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Why should we care about bubble wall dynamics?



Electroweak baryogenesis

T'p #0

Bubble wall catches up with diffusing current, freezing in B



Requiring sufficient B-violation during diffusion requires relatively slow

bubble walls

Wall velocities conventionally required to be subsonic: v,,<0.58

Resulting asymmetry can strongly depend on v,,, depending on the
form of the primary CP-violating source
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Gravitational waves

Spectrum, and prospects for detection, depend on the wall velocity
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How do we compute the wall velocity?

What are the theoretical challenges involved in these
calculations?



Master equation

Scalar field EOM for one scalar D.O.F. at finite T:

m?2 A3k

, d
06 +V'(0) + 3 45 (27)32E

;

T=0 effective potential

flk,z)=0

Distribution functions of all particles
coupled to Higgs



Master equation

Scalar field EOM for one scalar D.O.F. at finite T:
, dm? d3k
D6 +V'(0)+ 2 o | GraE

;

T=0 effective potential

flk,z)=0

Distribution functions of all particles
coupled to Higgs

Rewrite in terms of finite-T effective potential:

dm? A3k
06+ V'(¢,T) + Y ZZ; Gyizgd! (k2) =0




Master equation

Scalar field EOM for one scalar D.O.F. at finite T:

dm? d3k
do (2m)32E

Op+V'(¢) + Y

;

T=0 effective potential

flk,z)=0

Distribution functions of all particles
coupled to Higgs

Rewrite in terms of finite-T effective potential:

d3k
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Master equation

Scalar field EOM for one scalar D.O.F. at finite T:

, dm? [ &%k
0+ V'(0)+ 305 | Gy

;

T=0 effective potential

flk,z)=0

Distribution functions of all particles
coupled to Higgs

Rewrite in terms of finite-T effective potential:

d3k

Gmypap k2 =0

d 2
O6+V'(6,T)+ 3 ZZ;

/ [D(b + V' (¢, T) + Z d;; (2:)52E5f(k’ z)] ¢’ (z)dz = Ap

: m? Bk
Non-accelerating wall: /Z Sf(k,2)d (2) dz

(27)32F
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Master equation

Boils down to drawing a free body diagram
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Two questions:

3 enough friction to stop the wall from accelerating?

If so, what is the terminal velocity and bubble profile satisfying the master
equation above?



Is there enough friction to stop the wall from accelerating once it’s
moving ultra-relativistically?

dm? A3k
Avvac — _/Z ;ZS (271‘)3 2Ef(/€,z)qb/(z)dz



Is there enough friction to stop the wall from accelerating once it’s
moving ultra-relativistically?

Viso == [ Z (k)8 (2)dz

For fy S>> 1: EqU|I|br|um distributions

dm? &k ,
/Z do | (2r)? g/ (k)9 (2)dz = ) [mi ()] / /27r 5257 Rl

l High-T expansion (m/T<<1)

~ ZaiT2 [m (ha) — m7(h1)] + O(1/~4%)
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Is there enough friction to stop the wall from accelerating once it’s
moving ultra-relativistically?

Viae /Z (k)8 (2)dz

For fy S>> 1: EqU|I|br|um distributions

dm? [ d3k , ,
[ [ mpastts @ = X itw —mio) [ G [ i@,

l High-T expansion (m/T<<1)

~ Z:aiT2 [mf(hg) — mzz(hl)] +0(1/7%)

3/€ .
AV, < — / b2V (2)dz ) vacuum energy difference
Z 2Ef( )¢ (2) overwhelms the friction
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"Runaway Bubbles"

{AVMC - Z a;T?[m3(hy) —m?(hy)] < 0 w=smm) Runaway J

In the high-T approximation, the difference between vacua of the
finite-T effective potential is given by

AV(T) ~ AVyae + Y a;T? [m7(ho) — mi ()] = > b;T [m(ha) — m3 (h1)]

Runaway condition can be interpreted in terms of finite-T effective
potential with no cubic term:

If, after dropping thermal cubic terms, it is energetically favorable to
tunnel to the broken phase, the bubble can run away
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"Runaway Bubbles"

