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Why	should	we	care	about	bubble	wall	dynamics?



Electroweak	baryogenesis

Bubble	wall	catches	up	with	diffusing	current,	freezing	in	B
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Electroweak	baryogenesis
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Requiring	sufficient	B-violation	during	diffusion	requires	relatively	slow	
bubble	walls

Wall	velocities	conventionally	required	to	be	subsonic:	vw<0.58

Resulting	asymmetry	can	strongly	depend	on	vw,	depending	on	the	
form	of	the	primary	CP-violating	source

Huber	et	al,	2001

(subtle	and	there	are	exceptions;	see	e.g.	No,	2011;	Caprini +	No,	2011;	Katz+Riotto,	2016 )
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Figure 9: H1 ±H2 contributions to the baryon asymmetry dependent on vw for
different values of the wall thickness Lw = 20/T, 15/T, 10/T (from below) and
|µ| = |M2| = 150 GeV, arg(µM2) = π/2 and δβ = 0.01. η is given in units of
2 × 10−11 (observational bound).

For the diffusion constants of quarks and Higgses we take Dh = 110/T and

Dq = 6/T . The rates ΓyA and Γyµ which involve heavy squarks are Boltzmann

suppressed and we set them to zero in the following [23]. Furthermore we take

Γy = 0.015T , Γhf = 0.016T , Γm = 0.05T θ(−z), ΓH1 = ΓH2 = 0.05T θ(−z). The

weak sphaleron rate is Γws = 20α5
wT .

In the following we separately present the H1−H2 and H1+H2 contributions to

the baryon asymmetry, which originate from the flavor and helicity contributions

to the chargino dispersion relation, respectively. We use the dispersion relations

in the canonic momentum. In the formulation with the kinetic momentum the

H1 − H2 part vanishes [18]. However, a H1 − H2 contribution has been found

in real time Green’s function treatments of the chargino current, most recently

in ref. [23]. It would we very interesting to understand more clearly the relation

between our H1 − H2 source and the one found in that approach.

In fig. 9 we summarize our results for the baryon asymmetry generated during

the phase transition. To maximize the result we take |µ| = |M2| and maximal

CP violation arg(M2µ) = π/2. For smaller phases the result simply scales with

sin(arg(M2µ)). Moreover, the H1 − H2 result is proportional to the change in

the Higgs vev ratio in the bubble wall, which we take to be δβ = 0.01. We work

with µ = 150 and tanβ = 3. The mass of the lightest chargino eigenstate is then

about 110 GeV, in agreement with the experimental constraints.

In our evaluations we vary the wall velocity in the interval 10−5 < vw < 0.5.

For small values of vw we deal with a quasi equilibrium situation, and the baryon

asymmetry goes to zero. Also large wall velocities suppress η, since transport
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Gravitational	waves
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Spectrum,	and	prospects	for	detection,	depend	on	the	wall	velocity

is deposited in a thin shell close to the PT front. The energy in each shell is then as-

sumed to quickly disperse after colliding with another shell such that the energy is primarily

stored in the envelope of uncollided shells 3. Numerical simulations utilizing the envelope

approximation suggest that the GW contribution to the spectrum is given by [15]

h2⌦env(f) = 1.67⇥ 10�5
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Senv(f) , (7)

where Senv(f) parametrises the spectral shape of the GW radiation. A fit to simulation

data [15] yields

Senv(f) =
3.8 (f/fenv)2.8

1 + 2.8 (f/fenv)3.8
, (8)

with the slopes of the spectrum in the limit of small and large frequencies given respectively

by Senv / f q with q = 2.8 and Senv / f�p with p = 1. Causality implies that at low

frequency the spectral index is q = 3 [27]. This has to be the case at least for frequencies

smaller than the inverse Hubble horizon at GW production, Eq. (11). However, q = 2.8

provides a better fit to the simulated result close to the peak of the spectrum and we adopt

this spectral index in the following.

The peak frequency of the contribution to the spectrum from bubble collisions, fenv, is

determined by the characteristic time-scale of the PT, i.e. its duration 1/� [24, 27]. From

simulations, the peak frequency (at t⇤) is approximately given by [15]

f⇤
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=

✓
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◆
. (9)

This value is then red-shifted to yield the peak frequency today,

fenv = 16.5⇥ 10�3 mHz
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In going from Eq. (9) to Eq. (10) we use the value of the inverse Hubble time at GW

production, redshifted to today,

h⇤ = 16.5⇥ 10�3 mHz
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(11)

along with the assumption that the Universe transitioned directly to a radiation-dominated

phase after the PT and has expanded adiabatically ever since.

3The envelope approximation we adopt here neglects the fact that the scalar field can perform oscillations

as it settles into the true vacuum after wall collisions, as demonstrated e.g. in [26].
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2.2.1 Case 1: Non-runaway Bubbles

Bubbles expanding in a plasma can reach a relativistic terminal velocity. In this case, the

energy in the scalar field is negligible (it only scales with the surface of the bubble and not

with the volume) and the most relevant contributions to the signal are expected to arise

from the bulk motion of the fluid. This can be in the form of sound waves and/or MHD

turbulence. Combining these contributions, we approximate the total spectrum as

h2⌦GW ' h2⌦sw + h2⌦turb . (19)

As shown in the previous sections, these expressions involve v, the e�ciency factor for

conversion of the latent heat into bulk motion [8, 13]. In the limits of small and large vw, it

is approximately given by

v '
(

↵ (0.73 + 0.083
p
↵ + ↵)

�1
vw ⇠ 1

v6/5w 6.9↵ (1.36� 0.037
p
↵ + ↵)

�1
, vw . 0.1

(20)

Full expressions for v are given in Ref. [8], which we utilize below (note that v is called 

in Ref. [8]).

The GW spectra also depend on vw, which is model-dependent. We choose vw = 0.95

for concreteness, since scenarios with nearly luminal wall velocities are more promising from

the standpoint of observable gravitational radiation.

In the GW contribution from MHD turbulence, Eq. (16), we take

turb = ✏ v , (21)

with ✏ representing the fraction of bulk motion which is turbulent. Recent simulations

suggest that only at most 5 � 10% of the bulk motion from the bubble walls is converted

into vorticity (cf. e.g. Table II in [19]). However, these simulations lasted for less than

one eddy turn-over time so one would not expect significant turbulence to have developed.

The onset of turbulence is expected after shocks develop at tsh ⇠ (vw/
p
↵v)��1, which is

less than a Hubble time for stronger transitions. More work is needed to understand how

turbulence develops from the acoustic waves, and to allow for the uncertainty in what follows

we conservatively set ✏ = 0.05. This strongly suppresses the role of turbulence as far as the

detection of GW from the PT is concerned, thereby underestimating the signal in the case

that weak shocks develop within one Hubble time. As we will see, turbulence can only

slightly improve the signal-to-noise ratio in extreme cases for which the PT is very slow,
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Figure 4: Projected eLISA sensitivity to Case 1: non-runaway relativistic bubble walls. Results

are displayed for four values of T⇤ (indicated) and the four eLISA configurations described in Table

1. The detectable region is shaded. Also shown are benchmarks from various specific models,

discussed in Section 4. All other parameters are as described in the text. Note that the values of

T⇤ chosen correspond only approximately to the precise values for the benchmark points. The GW

signal is given primarily by the contribution of sound waves (turbulence is negligible for the chosen

value of ✏).
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signal is given primarily by the contribution of sound waves (turbulence is negligible for the chosen

value of ✏).
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Caprini et	al,	2015



Guiding	questions
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How	do	we	compute	the	wall	velocity?

What	are	the	theoretical	challenges	involved	in		these	
calculations?



Master	equation

7

Scalar	field	EOM	for	one	scalar	D.O.F.	at	finite	T:

T=0	effective	potential
Distribution	functions	of	all	particles	
coupled	to	Higgs

See	e.g.	Moore+Prokopec,	1996;
Konstandin et	al,	2014⇤�+ V 0(�) +

X dm2

d�

Z
d3k

(2⇡)32E
f(k, z) = 0



Master	equation
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Scalar	field	EOM	for	one	scalar	D.O.F.	at	finite	T:

Rewrite	in	terms	of	finite-T	effective	potential:	

T=0	effective	potential
Distribution	functions	of	all	particles	
coupled	to	Higgs

See	e.g.	Moore+Prokopec,	1996;
Konstandin et	al,	2014⇤�+ V 0(�) +

X dm2

d�

Z
d3k

(2⇡)32E
f(k, z) = 0

⇤�+ V 0(�, T ) +
X dm2

d�

Z
d3k

(2⇡)32E
�f(k, z) = 0



Master	equation
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Scalar	field	EOM	for	one	scalar	D.O.F.	at	finite	T:

Rewrite	in	terms	of	finite-T	effective	potential:	

T=0	effective	potential
Distribution	functions	of	all	particles	
coupled	to	Higgs

See	e.g.	Moore+Prokopec,	1996;
Konstandin et	al,	2014⇤�+ V 0(�) +

X dm2

d�

Z
d3k

(2⇡)32E
f(k, z) = 0

⇤�+ V 0(�, T ) +
X dm2
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Z
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Z 
⇤�+ V 0(�, T ) +

X dm2
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Z
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(2⇡)32E
�f(k, z)

�
�0(z) dz = �p



Master	equation
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Scalar	field	EOM	for	one	scalar	D.O.F.	at	finite	T:

Rewrite	in	terms	of	finite-T	effective	potential:	

Non-accelerating	wall:

T=0	effective	potential
Distribution	functions	of	all	particles	
coupled	to	Higgs

See	e.g.	Moore+Prokopec,	1996;
Konstandin et	al,	2014⇤�+ V 0(�) +

X dm2

d�

Z
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(2⇡)32E
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�f(k, z)�0(z) dz



Master	equation
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Boils	down	to	drawing	a	free	body	diagram

Two	questions:

h�i = 0 h�i 6= 0

Friction �VT=0

vw

Figure 1. Illustration of the competing forces acting on the bubble wall that ultimately determine
vw. The steady state wall velocity is such that the vacuum energy difference between the phases
(�VT=0) is balanced by the friction provided by the interactions of the wall with the plasma.

