha} - arepsilon_{etaeta}
ight) \,.$$

	Process	Bound		Process	Bound
$R^\ell_{\mu e}$	$\frac{\Gamma(\tau \to \nu_\tau \mu \bar{\nu}_\mu)}{\Gamma(\tau \to \nu_\tau e \bar{\nu}_e)}$	1.0018(14)	$R^{\pi}_{\mu e}$	$\frac{\Gamma(\pi \to \mu \bar{\nu}_{\mu})}{\Gamma(\pi \to e \bar{\nu}_{e})}$	1.0021(16)
$R^\ell_{ au\mu}$	$\frac{\Gamma(\tau \to \nu_{\tau} e \bar{\nu}_{e})}{\Gamma(\mu \to \nu_{\mu} e \bar{\nu}_{e})}$	1.0006(21)	$R^{\pi}_{ au\mu}$	$\frac{\Gamma(\tau \to \nu_\tau \pi)}{\Gamma(\pi \to \mu \bar{\nu}_\mu)}$	0.9956(31)
$R^W_{e\mu}$	$\frac{\Gamma(W \to e \bar{\nu}_e)}{\Gamma(W \to \mu \bar{\nu}_{\mu})}$	1.0085(93)	$R^{K}_{ au\mu}$	$rac{\Gamma(au o K u_ au)}{\Gamma(K o \mu ar{ u}_\mu)}$	0.9852(72)
$R^W_{ au\mu}$	$\frac{\Gamma(W\to \tau\bar\nu_\tau)}{\Gamma(W\to \mu\bar\nu_e)}$	1.032(11)	$R_{ au e}^K$	$\left \begin{array}{c} \frac{\Gamma(\tau \to K \nu_{\tau})}{\Gamma(K \to e \bar{\nu}_e)} \right $	1.018(42)

Neutrino mass physics at lepton colliders

・ロト ・ 日 ・ ・ 田 ・ ・ 田 ・ ・ 日 ・ うへぐ

Backup III - CKM unitarity constraint

Current world averages: $V_{ud} = 0.97427(15)$, $V_{ub} = 0.00351(15)$

$$\begin{split} |V_{ij}^{th}|^2 &= |V_{ij}^{exp}|^2 (1 + f^{\text{process}}(\varepsilon_{\alpha\alpha})) ,\\ |V_{ud}^{th}|^2 &= |V_{ud}^{exp,\beta}|^2 (NN^{\dagger})_{\mu\mu} .\\ \text{For the kaon decay processes we have:} \\ |V_{us}^{th}|^2 &= |V_{us}^{exp,K \to \mu}|^2 (NN^{\dagger})_{\mu\mu} ,\\ |V_{us}^{th}|^2 &= |V_{us}^{exp,K \to \mu}|^2 (NN^{\dagger})_{ee} . \end{split}$$

Process	$V_{us}f_+(0)$	
$K_L ightarrow \pi e \nu$	0.2163(6)	
$K_L \rightarrow \pi \mu \nu$	0.2166(6)	
$K_S ightarrow \pi e u$	0.2155(13)	
$K^{\pm} ightarrow \pi e u$	0.2160(11)	
$K^{\pm} ightarrow \pi \mu u$	0.2158(14)	
Average	0.2163(5)	

Processes involving tau leptons:

Process	$f^{ ext{process}}(arepsilon)$	$ V_{us} $
$\frac{B(\tau \rightarrow K \nu)}{B(\tau \rightarrow \pi \nu)}$	$arepsilon_{\mu\mu}$	0.2262(13)
$ au ightarrow K \nu$	$\varepsilon_{ee} + \varepsilon_{\mu\mu} - \varepsilon_{\tau\tau}$	0.2214(22)
$\tau \to \ell, \tau \to s$	$0.2\varepsilon_{ee} - 0.9\varepsilon_{\mu\mu} - 0.2\varepsilon_{ au au}$	0.2173(22)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Backup IV - lepton flavour violation

Present experimental limits at 90% C.L.:

Process	MUV Prediction	Bound	Constraint on $ \varepsilon_{\alpha\beta} $
$\mu \to e\gamma$	$2.4 imes10^{-3}arepsilon_{\mu e}arepsilon^2$	5.7×10^{-13}	$arepsilon_{\mu e} < 1.5 imes 10^{-5}$
$\tau ightarrow e\gamma$	$4.3 imes 10^{-4} arepsilon_{ au e} ^2$	1.5×10^{-8}	$arepsilon_{ au e} < 5.9 imes 10^{-3}$
$\tau \to \mu \gamma$	$4.1 imes 10^{-4}arepsilon_{ au\mu}arepsilon^2$	1.8×10^{-8}	$arepsilon_{ au\mu} < 6.6 imes 10^{-3}$

Estimated sensitivities of planned experiments at 90% C.L.:

Process	MUV Prediction	Bound	Sensitivity
$Br_{ au e}$	$4.3 imes 10^{-4} arepsilon_{ au e} ^2$	10 ⁻⁹	$arepsilon_{ au e} \geq 1.5 imes 10^{-3}$
$Br_{ au\mu}$	$4.1 imes10^{-4}arepsilon_{ au\mu}arepsilon^2$	10^{-9}	$arepsilon_{ au\mu} \geq 1.6 imes 10^{-3}$
$Br_{\mu eee}$	$1.8 imes10^{-5}ertarepsilon_{\mu e}ert^2$	10^{-16}	$arepsilon_{\mu e} \geq 2.4 imes 10^{-6}$
$R_{\mu e}^{Ti}$	$1.5 imes 10^{-5}ertarepsilon_{\mu e}ert^2$	$2 imes 10^{-18}$	$arepsilon_{\mu e} \geq 3.6 imes 10^{-7}$

 $\Rightarrow R_{\mu e}^{Ti}$ yields a sensitivity to m_{ν_R} up to 0.3 PeV.

うくで

Backup V - precision estimates for EWPOs

Observable	ILC	FCC-ee	CEPC	CEPC*
R_{ℓ}	0.004	0.001	0.01	0.003*
R _{inv}	0.01	0.002	0.012	0.006*
R _b	0.0002	0.00002	0.00017	0.00007*
M_W [MeV]	2.5	0.5	0.5	0.5
$s_{eff}^{2,\ell}$	$1.3 imes 10^{-5}$	$1 imes 10^{-6}$	$2.3 \ imes 10^{-5}$	$3.3 \times 10^{-6*}$
σ_h^0 [nb]	0.025	0.0025	n.a.	0.008*
Γ _ℓ [MeV]	0.042	0.0042	n.a.	0.014*
Reference	1310.6708	1308.6176	Ruan (2014) [†]	scaled*

- † Private communication.
- * Assumption: CEPC produces $10^{11} Z$ bosons, compared to the $10^{12} Z$ bosons @FCC-ee.
- ⇒ Uncertainties scaled: $\delta_{CEPC} = \delta_{FCC-ee} \times \sqrt{10}$.

Oliver Fischer

Neutrino mass physics at lepton colliders