[AVMC - Z a;T?[m3(hy) —m?(hy)] < 0 w=smm) Runaway }
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If, after dropping thermal cubic terms, it is energetically favorable to
tunnel to the broken phase, the bubble can run away
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Important (and simple) criterion to check when doing pheno studies

Theories with tree-level cubic terms (e.g. singlet models) are especially
susceptible to runaways

Recent progress and outstanding theoretical questions associated with
friction in the ultra-relativistic limit:

-NLO (e.g. 1> 2) processes enhance the friction, tend to prevent
runaway! Important for gravitational wave spectra

-Effect is dominated by soft emission (in the wall frame). Full
calculation is challenging

-Sphalerons behind the wall?!



What about non-relativistic walls? How do we get a
number out?



Beyond runaway

Ultimate goal: find a wall velocity and bubble profile that solves the
scalar field EOMs

" 8V(¢z) amz( 'L) d3
e+ SR | g fitoa) =0

8@% (27T)32Ej

(in the wall frame, neglecting sphericity, assuming stationary solution)

Simplification: look for configurations satisfying constraint equations

_ Y d’ - -
/ —(1—=v2)¢" + VeV (i) + Z V(bm?(gbl) / ﬁj} (p,x)| - . dz =0  (Vanishing pressure)
j

3 27
d°p d“¢ (Vanishing pressure

/ —(1— U%U)gﬂ + V¢V(¢i) + Zv¢m32(¢l)/ (27T)3QEj fi (p,2)| - dz2 az =0 gradient)
i J i
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Wall velocities with singlets

Illustrate in the real singlet extension of SM

—(1 — v,y 9

7 d3p o
8@ Z a% /27T)32Ejfj(p,:c)—0

First, write down Boltzmann equations for distributions

d 0 0
d_f (8t+ 8_+pz )fz: C[f]

= Z / ol [Mijosmn(p, ks 9 K[ (20) 5 (p+ k= pf — )
2N; 2E 2T 92Ek2E 1 2E) ij—mn\P, KD, T P P

X Pijsmn [fi(P), £;(k), fm (D), fu(K)]

Utilize effective kinetic theory for excitations: £ > Li, p2 9T

Infrared modes with p < T (e.g. for gauge bosons) dealt with
separately
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Classify particles depending on strength of interaction with the
condensate:

Top quarks, SU(2), gauge bosons, Higgs and singlet fields “feel” the
passage of the wall the most; dominate the contribution in EOM
All other particles treated as in local thermal ey
equilibrium at common (space-time dependent)
temperature and fluid velocity (determined from - s In
bulk properties of the PT: see Jose Miguel’s talk!) ’

Ansatz for relevant distributions:

1

- E
fa — (€(E+5a)/T + 1) 5j = — Ui — T((ST] + 5Tbg> — pz((SUj + Ubg)

4

(,uj/T, (5Tj/T, 5Tbg/T, 5Uj, Ubg < 1)
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Wall velocities with singlets

Take moments of the Boltzmann equations

ch 0T+ Tug) + B2 Gy g + [ Lol = L0
e 0T+ ) + B2 Gy g + [ ZSE el = 2200
%aﬁu + §§(6T1- + 0Thg) + ol gt(évl + Upg) + / é;%(][f]i =0
> e (%5Tbg+%a%vbg> +/ (ic)lzT?,C[f] =0

> %4 (%Mbg +T%Ubg> + / é’;;%cmbg =0

Obtain collision terms from interactions of the various species in the

plasma
d3
= Clfi =Y (0T),  + 6T, ) & - ~
/ (jﬂ-) T j /(271_)—?:T3Eic[f]bg =-— Z (6lujrli2,j + 5TiFT2J>
d°p 7
e BiCli =) (6T, ; + 0Tl ;) PE ~
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Interaction rates

For the top quarks and Higgs bosons, work in a formal leading log, small

coupling/high-temperature expansion, including hard thermal loops in
internal propagators

t/u-channel diagrams lead to IR divergences cut off by thermal masses; yield
parametrically “large” logarithms ~ log(#/¢°). Only keep these contributions

Systematically drop all terms of O(m?/T?). Then calculate in the gauge basis and
treat external modes as massless

Leading-log in QCD-like
gauge theory

Resum the hard thermal loops for the t/u-channel propagators

Keep only processes of O(a?), O(asay), O(a?) .