Again, the corresponding fluid velocity in the fluid frame ev
1

is simply given by velocity
addition, ev

1

=

3v

2
1�1

2v1
.

Throughout our calculation we neglect the curvature of the bubble wall. In this ap-
proximation, the temperatures and fluid velocities (in the fluid frame) between the bubble
wall and the shock wave are simply constant [84], and so one can set

ev
1

(T
1

, T
n

) ⇡ ev
+

(T
+

, v
w

), T
1

⇡ T
+

(3.8)

and solve for T
+

in terms of T
n

, v
w

. Previous studies suggest that using the planar approxi-
mation instead of the full solutions to the spherical hydrodynamic equations can reproduce
the full result for the wall velocity to within a few percent [82].

With the temperature T
+

and the static properties of the phase transition determined
in this way, we can now consider the asymptotic behavior of the bubble after its formation.

3.3 Wall Equations of Motion

The main object for our analysis will be the bubble wall equations of motion correspond-
ing to the set of scalar fields �

i

= �
h

, �
s

. These can be derived by requiring conservation
of the energy-momentum tensor for the scalar field condensates computed in a WKB ap-
proximation [77], or directly from the Kadanoff-Baym equations [54]. We are interested in
the stationary limit of the equations of motion in the plasma frame; that is, we want to
investigate the bubble wall once it has reached its terminal velocity (if it exists), with the
pressure driving the expansion precisely counterbalanced by the drag force exerted on the
bubble by the plasma. This is illustrated in Fig. 1.

Neglecting the curvature of the bubble, in the rest frame of a stationary (non-accelerating)
bubble wall all functions will be depend only on z, the distance from the phase boundary.
Consequently, in the plasma frame, all functions depend only on the coordinate x ⌘ z+v

w

t,
where v

w

is the wall velocity in the plasma frame and we have assumed that the wall is

– 12 –

enough	friction	to	stop	the	wall	from	accelerating?

If	so,	what	is	the	terminal	velocity	and	bubble	profile	satisfying	the	master	
equation	above?

9

Z X dm2

d�

Z
d3k

(2⇡)3 2E
�f(k, z)�0(z)dz = ��V (T )



"Runaway	Bubbles"
Is	there	enough	friction	to	stop	the	wall	from	accelerating	once	it’s	
moving	ultra-relativistically? Bodeker +	Moore,	2009

�Vvac = �
Z X dm2

d�

Z
d3k

(2⇡)3 2E
f(k, z)�0(z)dz

12



"Runaway	Bubbles"
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Is	there	enough	friction	to	stop	the	wall	from	accelerating	once	it’s	
moving	ultra-relativistically?

For	g >>	1:

Bodeker +	Moore,	2009

High-T	expansion	(m/T<<1)

Z X dm2

d�

Z
d3k

(2⇡)3 2E
f(k, z)�0(z)dz '

X⇥
m2

i (h2)�m2
i (h1)

⇤ Z dm2

d�

Z
d3k

(2⇡)3 2E
f(k)|h1

�Vvac = �
Z X dm2

d�

Z
d3k

(2⇡)3 2E
f(k, z)�0(z)dz

⇡
X

aiT
2
⇥
m2

i (h2)�m2
i (h1)

⇤
+O(1/�2)

Equilibrium	distributions



"Runaway	Bubbles"
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Is	there	enough	friction	to	stop	the	wall	from	accelerating	once	it’s	
moving	ultra-relativistically?

For	g >>	1:

Bodeker +	Moore,	2009

High-T	expansion	(m/T<<1)

Z X dm2

d�

Z
d3k

(2⇡)3 2E
f(k, z)�0(z)dz '

X⇥
m2

i (h2)�m2
i (h1)

⇤ Z dm2

d�

Z
d3k

(2⇡)3 2E
f(k)|h1

�Vvac < �
Z X dm2

d�

Z
d3k

(2⇡)3 2E
f(k, z)�0(z)dz vacuum	energy	difference	

overwhelms	the	friction	

⇡
X

aiT
2
⇥
m2

i (h2)�m2
i (h1)

⇤
+O(1/�2)

Equilibrium	distributions

�Vvac = �
Z X dm2

d�

Z
d3k

(2⇡)3 2E
f(k, z)�0(z)dz



In	the	high-T	approximation,	the	difference	between	vacua of	the	
finite-T	effective	potential	is	given	by

Runaway	condition	can	be	interpreted	in	terms	of	finite-T	effective	
potential	with	no	cubic	term:

If,	after	dropping	thermal	cubic	terms,	it	is	energetically	favorable	to	
tunnel	to	the	broken	phase,	the	bubble	can	run	away

"Runaway	Bubbles"

15

Bodeker +	Moore,	2009�Vvac +
X

aiT
2[m2

i (h2)�m2
i (h1)] < 0 Runaway

�V (T ) ⇡ �Vvac +
X

aiT
2
⇥
m2

i (h2)�m2
i (h1)

⇤
�

X
biT

⇥
m3

i (h2)�m3
i (h1)

⇤



If,	after	dropping	thermal	cubic	terms,	it	is	energetically	favorable	to	
tunnel	to	the	broken	phase,	the	bubble	can	run	away

"Runaway	Bubbles"

16

Bodeker +	Moore,	2009�Vvac +
X

aiT
2[m2

i (h2)�m2
i (h1)] < 0 Runaway

From	JK	et	al,	2014	for	the	NMSSM



Important	(and	simple)	criterion	to	check	when	doing	pheno studies

Theories	with	tree-level	cubic	terms	(e.g.	singlet	models)	are	especially	
susceptible	to	runaways

Recent	progress	and	outstanding	theoretical	questions	associated	with	
friction	in	the	ultra-relativistic	limit:

-NLO	(e.g.	1à2)	processes	enhance	the	friction,	tend	to	prevent	
runaway!	Important	for	gravitational	wave	spectra

-Effect	is	dominated	by	soft	emission	(in	the	wall	frame).	Full	
calculation	is	challenging

-Sphalerons behind	the	wall?!

Some	comments

17

Bodeker+Moore,	2017



Beyond	runaway
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What	about	non-relativistic	walls?	How	do	we	get	a	
number	out?

Some	references:	

Moore	+	Prokopec,	1995	&	1996
John	+	Schmidt,	2000
Konstandin et	al,	2014

JK,	2016



Beyond	runaway
Ultimate	goal:	find	a	wall	velocity	and	bubble	profile	that	solves	the	
scalar	field	EOMs

Simplification:	look	for	configurations	satisfying	constraint	equations

19

moving to the left. In the stationary wall limit, the equations of motion then simplify to
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where primes indicate differentiation with respect to x. Here the sum is over all fields
coupling to the scalar field �

i

, E
j

is the (space-time–dependent) energy of the particle j,
E

j

=

q
p2 + m2

j

(x), and �f
j

is the deviation from the equilibrium distribution function for
the species j.

Solutions to the above equations of motion typically only exist for one subsonic value
of the constant v

w

. This is the quantity we wish to determine. To do so, one must find
profiles �

i

(x) such that Eq. 3.9 is satisfied, which in turn requires solving for the deviations
from equilibrium of the various species in the plasma. These deviations, along with the
equilibrium contributions, are responsible for the drag force on the bubble wall. Unfortu-
nately, the �f

j

depend non-trivially on v
w

and the bubble profile, so Eq. 3.9 represents a
set of integro-differential equations.

3.4 Aside: Runaway Bubbles and Tree-level Cubic Terms

Before moving on to the case of non-relativistic bubbles (relevant for electroweak baryo-
genesis), we can begin by considering the wall dynamics in a simple limit: that of ultra-
relativistic, “runaway” bubbles [44], with Lorentz factor � � 1. In this case, the friction on
the bubble from the plasma in the large-� limit is too small to counterbalance the pressure
difference between the vacua, which drives the expansion. Ref. [44] showed that this situ-
ation is common in singlet-driven transitions, so it is important to review this case before
moving on to the non-relativistic regime.

Following Ref. [44], a runaway solution to the equations of motion exists provided
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(3.10)
at the nucleation temperature. Here, f

0

is the equilibrium distribution function of the
species i, and �± are the field values at the minima of the potential. In the high-T limit,
there is a simple interpretation of this criterion in terms of the high-temperature expansion
of the thermal effective potential: a runaway solution will exist if it is energetically favorable
to tunnel to the broken phase in the ‘mean-field’ potential, obtained by retaining only the
T 2 terms in Eq. 2.6. In other words,

V no cubic

e↵

(�
+

, T
n

) > V no cubic

e↵

(��, T
n

) ) runaway solution exists. (3.11)

The above expression indicates that all points found with a first-order phase transition
in our gauge-invariant approach (retaining only the quadratic finite-T terms) would fea-
ture an ultra-relativistic wall solution if there were no other contributions to the effective
potential. This may appear incompatible with our goal of determining subsonic solutions
to the equations of motion but it is not. First of all, including the finite temperature

– 13 –

(in	the	wall	frame,	neglecting	sphericity,	assuming	stationary	solution)
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Wall	velocities	with	singlets
Illustrate	in	the	real	singlet	extension	of	SM

First,	write	down	Boltzmann	equations	for	distributions

Utilize	effective	kinetic	theory	for	excitations:													,

Infrared	modes	with													(e.g.	for	gauge	bosons)	dealt	with	
separately

moving to the left. In the stationary wall limit, the equations of motion then simplify to
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where primes indicate differentiation with respect to x. Here the sum is over all fields
coupling to the scalar field �

i

, E
j

is the (space-time–dependent) energy of the particle j,
E

j

=

q
p2 + m2

j

(x), and �f
j

is the deviation from the equilibrium distribution function for
the species j.

Solutions to the above equations of motion typically only exist for one subsonic value
of the constant v

w

. This is the quantity we wish to determine. To do so, one must find
profiles �

i

(x) such that Eq. 3.9 is satisfied, which in turn requires solving for the deviations
from equilibrium of the various species in the plasma. These deviations, along with the
equilibrium contributions, are responsible for the drag force on the bubble wall. Unfortu-
nately, the �f

j

depend non-trivially on v
w

and the bubble profile, so Eq. 3.9 represents a
set of integro-differential equations.

3.4 Aside: Runaway Bubbles and Tree-level Cubic Terms

Before moving on to the case of non-relativistic bubbles (relevant for electroweak baryo-
genesis), we can begin by considering the wall dynamics in a simple limit: that of ultra-
relativistic, “runaway” bubbles [44], with Lorentz factor � � 1. In this case, the friction on
the bubble from the plasma in the large-� limit is too small to counterbalance the pressure
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(IR) excitations with momenta p ⌧ T will not be captured by this treatment, since their
interactions cannot be properly described by a local collision term. These contributions
can be important for the bosonic species [79], but the perturbative effective kinetic theory
should provide an adequate estimate of the damping force on the bubble wall, provided
that very infrared excitations are equilibrated quickly [77], as we will assume for most of
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where the sum is over all 4-body processes ij ! mn, with the momenta labeled as p, p0, k0,
and k moving clockwise around the diagram starting with particle i. The matrix elements
include finite-temperature effects (discussed below) and are summed over helicities and
colors of all four external quasiparticles, then divided by the number of degrees of freedom
corresponding to species i, N
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with the upper (lower) signs corresponding to bosons (fermions) and f
a

the appropriate
Bose-Einstein or Fermi-Dirac distribution function for particle a, which we assume to take
the form

f
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=

⇣
e(E+�a)/T ± 1
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. (4.5)

In Eq. 4.3, the prefactor of 1/2 takes care of both the symmetry factor when identical parti-
cles are present in the final state, and the double counting that occurs from the unrestricted
sum over m and n.

The Boltzmann equations above apply to all quasiparticles in the plasma satisfying
Eq. 4.1 with sufficiently high momentum. However, examining Eq. 3.9, we see that only
the distribution functions of field excitations with significant couplings to the relevant scalar

13This was shown to be a poor assumption for the SU(2)L gauge bosons in Ref. [79], which we discuss
further in Sec. 4.3. Infrared contributions from the Higgs and singlet fields may be important. However, their
equations of motion are not over-damped as they are for the gauge bosons [79], and so their distributions
should equilibrate more quickly than those for the gauge fields.

14We will neglect any possible CP -violation coupling to the top quark and hence assume that the top
and anti-top densities are identical. This means we can compute the top perturbations and simply count
their contribution to the condensate equations of motion twice.
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cubic term inevitably changes the the transition temperature and the effective potential
at that temperature. This can cause the same parameter space point to instead feature
V no cubic

e↵

(�
+

, T
n

) < V no cubic

e↵

(��, T
n

) , and hence no runaway solution. We indeed find this
to be the case for most points considered when including the gauge boson cubic term in
our parameter scans. Even if a runaway solution exists for the EOMs including the full
finite-T effective potential, there is another important caveat. The criterion in Eq. 3.11
assumes that the bubble is in the ultra-relativistic regime to begin with. However it is
instead possible for the friction to prevent the bubble from ever reaching such large veloci-
ties required for Eq. 3.10 to be valid. In fact, hydrodynamic effects alone can obstruct the
wall from expanding ultra-relativistically [117]. Thus, even if a particular parameter space
point admits a runaway solution, it may not be realized if a subsonic stationary solution
exists. On the other hand, even if no runaway solution exists, one with v

w

> c
s

might.
The reader should thus bear in mind that our approach will find subsonic solutions to the
equations of motion, not guarantee that they are realized. This is also true of previous
studies [54, 76–78].

Equation 3.10 shows that the friction force acting on the wall takes a very simple
form in the � � 1 limit. This is not the case for the subsonic walls we are interested
in. Determining the wall velocity in the � ⇠ 1 regime requires a careful calculation of the
various deviations from equilibrium in the plasma. This is what we discuss in the following
section.

4 Kinetic Theory and Deviations from Equilibrium

4.1 Setup

With the temperature T ⌘ T
+

inferred from hydronamic considerations, the first step
towards solving the bubble wall equations of motion in the non-relativistic (� ⇡ 1) case is
determining the distribution functions f

i

for the various excitations appearing in Eq. 3.9.
To do so, we will primarily utilize a perturbative effective kinetic theory approach [118,
119], as in previous studies [76–78] (we will take a somewhat different approach for the
corresponding gauge boson friction, which should be modeled classically as discussed below).
This treatment applies to weakly coupled excitations with local interactions and short
wavelengths compared to the length scale of the bubble wall in the plasma frame, i.e.

E � 1

L
w

(4.1)

where L
w

is the wall width. Typical momenta are of order p ⇠ T , but softer excitations
will be present in the plasma as well. We will assume that the kinetic theory description
is viable in the range p & gT , which is reasonable for the particles we will be interested in
given the values we find for the wall widths. Here and throughout this section g represents
a generic dimensionless coupling of the theory12 that is assumed to be small. Infrared

12The coupling g should be thought of as some combination of couplings entering the thermal and zero
temperature masses of the particle in question. In other words, we assume parametrically that m ⇠ gT ⇠ g�

near the electroweak phase transition.
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(IR) excitations with momenta p ⌧ T will not be captured by this treatment, since their
interactions cannot be properly described by a local collision term. These contributions
can be important for the bosonic species [79], but the perturbative effective kinetic theory
should provide an adequate estimate of the damping force on the bubble wall, provided
that very infrared excitations are equilibrated quickly [77], as we will assume for most of
the species we are interested in13.

In the effective kinetic theory we consider, the quasiparticle distribution function for
the species i satisfies the Boltzmann equation
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in the fluid frame, where C[f ]
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is a local collision integral. The collision term involves all
interactions of the species i with all other excitations in the plasma. It can be written as
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where the sum is over all 4-body processes ij ! mn, with the momenta labeled as p, p0, k0,
and k moving clockwise around the diagram starting with particle i. The matrix elements
include finite-temperature effects (discussed below) and are summed over helicities and
colors of all four external quasiparticles, then divided by the number of degrees of freedom
corresponding to species i, N
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with the upper (lower) signs corresponding to bosons (fermions) and f
a

the appropriate
Bose-Einstein or Fermi-Dirac distribution function for particle a, which we assume to take
the form

f
a

=

⇣
e(E+�a)/T ± 1

⌘�1

. (4.5)

In Eq. 4.3, the prefactor of 1/2 takes care of both the symmetry factor when identical parti-
cles are present in the final state, and the double counting that occurs from the unrestricted
sum over m and n.

The Boltzmann equations above apply to all quasiparticles in the plasma satisfying
Eq. 4.1 with sufficiently high momentum. However, examining Eq. 3.9, we see that only
the distribution functions of field excitations with significant couplings to the relevant scalar

13This was shown to be a poor assumption for the SU(2)L gauge bosons in Ref. [79], which we discuss
further in Sec. 4.3. Infrared contributions from the Higgs and singlet fields may be important. However, their
equations of motion are not over-damped as they are for the gauge bosons [79], and so their distributions
should equilibrate more quickly than those for the gauge fields.

14We will neglect any possible CP -violation coupling to the top quark and hence assume that the top
and anti-top densities are identical. This means we can compute the top perturbations and simply count
their contribution to the condensate equations of motion twice.
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fields involved in the phase transition are required. Since these particles have significant
couplings to the Higgs and singlet scalar fields, we will refer to them as ‘heavy’. Also,
�f

i

= �f
i

(p, x) has some space-time–dependence, arising in part from the spatial variation
of the background fluid temperature and velocity across the bubble wall, as discussed in
Sec. 3. The background fluid is in local thermal equilibrium and comprises all ‘light’ effective
degrees of freedom. Note that quasiparticles with large field-independent masses will be
irrelevant for our purposes, since their distribution functions feature significant Boltzmann
suppression. Also, precisely which fields should be considered ‘heavy’, ‘light’, or irrelevant
depends on the given model. For the singlet-driven scenarios we are concerned with here,
the heavy fields will be the top quarks, gauge, Higgs, and singlet bosons.