Interaction rates

Leading log vacuum matrix elements

Process |M|t20t Internal Propagator Hard thermal IOOp drESSing:
(@ 43}: ~ ~ ~
,g 1o u s ARe(p-q k- g+ sq- q%)
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tg ¢ tg: 138932 + 96945 g.t
2, 2 gt = pt — /. _ _ 9
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Results for the tops and Higgses

T~ (11 x 1073g3y7 + 6.0 x 1074y T Iy, ~ (5.0 x 107"g5 + 5.8 x 1071 g3y7 + 1.5 x 10~ *y)T
Thy = Thy = (25 x 1073g3y2 + 1.4 x 1073y HT Ty = Tl = (1.2 x 107293 + 1.4 x 107 g3y} + 3.6 x 10~ *y)T
Tlhop =~ (8.6 x 10 2g3y7 + 4.8 x 107 3y)T Ihoy o (1.1 x 107%g5 4+ 4.6 x 10 °g3y7 + 1.1 x 107%y/)T
Il ~ (3.5 x 1073g3y7 + 1.8 x 103y, %, ~ (2.0 x 1072g5 + 1.7 x 107%g3y? + 4.3 x 107 yT,

These then enter the system of Boltzmann equations. Solved by Green’s

function techniques for general profile

d o0
Azk%(ﬁ; + 10 = £ ey [&'(ﬂﬁ) = Xz'j/ [X_IA_lF(y)]j Gj(fﬁ,y)dy}

5T = (5:ut7 67}7 5Ut7 5:“]17 5Th7 5Uh) (A_IF)Z] Xjk = Xlk)\k

Vw ( t dm%(gbh) t dm%(gbh), O, ch(x) dm}%(¢h7¢s) hdmi%(gbhaqss), 0)

T:_
F(z) o\ g T 4 1 dx " 2 dx

Gi(z,y) = sgn(X)e "0 [sgn(\i)(z — y)]
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Beware the uncertainties! Different leading log prescriptions lead to

factors of ~ 1- 10 difference in these rates 2 O(100%)effects in v,

Consider e.g.tt — gg contributionto T, ; :

HTL numerical result VS. Analytic result with thermal mass insertion
_ 1602  9¢2_ 977 -
AT~ 11 x 107°T AT, |~ 05 % 16? log — T~ 3.8 x 10 3T

q

Factor of ~4 difference, formally at the same order in the LL expansion

Why? Because the logarithms are not numerically very large!

Above result requires evaluating the angular integral

1. (2|p||k (1 - 41p| |k
/dcos@—log ( [ [k ( 5 C059)> = —1+log |P|2| |
2 my m;

Difference between dropping the constant piece or not accounts for most of the
discrepancy
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In the high-T approximation, the singlet scalar interaction rates are
suppressed at leading log order relative to e.g. tops and Higgs

Approximate collision term as small and drop from the Boltzmann
equations. They can then be solved exactly:

@’p (p.) = d®p e /T Q(p.)
/(27r)32E Jsp, _vw/(27r)32E (/T £ 1)2 T

Q(p ) _ \/pg + m8(¢h7 ng,T)z — Pz, Dz > _\/mg(T>2 - ms(¢h7 ¢37T)2
: —\/pg« + m3(¢h,¢s,T)2 - mg(T)2 — Dz, Pz < _\/mg(T>2 - ms(qbfw ¢87T)2

Full leading order result can go beyond this approximation. Likely
overestimates friction.