To find approximate solutions to the Boltzmann equations for the heavy species and
background, we will utilize the ‘fluid ansatz’ [77], in which case the perturbations are
assumed to take the form

�
j
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j
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T
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bg

) � p
z

(�v
j
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bg

). (4.6)

Here µ
j

, �T
j

, �v
j

are the chemical potential, temperature perturbation, and velocity per-
turbation of the species j, respectively, in the plasma frame. We have assumed that the
fields with small couplings to the scalar condensates �

h,s

are in thermal equilibrium at a
common space-time–dependent temperature T

+

+ �T
bg

(x) and velocity v
bg

(x) with vanish-
ing chemical potential, as in Ref. [77]. The assumption that µ

bg

⇡ 0 is valid whenever the
total background particle destruction rate is larger than that for the heavy particles, as
will be the case here (all pure gluon rates are enhanced by the large color factors and Bose
statistics). The space-time–dependence in �T

bg

, v
bg

arises from the change in masses of
the corresponding particles moving from the �

i

6= 0 phase inside the bubble to the �
i

= 0

vacuum outside.
Throughout this study, we will work to linear order in the perturbations, which are

assumed to be small (µ
j

/T , �T
j

/T , �T
bg

/T , �v
j

, v
bg

⌧ 1). This should be the case
for moderately strong phase transitions, and we verify the validity of this assumption a

posteriori. It should be noted that this treatment can be extended to accommodate large
fluid velocities in front of the wall [54], although this will not be necessary for any of the
transitions we consider. As a result, we set all Lorentz � factors to 1 throughout our
calculation.

With the above definitions, the population factor P is given to linear order in the
perturbations by
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where the ‘0’ subscript indicates the corresponding equilibrium distribution function. Note
that the background temperature and velocity perturbations do not enter the collision
integrals to linear order.
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resulting expressions for the perturbations. For a given heavy species, the relevant three
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Wall	velocities	with	singlets
Take	moments	of	the	Boltzmann	equations

Obtain	collision	terms	from	interactions	of	the	various	species	in	the	
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Further details can be found in Ref. [77]. The resulting collision terms for each heavy field
i can be written as
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which arise from Eq. 4.8 with µ
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⇡ 0. The sum above is over all background species, with
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the heat capacity of the plasma. As for the heavy quasiparticles, the collision
terms can be written as
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Although �T
bg

and v
bg

do not enter the collision integrals, the perturbations corresponding
to the heavy excitations do. The convention for evaluating the matrix elements is the
same as for the heavy particles, with all background excitations treated as one species.
Thus, every heavy particle process involving the background excitations will contribute to
Eqs. 4.12. We will calculate all of the contributions relevant for singlet-driven transitions
in the next subsection.
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do not enter the collision integrals, the perturbations corresponding
to the heavy excitations do. The convention for evaluating the matrix elements is the
same as for the heavy particles, with all background excitations treated as one species.
Thus, every heavy particle process involving the background excitations will contribute to
Eqs. 4.12. We will calculate all of the contributions relevant for singlet-driven transitions
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Interaction	rates
For	the	top	quarks	and	Higgs	bosons,	work	in	a	formal	leading	log,	small	
coupling/high-temperature	expansion,	including	hard	thermal	loops	in	
internal	propagators

t/u-channel	diagrams	lead	to	IR	divergences	cut	off	by	thermal	masses;	yield	
parametrically	“large”	logarithms																					.	Only	keep	these	contributions

Systematically	drop	all	terms	of																					.	Then	calculate	in	the	gauge	basis	and	
treat	external	modes	as	massless

Resum the	hard	thermal	loops	for	the	t/u-channel	propagators

Keep	only	processes	of														,			

⇠ log(#/g2)

where we have left out the light fermion Yukawa contributions. Since we are neglecting
the finite-temperature tadpole contribution to the effective potential we also drop the a

1

terms in the masses above. This is required for consistency, since these terms are precisely
those that give rise to the finite-temperature tadpole. Finally, as in Ref. [77], we treat the
transverse SU(2)

L

gauge bosons as a single species W with field-dependent mass squared
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Transverse excitations do not acquire a thermal mass at leading order in the couplings.
Longitudinal modes obtain an effective thermal (Debye) mass at leading order, correspond-
ing to the inverse screening length of electric potentials in the plasma [120]. This is given
by

m2

D,W

(T ) ' 11

6

g2
2

T 2 (4.18)

in the Standard Model. Since the gauge boson friction is dominated by very infrared
excitations, only the transverse contributions will be relevant.

Our strategies for dealing with each of these types of excitations will differ. As we
will see below, the top quark and Higgs interaction rates are typically sizable, and so the
collision term plays an important role in the corresponding Boltzmann equations. This is
not expected to be the case for singlet quasiparticles at high temperature. Contrary to
the tops and Higgs, we will assume that the singlet interactions are slow. In this case, the
collision term can be neglected. The corresponding Boltzmann equation decouples from the
rest of the system and can be solved exactly. We discuss this further in Secs. 4.2.2 and 5.1.
Finally, the gauge boson contributions are dominated by infrared dynamics and require a
classical treatment, which has been worked out in Ref. [77] and discussed in Sec. 4.3 below.

Let us first consider the interactions involving the top quark, Higgs, and background
excitations.

4.2.1 Top, Higgs, and Background Excitations

Solving the Boltzmann equations for the perturbations µ
t,h

, �T
t,h

, �T
bg

, �v
t,h

, and v
bg

requires computing the collision integrals corresponding to all the four-body interactions
involving t, h, and the background fields. This task is rather daunting due to the sheer
number of allowed processes. However, the dominant interactions will be of O(↵2

s

) for the
top quarks, and O(↵

s
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t

), O(↵2

t

) for the Higgs bosons, where ↵
s
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t
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/4⇡. We
will therefore focus on these interactions, neglecting, for example, contributions involving a
factor of ↵

w

, which are numerically small compared to the Yukawa-type contributions for
the Higgs bosons16.

To estimate the relevant interaction rates, we will work at leading order in all couplings
in the high-T , weak coupling limit, neglecting all terms of O(m2/T 2

) (here m should be
understood as either a zero-temperature or thermal mass). This is the approximation
used in all previous microphysical studies of the wall velocity [76–78], as well as in the
context of plasma properties in arbitrary high-temperature gauge theories [121, 122]. This

16We have verified this is the case despite the enhancement provided by Bose-Einstein statistics.
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Finally, the gauge boson contributions are dominated by infrared dynamics and require a
classical treatment, which has been worked out in Ref. [77] and discussed in Sec. 4.3 below.

Let us first consider the interactions involving the top quark, Higgs, and background
excitations.

4.2.1 Top, Higgs, and Background Excitations

Solving the Boltzmann equations for the perturbations µ
t,h

, �T
t,h

, �T
bg

, �v
t,h

, and v
bg

requires computing the collision integrals corresponding to all the four-body interactions
involving t, h, and the background fields. This task is rather daunting due to the sheer
number of allowed processes. However, the dominant interactions will be of O(↵2

s

) for the
top quarks, and O(↵

s

↵
t

), O(↵2

t

) for the Higgs bosons, where ↵
s

= g2
3

/4⇡, ↵
t

= y2
t

/4⇡. We
will therefore focus on these interactions, neglecting, for example, contributions involving a
factor of ↵

w

, which are numerically small compared to the Yukawa-type contributions for
the Higgs bosons16.

To estimate the relevant interaction rates, we will work at leading order in all couplings
in the high-T , weak coupling limit, neglecting all terms of O(m2/T 2

) (here m should be
understood as either a zero-temperature or thermal mass). This is the approximation
used in all previous microphysical studies of the wall velocity [76–78], as well as in the
context of plasma properties in arbitrary high-temperature gauge theories [121, 122]. This

16We have verified this is the case despite the enhancement provided by Bose-Einstein statistics.
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(H )

(C)(B)(A

FIG. 7: Diagrams for 2 ↔ 2 processes needed at leading order in the coupling. Leading-log

calculations require only the squares of diagrams A–E. Next-to-leading-log, or full leading order

calculations require evaluating the squares of diagrams A–E with HTL self-energies inserted on the

internal lines, and then adding the (undressed) squares of diagrams F–J , as well as the interference

terms between diagrams with the same initial and final states.

ab ↔ cd
∣∣Mab

cd

∣∣2 /g4

q1q2 ↔ q1q2 ,

q1q̄2 ↔ q1q̄2 ,

q̄1q2 ↔ q̄1q2 ,

q̄1q̄2 ↔ q̄1q̄2

8
d2
F C2

F

dA

(
s2 + u2

t2

)

q1q1 ↔ q1q1 ,

q̄1q̄1 ↔ q̄1q̄1
8

d2
F C2

F

dA

(
s2 + u2

t2
+

s2 + t2

u2

)
+ 16 dF CF

(
CF−

CA

2

)
s2

tu

q1q̄1 ↔ q1q̄1 8
d2
F C2

F

dA

(
s2 + u2

t2
+

t2 + u2

s2

)
+ 16 dF CF

(
CF−

CA

2

)
u2

st

q1q̄1 ↔ q2q̄2 8
d2
F C2

F

dA

(
t2 + u2

s2

)

q1q̄1 ↔ g g 8 dF C2
F

(
u

t
+

t

u

)

− 8 dF CF CA

(
t2 + u2

s2

)

q1 g ↔ q1 g ,

q̄1 g ↔ q̄1 g
−8 dF C2

F

(
u

s
+

s

u

)

+ 8 dF CF CA

(
s2 + u2

t2

)

g g ↔ g g 16 dA C2
A

(
3 −

su

t2
−

st

u2
−

tu

s2

)

TABLE III: Squares of vacuum matrix elements for 2 ↔ 2 particle processes in QCD-like theories,

summed over spins and colors of all four particles. q1 and q2 represent fermions of distinct flavors,

q̄1 and q̄2 are the associated antifermions, and g represents a gauge boson. Note that the process

q1q2 ↔ q1q2, for example, appears 2Nf (Nf −1) times in the sum
∑

abcd over species in the linearized

collision operator (2.19), while q1q̄1 ↔ q1q̄1 and q1q̄1 ↔ gg each appear 4Nf times, gg ↔ gg appears

just once, etc.
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Interaction	rates
Leading	log	vacuum	matrix	elements
Process |M|2
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Table 1. Relevant 4-body processes and their corresponding matrix elements in the leading log
approximation. The matrix elements are summed over the helicities and colors of all four external
states (as well as flavors and quark – anti-quark for tq ! tq). The excitation appearing on the
internal propagators in each case is listed in the right-hand column. Note that other t- and u-channel
processes exist, but do not contribute logarithmically to the collision integrals or are suppressed by
powers of couplings small compared to g3, yt.

These contributions will also be divided by the number of degrees of freedom of the species
under consideration when entering the various �

i

k,j

.
The vacuum matrix elements must be modified to include the medium-dependent effects

discussed above. At leading order, this amounts to inserting the momentum-dependent HTL
self-energies on the internal lines. To translate the vacuum matrix elements above to their
finite-temperature analogs, we can use the results of Refs. [119, 122]. For diagrams with an
exchanged fermion in the leading log approximation, this amounts to the replacement

u

t
' �s

t
! 4 Re(p · eq k · eq⇤ + seq · eq⇤)

|eq · eq|2 (4.20)
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Hard	thermal	loop	dressing:
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Table 1. Relevant 4-body processes and their corresponding matrix elements in the leading log
approximation. The matrix elements are summed over the helicities and colors of all four external
states (as well as flavors and quark – anti-quark for tq ! tq). The excitation appearing on the
internal propagators in each case is listed in the right-hand column. Note that other t- and u-channel
processes exist, but do not contribute logarithmically to the collision integrals or are suppressed by
powers of couplings small compared to g3, yt.

These contributions will also be divided by the number of degrees of freedom of the species
under consideration when entering the various �

i

k,j

.
The vacuum matrix elements must be modified to include the medium-dependent effects

discussed above. At leading order, this amounts to inserting the momentum-dependent HTL
self-energies on the internal lines. To translate the vacuum matrix elements above to their
finite-temperature analogs, we can use the results of Refs. [119, 122]. For diagrams with an
exchanged fermion in the leading log approximation, this amounts to the replacement

u

t
' �s

t
! 4 Re(p · eq k · eq⇤ + seq · eq⇤)

|eq · eq|2 (4.20)
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with eqµ = pµ � p0µ � ⌃

µ

(p � p0) and ⌃

µ

(q) the fermionic HTL self-energy function [122,
124, 125]

⌃
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1 + i⇡ � q0
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◆ (4.21)

with m
f

(T ) the leading order fermion thermal mass, given approximately by m
f

(T ) ⇡p
1/6g

3

T for quarks (see Eq. 4.16).
For the gluon exchange diagrams, we must replace

s2 + u2

t2
! 1

2

⇣
1 +

��D
µ⌫

(p � p0)(p + p0)µ(k + k0
)

⌫

��2
⌘

(4.22)

with the retarded thermal equilibrium gluon propagator D
µ⌫

(q) given by

D
00
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�1
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00

(q, T )

D
ij
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�
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j
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(q) = D
i0

(q) = 0.

(4.23)

The relevant HTL gauge boson self energy is [122, 124, 125]

⇧
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with m
D

(T ) the Debye mass of the gauge boson (=
p

2g
3

T for the gluon).
With the above replacements, we can now perform the collision integrals numerically.

We do so using the phase space parametrization discussed and detailed in Refs. [119, 122,
126] and the Vegas Monte Carlo routine included in the Cuba package [127]. The integrals
converge reasonably quickly for most cases on a standard desktop computer to reasonable
numerical precision.

The results of this numerical evaluation are given in Equations 4.25–4.29 below. These
values can then be plugged into Eqs. 4.8 and 4.11 for the perturbations. For the Higgs
bosons, the rates (in the leading log approximation) are
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with eqµ = pµ � p0µ � ⌃
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with m
f

(T ) the leading order fermion thermal mass, given approximately by m
f

(T ) ⇡p
1/6g

3

T for quarks (see Eq. 4.16).
For the gluon exchange diagrams, we must replace
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with the retarded thermal equilibrium gluon propagator D
µ⌫

(q) given by
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The relevant HTL gauge boson self energy is [122, 124, 125]
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with m
D

(T ) the Debye mass of the gauge boson (=
p

2g
3

T for the gluon).
With the above replacements, we can now perform the collision integrals numerically.

We do so using the phase space parametrization discussed and detailed in Refs. [119, 122,
126] and the Vegas Monte Carlo routine included in the Cuba package [127]. The integrals
converge reasonably quickly for most cases on a standard desktop computer to reasonable
numerical precision.

The results of this numerical evaluation are given in Equations 4.25–4.29 below. These
values can then be plugged into Eqs. 4.8 and 4.11 for the perturbations. For the Higgs
bosons, the rates (in the leading log approximation) are
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with eqµ = pµ � p0µ � ⌃
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with m
f

(T ) the leading order fermion thermal mass, given approximately by m
f

(T ) ⇡p
1/6g
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T for quarks (see Eq. 4.16).
For the gluon exchange diagrams, we must replace
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with the retarded thermal equilibrium gluon propagator D
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The relevant HTL gauge boson self energy is [122, 124, 125]
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with m
D

(T ) the Debye mass of the gauge boson (=
p

2g
3

T for the gluon).
With the above replacements, we can now perform the collision integrals numerically.

We do so using the phase space parametrization discussed and detailed in Refs. [119, 122,
126] and the Vegas Monte Carlo routine included in the Cuba package [127]. The integrals
converge reasonably quickly for most cases on a standard desktop computer to reasonable
numerical precision.

The results of this numerical evaluation are given in Equations 4.25–4.29 below. These
values can then be plugged into Eqs. 4.8 and 4.11 for the perturbations. For the Higgs
bosons, the rates (in the leading log approximation) are
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with eqµ = pµ � p0µ � ⌃
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with m
f

(T ) the leading order fermion thermal mass, given approximately by m
f

(T ) ⇡p
1/6g
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T for quarks (see Eq. 4.16).
For the gluon exchange diagrams, we must replace
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with the retarded thermal equilibrium gluon propagator D
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The relevant HTL gauge boson self energy is [122, 124, 125]

⇧

00

(q) = m2

D

(T )

✓
1 � q0

2 |q| log

|q| + q0

|q| � q0
+

i⇡q0

2 |q|
◆

⇧

T

(q) = m2

D

(T )


q0

2 |q| +

q0q2

4 |q|3
✓

log

|q| + q0

|q| � q0
� i⇡

�◆ (4.24)

with m
D

(T ) the Debye mass of the gauge boson (=
p

2g
3

T for the gluon).
With the above replacements, we can now perform the collision integrals numerically.

We do so using the phase space parametrization discussed and detailed in Refs. [119, 122,
126] and the Vegas Monte Carlo routine included in the Cuba package [127]. The integrals
converge reasonably quickly for most cases on a standard desktop computer to reasonable
numerical precision.

The results of this numerical evaluation are given in Equations 4.25–4.29 below. These
values can then be plugged into Eqs. 4.8 and 4.11 for the perturbations. For the Higgs
bosons, the rates (in the leading log approximation) are
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with m
f

(T ) the leading order fermion thermal mass, given approximately by m
f
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T for quarks (see Eq. 4.16).
For the gluon exchange diagrams, we must replace
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The relevant HTL gauge boson self energy is [122, 124, 125]
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with m
D

(T ) the Debye mass of the gauge boson (=
p

2g
3

T for the gluon).
With the above replacements, we can now perform the collision integrals numerically.

We do so using the phase space parametrization discussed and detailed in Refs. [119, 122,
126] and the Vegas Monte Carlo routine included in the Cuba package [127]. The integrals
converge reasonably quickly for most cases on a standard desktop computer to reasonable
numerical precision.

The results of this numerical evaluation are given in Equations 4.25–4.29 below. These
values can then be plugged into Eqs. 4.8 and 4.11 for the perturbations. For the Higgs
bosons, the rates (in the leading log approximation) are
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With the above replacements, we can now perform the collision integrals numerically.

We do so using the phase space parametrization discussed and detailed in Refs. [119, 122,
126] and the Vegas Monte Carlo routine included in the Cuba package [127]. The integrals
converge reasonably quickly for most cases on a standard desktop computer to reasonable
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while the corresponding contributions to the top quark distributions are
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while their contributions to the Higgs distributions are
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Finally, the background contributions are
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Note that the background rates for the top quarks tend to appear larger than their counter-
parts in Eq. 4.27 above. This is simply because in the background rates we have summed
over all contributions, while the rates in Eqs. 4.25–4.28 are the average values per degree
of freedom (e.g. divided by N

t

= 6 in the top quark case). The latter rates will be mul-
tiplied by the appropriate N

i

factors when they enter the bubble wall equation of motion.
Also, note that the contributions in Eqs. 4.26 and 4.28 are negative because they arise from
diagrams with the relevant species on the outgoing legs of the Feynman diagrams.

In previous work, the above integrals were performed analytically using several approxi-
mations and without incorporating the (momentum-dependent) self-energies. The different
computational methods used here change the rates by O(1) factors relative to the results in
Ref. [77]. There were also some algebraic errors in the results of Ref. [77], as pointed out in
Ref. [121], that contribute to the discrepancy. Although our treatment is still formally at
the same order as that of Ref. [77], the HTL-improved calculation in many cases is expected
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These	then	enter	the	system	of	Boltzmann	equations.	Solved	by	Green’s	
function	techniques	for	general	profile

5.3 Solving the top-Higgs System

It remains to solve the equations for the top quark, Higgs, and background excitations.
Here we follow the methods found in Refs. [77, 78] with some slight modifications.

Since we are interested in static solutions to the equations of motion in the wall frame,
all quantities depend only on x and so the derivatives in Eqs. 4.8 can be re-written as
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The field-dependent masses are given by Eq. 4.15.