Gauge bosons

Two prescriptions:
Gauge invariant (approximate) treatment — drop thermal cubic
term and gauge boson friction term

Include both the cubic term and the gauge boson friction
contribution

Corresponding friction dominated by highly infrared modes; treat semi-
classically

7Tm2
oD dw®.D) _ 2 1 b (o)) . T) + N

Exact solution 9 ( ) 3 ( )
de Qbh d p = —3T 2 qs;z ~ N
m—) den, / @rypap W P @) = vuggmb w(T) g sy Ol =)

x4 solves myy (o (x4)] = 1/Ly,

28



Putting these pieces into the EOM (and dropping the gauge piece for
now) we get:

e — ~
+ eet) Z 8@ [ doms + 6T, + 6T

om2(6) [ d'p
] + T [ @) =0

B.Cs: Qbh,s(m — :FOO) — ¢h,s;:t(T+) , gblh,s(x — :f:OO) =0

)

Need to find profile, g;(:zf), and v,, such that the EOM or, more weakly,
our constraints are satisfied:

[amosy £ -0 [wmon £2 s

How??
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Solving for the profile

This is a set of integro-differential equations for $(x) perturbations at a
given point determined by integral involving profile

Strategy: consider simpler case of constant friction term dq;/dx

RE: dP
—(1—02)— T — =
( Uw)de + ViV (2, )+Fdx 0

Much simpler: looks almost like the Euclidean EOMs for the bounce!
Can solve this via path deformations

Starting from initial guess, deform the path to
minimize "normal force”, N(z)

Corresponds to friction only parallel to the
path in field space

: y
Result well fit by kink: i(x) = - <1 +tanh 7 )
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Solving for the profile

How do things change when including the full friction term? Friction is
no longer purely parallel to the trajectory satisfying the constant
friction EOM

Fortunate simplification: perpendicular friction
typically perturbatively small! (can check validity a posteriori)

d d3 dd
Y,V (®,T = 0) ~-3 ZZ;) / = )ngfO(p’T)' diS)
2 3
Parallel: { (1-— v d (I) Z dn;q) / 2d)f2E5f(f, T) + O((SfQ)} ‘ d‘(};is) ~0

Friction contribution dominates

d3p
(27)32E

d’>®(s)

d2P
dx?

Perpendicular: { (1 —v2)— + V4V(T = 0) +Zdn;§) fo(p,T)+(9(5f)}. T ~0
If we neglect this subdominant piece, only effect of going to full friction
term is rescaling of profile: Ly s — aLp s, 65 — ads
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A prescription

Suggests the following prescription:
1. Compute nucleation temperature and initial profile
2. Solve for constant friction profile. Fit to tanh

3. Solve hydrodynamic equations to determine T near the wall
(see Jose Miguel’s talk)

4. Vary values of v, a. For each pair, solve for perturbations

5. Inset perturbations and profile into EOM and impose
constraints

Values of v,,, a approximately solving full set of EOMs and Boltzmann
equations correspond to those satisfying the constraints. 32



Results

Walls move quickly

Vw

For strong enough phase transitions, no subsonic solutions

Likely optimistic friction estimate (rates can be larger, singlet friction
neglected)
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Results

Walls move quickly and they’re thin

@Y

oi(z) = £ (1 + tanh

Ly)T
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Extending to other models

Don’t always have to compute wall velocity from scratch. Can match
onto existing results for models with similar features

% aV((/ﬁ, T) . z2 /
¢; — D, = NiVw"Y T b;

!

Phenomenological friction terms; matched to microphysical
calculation. Can have more complicated parametric
dependence

This is fortunate, but results only as good as the underlying
microphysical calculation you are matching onto
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Lots of theoretical uncertainties associated with approximations in
microphysical calculation of wall velocities
-Simplified hydro
-Fluid approximation
-Interaction rates (kinetic theory, high-T/leading log expansion)
-Free passage for singlet

These lead to large (~¥100%) uncertainties on v,
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Many opportunities for improving these calculations



Zeroth order determination of whether to expect fast/”runaway”
bubbles can be obtained using Bodeker-Moore criterion. Probably

sufficient for gravitational wave spectrum, but no analog for checking
whether v, <c..

Phenomenological approaches allow one to bootstrap using existing
results (if model doesn’t look too different). Still, this approach is at

most as accurate as the underlying microphysical calculation.

Good idea to check robustness of baryon asymmetry calculation WRT
tov,, (and don’t use the MSSM predicted value!).

Ultimately, sharp predictions for the baryon asymmetry will likely
require improving these microphysical calculations.