The system of equations can be solved by simple Green’s function techniques. Following
Ref. [77] we define the matrix � such that
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5.3 Solving the top-Higgs System

It remains to solve the equations for the top quark, Higgs, and background excitations.
Here we follow the methods found in Refs. [77, 78] with some slight modifications.

Since we are interested in static solutions to the equations of motion in the wall frame,
all quantities depend only on x and so the derivatives in Eqs. 4.8 can be re-written as
@
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! d/dx. The Boltzmann equations in the static limit are therefore a set
of linear ordinary inhomogeneous differential equations.
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HTL	numerical	result vs. Analytic	result	with	thermal	mass	insertion

Factor	of	~4	difference,	formally	at	the	same	order	in	the	LL	expansion

Above	result	requires	evaluating	the	angular	integral

Difference	between	dropping	the	constant	piece	or	not	accounts	for	most	of	the	
discrepancy

Beware	the	uncertainties!	Different	leading	log	prescriptions	lead	to	
factors	of	~	1– 10	difference	in	these	rates	à effects	in	vw

Consider	e.g.																	 contribution	to											:	

Why?	Because	the	logarithms	are	not	numerically	very	large!

Interaction	rates

A Comparing Effective Interaction Rates

The effective interaction rates we have computed and listed in Equations 4.25–4.29 differ
by O(1) factors from those appearing in the classic references [20, 77]. In this appendix, we
show that this discrepancy can be explained by the slightly different set of approximations
made in evaluating the integrals analytically in previous works. Technically, both the
methods used in Refs. [20, 77] and in this work are valid ‘leading log approximations’ to
the full first-order result, in that only processes contributing logarithmically to the collision
integrals are considered. They differ primarily in their treatments of the non-logarithmic
pieces of the various momentum integrals. The discrepancies can therefore be understood
to demonstrate the uncertainties associated with the leading log approximation and the
importance of performing a full leading-order calculation for more precise results in future
studies.

To understand the different approaches to evaluating the collision integrals, let us con-
sider the process t¯t ! gg. First of all, Ref. [77] does not include the symmetry factor for
the corresponding matrix elements, resulting in a factor of two discrepancy before evaluat-
ing any integrals [121]. Including the symmetry factor, the leading-log matrix element is
⇡ 64/9g4

3

u/t, where we have averaged over the top quark degrees of freedom. The result-
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, evaluating the integral numerically and including the top quark
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including the correct symmetry factor. Starting from the same matrix element, the different
methods for evaluating the integrals results in almost a factor of 4 difference in the result.

Simply evaluating the integral in Ref. [77] numerically, but including the thermal mass
in the propagator instead of the HTL momentum-dependent self-energy, we find

��

t

µ1,t

⇡ 1.5 ⇥ 10

�3T, (A.3)

suggesting that the simple propagator replacement over-estimates the integral by about
40%, but does not account for the whole discrepancy. In fact, most of the difference comes
from the various approximations made to arrive at the analytic result in Eq. A.2. In
particular, all non-logarithmic contributions are dropped, while numerically evaluating the
integrals includes all of the various contributions.
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In	the	high-T	approximation,	the	singlet	scalar	interaction	rates	are	
suppressed	at	leading	log	order	relative	to	e.g.	tops	and	Higgs	

Approximate	collision	term	as	small	and	drop	from	the	Boltzmann	
equations.	They	can	then	be	solved	exactly:

Full	leading	order	result	can	go	beyond	this	approximation.	Likely	
overestimates	friction.

Singlet	friction

functions in the classical limit can be shown to satisfy [129]
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where N is a noise term. This equation serves as the analog of Eq. 4.2. Further discussion
of its derivation and applicability can be found in Ref. [129].

Note that hard gauge boson excitations also exert a drag force on the bubble wall, as
computed in Ref. [77]. However, we have verified that these contributions are substantially
suppressed relative to that from the IR gauge bosons, as found in Ref. [129]. We do not
include them.

5 Solving for the Wall Velocity

With the collision terms evaluated, we can now solve the Boltzmann equations to determine
the perturbations for a given field profile and wall velocity. The goal is then to find the
value of v

w

and the profile (and hence the perturbations) such that the equations of motion
are satisfied. We will describe how this can be done below. First, let us consider solutions
to the Boltzmann equations given a particular profile and value of v

w

.

5.1 Exact Solution for the Singlet Excitations

As mentioned above, the singlet equation can be decoupled from the rest of the system
and solved exactly in the free-particle limit. The result been discussed in detail previously
[72, 73, 77], and so we simply quote it here. The integral appearing in the equations of
motion 3.9, to lowest order in v
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where the upper (lower) sign is for fermions (bosons). The function Q is defined as
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with m0

s

(T ) the singlet mass (including thermal contributions) in the broken phase (i.e.
at z ! 1). This integral is multiplied by @m2
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in the Higgs EOM, and by
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in the singlet equation.

5.2 Exact Solution for the IR Gauge Contributions

We can also solve for the classical gauge boson contribution in Eq. 4.32. The result is [129]
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where the quantity x⇤ solves m
W
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(x⇤)] = 1/L
h

, with L
h

the SM-like Higgs wall width. For
smaller x, the WKB description used to derive Eq. 4.32 breaks down. For more discussion
on this point, see Ref. [129]. Note that this value cuts off the IR divergence of Eq. 5.3.
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Note that hard gauge boson excitations also exert a drag force on the bubble wall, as
computed in Ref. [77]. However, we have verified that these contributions are substantially
suppressed relative to that from the IR gauge bosons, as found in Ref. [129]. We do not
include them.

5 Solving for the Wall Velocity

With the collision terms evaluated, we can now solve the Boltzmann equations to determine
the perturbations for a given field profile and wall velocity. The goal is then to find the
value of v
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and the profile (and hence the perturbations) such that the equations of motion
are satisfied. We will describe how this can be done below. First, let us consider solutions
to the Boltzmann equations given a particular profile and value of v
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5.1 Exact Solution for the Singlet Excitations
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5.2 Exact Solution for the IR Gauge Contributions

We can also solve for the classical gauge boson contribution in Eq. 4.32. The result is [129]
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, with L
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the SM-like Higgs wall width. For
smaller x, the WKB description used to derive Eq. 4.32 breaks down. For more discussion
on this point, see Ref. [129]. Note that this value cuts off the IR divergence of Eq. 5.3.
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Two	prescriptions:
Gauge	invariant	(approximate)	treatment	– drop	thermal	cubic	
term	and	gauge	boson	friction	term

Include	both	the	cubic	term	and	the	gauge	boson	friction	
contribution

Corresponding	friction	dominated	by	highly	infrared	modes;	treat	semi-
classically	

Gauge	bosons
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computed in Ref. [77]. However, we have verified that these contributions are substantially
suppressed relative to that from the IR gauge bosons, as found in Ref. [129]. We do not
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of its derivation and applicability can be found in Ref. [129].

Note that hard gauge boson excitations also exert a drag force on the bubble wall, as
computed in Ref. [77]. However, we have verified that these contributions are substantially
suppressed relative to that from the IR gauge bosons, as found in Ref. [129]. We do not
include them.
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Putting	these	pieces	into	the	EOM	(and	dropping	the	gauge	piece	for	
now)	we	get:

Need	to	find	profile,									,	and							such	that	the	EOM	or,	more	weakly,	
our	constraints	are	satisfied:	

How??

Putting	it	all	together…

These solutions can then be inserted into the equation for the variation in the background
temperature,
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defined with respect to T
+

, its value far ahead of the bubble in the shock front.

5.4 Approximate Solutions to the Equations of Motion

With the perturbations determined, we can now try to identify solutions to the wall equa-
tions of motion. In terms of the perturbations �

j

, Eq. 3.9 reads, for the gauge-invariant
case,
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where the last term is given in Eq. 5.1. If the gauge boson contributions are included,
the RHS of Eq. 5.3 should be added to the LHS of the above expression. The bound-
ary conditions are �
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(x ! ⌥1) = �
h,s;±(T
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) and �0
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(x ! ±1) = 0. This system of
equations will typically admit a solution for certain values of v

w

and profile �
h,s

(x). Our
strategy will be to vary the profile and scan over values of v

w

consistent with a deflagration
bubble, looking for parameters such that the equations of motion (and Boltzmann equa-
tions) are simultaneously satisfied. All parameter space points we consider have at most
one deflagration solution.

Eq. 5.13 represents a set of integro-differential equations for � ⌘ (�
h

, �
s

)

T (in the fol-
lowing discussion it will be useful to use explicit vector notation). To find its approximate
solutions, we will follow the strategy of Refs. [77, 78] and use an ansatz for the field profiles
which depend on only a few parameters. Of course in using an ansatz it is unlikely that the
full equations of motion will be satisfied exactly. However, we can reasonably approximate
a solution by scanning over the ansatz parameters and imposing physical constraints. For a
given choice of parameters, the Boltzmann equations can be solved exactly and the results
inserted into the EOM. A set of parameter values such that all constraints are simulta-
neously satisfied corresponds to an approximate solution to the original equations. This
strategy has been employed in previous calculations of the wall velocity [54, 76, 77] and we
expect the results obtained in this way to be a decent approximation to the full numerical
solution.

Before analyzing Eq. 5.13 further, some useful insight can be gained from solving the
corresponding field equations with the assumption of constant friction of the form
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temperature,

�T
bg

(x) =

1

c
4

�
1

3

� v2
w

�
Z

x

�1

X

i

h
T e

�

v,i

�v
i

� v
w

⇣
e
�

µ2,i

�µ
i

+

e
�

T2,i

�T
i

⌘i
(5.12)

defined with respect to T
+

, its value far ahead of the bubble in the shock front.

5.4 Approximate Solutions to the Equations of Motion

With the perturbations determined, we can now try to identify solutions to the wall equa-
tions of motion. In terms of the perturbations �

j

, Eq. 3.9 reads, for the gauge-invariant
case,

�(1 � v2
w

)�00
i

+

@V (�
i

, T )

@�
i

+

X

j

@m2

j

(�
i

)

@�
i

T

2

h
cj
1

�µ
j

+ cj
2

(�T
j

+ �T
bg

)

i

+

@m2

s

(�
i

)

@�
i

Z
d3p

(2⇡)

3

2E
�f

s

(x, p) = 0

(5.13)
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full equations of motion will be satisfied exactly. However, we can reasonably approximate
a solution by scanning over the ansatz parameters and imposing physical constraints. For a
given choice of parameters, the Boltzmann equations can be solved exactly and the results
inserted into the EOM. A set of parameter values such that all constraints are simulta-
neously satisfied corresponds to an approximate solution to the original equations. This
strategy has been employed in previous calculations of the wall velocity [54, 76, 77] and we
expect the results obtained in this way to be a decent approximation to the full numerical
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where the last term is given in Eq. 5.1. If the gauge boson contributions are included,
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full equations of motion will be satisfied exactly. However, we can reasonably approximate
a solution by scanning over the ansatz parameters and imposing physical constraints. For a
given choice of parameters, the Boltzmann equations can be solved exactly and the results
inserted into the EOM. A set of parameter values such that all constraints are simulta-
neously satisfied corresponds to an approximate solution to the original equations. This
strategy has been employed in previous calculations of the wall velocity [54, 76, 77] and we
expect the results obtained in this way to be a decent approximation to the full numerical
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This	is	a	set	of	integro-differential	equations	for									:	perturbations	at	a	
given	point	determined	by	integral	involving	profile

Strategy:	consider	simpler	case	of	constant	friction	term

Much	simpler:	looks	almost	like	the	Euclidean	EOMs	for	the	bounce!	
Can	solve	this	via	path	deformations	

Solving	for	the	profile
~

�(x)

/ d

~

�/dx

These solutions can then be inserted into the equation for the variation in the background
temperature,
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defined with respect to T
+

, its value far ahead of the bubble in the shock front.

5.4 Approximate Solutions to the Equations of Motion

With the perturbations determined, we can now try to identify solutions to the wall equa-
tions of motion. In terms of the perturbations �
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where the last term is given in Eq. 5.1. If the gauge boson contributions are included,
the RHS of Eq. 5.3 should be added to the LHS of the above expression. The bound-
ary conditions are �

h,s

(x ! ⌥1) = �
h,s;±(T

+

) and �0
h,s

(x ! ±1) = 0. This system of
equations will typically admit a solution for certain values of v

w

and profile �
h,s

(x). Our
strategy will be to vary the profile and scan over values of v

w

consistent with a deflagration
bubble, looking for parameters such that the equations of motion (and Boltzmann equa-
tions) are simultaneously satisfied. All parameter space points we consider have at most
one deflagration solution.

Eq. 5.13 represents a set of integro-differential equations for � ⌘ (�
h

, �
s

)

T (in the fol-
lowing discussion it will be useful to use explicit vector notation). To find its approximate
solutions, we will follow the strategy of Refs. [77, 78] and use an ansatz for the field profiles
which depend on only a few parameters. Of course in using an ansatz it is unlikely that the
full equations of motion will be satisfied exactly. However, we can reasonably approximate
a solution by scanning over the ansatz parameters and imposing physical constraints. For a
given choice of parameters, the Boltzmann equations can be solved exactly and the results
inserted into the EOM. A set of parameter values such that all constraints are simulta-
neously satisfied corresponds to an approximate solution to the original equations. This
strategy has been employed in previous calculations of the wall velocity [54, 76, 77] and we
expect the results obtained in this way to be a decent approximation to the full numerical
solution.

Before analyzing Eq. 5.13 further, some useful insight can be gained from solving the
corresponding field equations with the assumption of constant friction of the form
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T and F is the same for both field directions. Clearly this is not
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Starting	from	initial	guess,	deform	the	path	to	
minimize	"normal	force”,

Corresponds	to	friction	only	parallel	to	the	
path	in	field	space

Result	well	fit	by	kink:

3. Solve the hydrodynamic relations to obtain T
+

for various values of v
w

.

4. Vary the values of v
w

and a. For each pair, solve the Boltzmann equations as discussed
above, using T = T

+

and L
i

= aL0

i

, �
s

= a�0
s

with L0

i

and �0
s

obtained from the
numerical solution of Eq. 5.14.

5. Insert the solutions for the perturbations (and background temperature profile) into
Eq. 5.13, then compute the constraints in Eq. 5.17. The values of v

w

and a satisfying
Eq. 5.17 can be found by interpolating between the results of the scan.

This method generalizes that of Refs. [54, 76, 77] to accommodate the additional singlet
field direction.

The results for v
w

and a obtained in this way will still produce a residual ‘normal force’
perpendicular to the trajectory in field space when inserted back into Eq. 5.13 due to the
neglect of the friction in the direction / d2�/ds2. Defining s(x) = |�(x)|, the tangent and
normal unit vectors to the field space path �(s) are
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The ‘normal force’ along �(s) is given by
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A full solution to the equations of motion would guarantee that N(x) = 0 for all x. This
will not be true for our approximate solutions.

To check that this residual normal force is indeed negligible, we can deform the profile
to eliminate it. The deformation can be performed along the lines suggested by Ref. [130]
for computing the critical bubble profile. It typically results in small changes to the original
field space profile, which in turn have very little effect on the perturbations and constraints
in Eq. 5.17, since the curvature perpendicular to the path is typically significant. This
suggests that the wall velocity and profile found in the way outlined above should indeed
provide a reasonable approximation to those obtained from the full solution of the equations
of motion, at least in the cases we consider. There may be exceptions elsewhere in the
parameter space.

Note that the procedure outlined in Steps 1-5 above is quite general, and can be adapted
beyond singlet models to other scenarios with multiple field directions, provided Eq. 5.18
is approximately satisfied.

6 Wall Velocities in the Real Singlet Extension

6.1 Parameter Space and Phenomenology

We now turn to the parameter space of the real singlet extension of the Standard Model as
an application. Our goal is not a comprehensive analysis of this model. Instead, we focus
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4. Vary the values of v
w

and a. For each pair, solve the Boltzmann equations as discussed
above, using T = T

+

and L
i

= aL0

i

, �
s

= a�0
s

with L0

i

and �0
s

obtained from the
numerical solution of Eq. 5.14.

5. Insert the solutions for the perturbations (and background temperature profile) into
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Eq. 5.17 can be found by interpolating between the results of the scan.

This method generalizes that of Refs. [54, 76, 77] to accommodate the additional singlet
field direction.

The results for v
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and a obtained in this way will still produce a residual ‘normal force’
perpendicular to the trajectory in field space when inserted back into Eq. 5.13 due to the
neglect of the friction in the direction / d2�/ds2. Defining s(x) = |�(x)|, the tangent and
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A full solution to the equations of motion would guarantee that N(x) = 0 for all x. This
will not be true for our approximate solutions.

To check that this residual normal force is indeed negligible, we can deform the profile
to eliminate it. The deformation can be performed along the lines suggested by Ref. [130]
for computing the critical bubble profile. It typically results in small changes to the original
field space profile, which in turn have very little effect on the perturbations and constraints
in Eq. 5.17, since the curvature perpendicular to the path is typically significant. This
suggests that the wall velocity and profile found in the way outlined above should indeed
provide a reasonable approximation to those obtained from the full solution of the equations
of motion, at least in the cases we consider. There may be exceptions elsewhere in the
parameter space.

Note that the procedure outlined in Steps 1-5 above is quite general, and can be adapted
beyond singlet models to other scenarios with multiple field directions, provided Eq. 5.18
is approximately satisfied.

6 Wall Velocities in the Real Singlet Extension

6.1 Parameter Space and Phenomenology

We now turn to the parameter space of the real singlet extension of the Standard Model as
an application. Our goal is not a comprehensive analysis of this model. Instead, we focus
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a realistic case, but we will improve on it below. These equations are much simpler than
the full integro-differential equations of Eq. 5.13. As detailed in Ref. [48], the solution to
the equations of motion can be found numerically via path deformations, and corresponds
to a limit in which all the friction on the wall is parallel to the trajectory in the (�

h

, �
s

)

field space within the wall. This can be seen by noting that d�/dx is a “velocity” vector in
field space, so Fd�/dx always acts parallel to the trajectory. In all cases we consider, the
solution to these equations of motion is well-fit by a tanh ansatz with parameters
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(5.15)

in the fluid frame. Here L
i

= L
h

, L
s

are the wall widths and �
i

are offsets allowing for a
good fit to the numerical solution. We can take �

h

= 0 without loss of generality. Note
that if we had allowed �

s

6= 0 in the electroweak-symmetric phase, we could have instead
used �

s

(x) = �0

s

+ ��
s

/2

⇣
1 + tanh

x��s
Ls

⌘
for the ansatz, with �0

s

the singlet VEV in the
symmetric phase and ��

s

the change in VEV across the wall. The remaining analysis
would proceed in the same way.

How does the situation change when including a realistic friction term? The friction
is no longer proportional to d�/dx and so will have some component perpendicular to
the field space trajectory, acting as an effective “normal force" along the path. However,
there is a fortunate simplification we can make if the friction perpendicular to the field
space trajectory found by solving Eq. 5.14 is negligible. In this case, the field will not be

significantly deformed from its field space path found using the constant friction equations of

motion, although the field profile in physical space will change. In other words, if we write
the solution to Eq. 5.14 as �(s) where s = s(x) is some parameter such that |d�/ds| = 1,
the effect of a change in the friction parallel to �(s) will only be to alter s(x). Meanwhile, a
change in the friction normal to the profile would result in a change of �(s) itself. Applying
this reasoning to the tanh ansatz (which we find to be a good fit to the constant friction
solution), the effect of altering only the friction parallel to the trajectory and neglecting
that normal to the path will simply be an overall simultaneous re-scaling of all the widths
and offsets:

L
h,s

! aL
h,s

, �
s

! a�
s

. (5.16)

This is the only change in the tanh profile that will not deform the path in field space.
Then, starting from the constant friction solution, the problem can be reduced to finding
the values of v

w

and a such that the pressure and pressure gradient in the wall vanish:
Z

dx (Eq. 5.13) · d�

dx
= 0,

Z
dx (Eq. 5.13) · d2�

dx2

= 0.

(5.17)

The above constraints will only be satisfied for values of v
w

and a such that the wall is
not accelerating or expanding/contracting, as required for the steady-state solution we are
seeking. This is a simple generalization of the strategy used in the SM case in Refs. [54,
76, 77], where v

w

and L
w

are varied.
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How	do	things	change	when	including	the	full	friction	term?	Friction	is	
no	longer	purely	parallel	to	the	trajectory	satisfying	the	constant	
friction	EOM

Fortunate	simplification:	perpendicular	friction	
typically	perturbatively small!

If	we	neglect	this	subdominant	piece,	only	effect	of	going	to	full	friction	
term	is	rescaling	of	profile:

Solving	for	the	profile
In what follows, we will assume that the friction force normal to the field space path

determined from Eq. 5.14 is negligible, such that the discussion of the above paragraph
applies. The validity of this assumption can be checked a posteriori (which we do), but
there is an intuitive reason why it should often be reasonable. At very high temperatures the
potential is stabilized at the origin (in our approximation) by the effective thermal masses
⇠ gT of all the scalars. Around T ⇠ 0, the potential is necessarily stabilized at a minimum
away from the origin. The temperature of the phase transition is such that two minima
exist simultaneously and are (nearly) degenerate. Provided that the tree-level contribution
to the barrier is not too large, this can only occur if there is a significant cancellation
between the zero-temperature and finite-temperature corrections in some direction of the
� field space. This approximate cancellation will be largest along the field space trajectory
�(s) found by solving Eq. 5.14 such that, schematically,
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The resulting ridge in the finite-temperature effective potential is precisely that along which
the cubic term becomes relevant. We can insert the solution to Eq. 5.14 into Eq. 5.13
and see how we expect the solution to change when going to the full EOM. With the
approximate cancellation of Eq. 5.18 in effect, the full equation of motion parallel to �(s)

is then schematically
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along �(s). The (approximate) cancellation has made the contribution from the friction
the leading effect. The change in the friction term from Eq. 5.14 to 5.13 will alter s(x) but
leave the field space trajectory �(s) unchanged. In contrast, the cancellation in Eq. 5.18
is not expected to hold in the perpendicular direction along the path (/ d2�/ds2), unless
the minimum of the potential away from the origin lies in the bottom of a shallow valley.
In the absence of such an approximate continuous symmetry, the full EOM perpendicular
to �(s) is
⇢
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(5.20)
and so the effect of the friction in this direction is perturbatively small, resulting in a
negligible correction to the perpendicular component of Eq. 5.14 and hence to �(s).

The above discussion suggests the following strategy for finding approximate solutions
to the equations of motion for a given parameter space point:

1. Compute the phase transition properties, namely the order parameter and T
n

. We
do this using the CosmoTransitions package [130].

2. Solve for the constant friction profile from Eq. 5.14. This can be done using path
deformations [48] or otherwise. Fit the solution to the tanh ansatz Eq. 5.15.
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In what follows, we will assume that the friction force normal to the field space path
determined from Eq. 5.14 is negligible, such that the discussion of the above paragraph
applies. The validity of this assumption can be checked a posteriori (which we do), but
there is an intuitive reason why it should often be reasonable. At very high temperatures the
potential is stabilized at the origin (in our approximation) by the effective thermal masses
⇠ gT of all the scalars. Around T ⇠ 0, the potential is necessarily stabilized at a minimum
away from the origin. The temperature of the phase transition is such that two minima
exist simultaneously and are (nearly) degenerate. Provided that the tree-level contribution
to the barrier is not too large, this can only occur if there is a significant cancellation
between the zero-temperature and finite-temperature corrections in some direction of the
� field space. This approximate cancellation will be largest along the field space trajectory
�(s) found by solving Eq. 5.14 such that, schematically,
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The resulting ridge in the finite-temperature effective potential is precisely that along which
the cubic term becomes relevant. We can insert the solution to Eq. 5.14 into Eq. 5.13
and see how we expect the solution to change when going to the full EOM. With the
approximate cancellation of Eq. 5.18 in effect, the full equation of motion parallel to �(s)

is then schematically
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along �(s). The (approximate) cancellation has made the contribution from the friction
the leading effect. The change in the friction term from Eq. 5.14 to 5.13 will alter s(x) but
leave the field space trajectory �(s) unchanged. In contrast, the cancellation in Eq. 5.18
is not expected to hold in the perpendicular direction along the path (/ d2�/ds2), unless
the minimum of the potential away from the origin lies in the bottom of a shallow valley.
In the absence of such an approximate continuous symmetry, the full EOM perpendicular
to �(s) is
⇢
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and so the effect of the friction in this direction is perturbatively small, resulting in a
negligible correction to the perpendicular component of Eq. 5.14 and hence to �(s).

The above discussion suggests the following strategy for finding approximate solutions
to the equations of motion for a given parameter space point:

1. Compute the phase transition properties, namely the order parameter and T
n

. We
do this using the CosmoTransitions package [130].

2. Solve for the constant friction profile from Eq. 5.14. This can be done using path
deformations [48] or otherwise. Fit the solution to the tanh ansatz Eq. 5.15.
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Parallel:

Perpendicular:

In what follows, we will assume that the friction force normal to the field space path
determined from Eq. 5.14 is negligible, such that the discussion of the above paragraph
applies. The validity of this assumption can be checked a posteriori (which we do), but
there is an intuitive reason why it should often be reasonable. At very high temperatures the
potential is stabilized at the origin (in our approximation) by the effective thermal masses
⇠ gT of all the scalars. Around T ⇠ 0, the potential is necessarily stabilized at a minimum
away from the origin. The temperature of the phase transition is such that two minima
exist simultaneously and are (nearly) degenerate. Provided that the tree-level contribution
to the barrier is not too large, this can only occur if there is a significant cancellation
between the zero-temperature and finite-temperature corrections in some direction of the
� field space. This approximate cancellation will be largest along the field space trajectory
�(s) found by solving Eq. 5.14 such that, schematically,
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The resulting ridge in the finite-temperature effective potential is precisely that along which
the cubic term becomes relevant. We can insert the solution to Eq. 5.14 into Eq. 5.13
and see how we expect the solution to change when going to the full EOM. With the
approximate cancellation of Eq. 5.18 in effect, the full equation of motion parallel to �(s)

is then schematically
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along �(s). The (approximate) cancellation has made the contribution from the friction
the leading effect. The change in the friction term from Eq. 5.14 to 5.13 will alter s(x) but
leave the field space trajectory �(s) unchanged. In contrast, the cancellation in Eq. 5.18
is not expected to hold in the perpendicular direction along the path (/ d2�/ds2), unless
the minimum of the potential away from the origin lies in the bottom of a shallow valley.
In the absence of such an approximate continuous symmetry, the full EOM perpendicular
to �(s) is
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and so the effect of the friction in this direction is perturbatively small, resulting in a
negligible correction to the perpendicular component of Eq. 5.14 and hence to �(s).

The above discussion suggests the following strategy for finding approximate solutions
to the equations of motion for a given parameter space point:

1. Compute the phase transition properties, namely the order parameter and T
n

. We
do this using the CosmoTransitions package [130].

2. Solve for the constant friction profile from Eq. 5.14. This can be done using path
deformations [48] or otherwise. Fit the solution to the tanh ansatz Eq. 5.15.

– 30 –

Friction	contribution	dominates

a realistic case, but we will improve on it below. These equations are much simpler than
the full integro-differential equations of Eq. 5.13. As detailed in Ref. [48], the solution to
the equations of motion can be found numerically via path deformations, and corresponds
to a limit in which all the friction on the wall is parallel to the trajectory in the (�

h

, �
s

)

field space within the wall. This can be seen by noting that d�/dx is a “velocity” vector in
field space, so Fd�/dx always acts parallel to the trajectory. In all cases we consider, the
solution to these equations of motion is well-fit by a tanh ansatz with parameters
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in the fluid frame. Here L
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= L
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, L
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are the wall widths and �
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are offsets allowing for a
good fit to the numerical solution. We can take �
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= 0 without loss of generality. Note
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6= 0 in the electroweak-symmetric phase, we could have instead
used �
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for the ansatz, with �0

s

the singlet VEV in the
symmetric phase and ��

s

the change in VEV across the wall. The remaining analysis
would proceed in the same way.

How does the situation change when including a realistic friction term? The friction
is no longer proportional to d�/dx and so will have some component perpendicular to
the field space trajectory, acting as an effective “normal force" along the path. However,
there is a fortunate simplification we can make if the friction perpendicular to the field
space trajectory found by solving Eq. 5.14 is negligible. In this case, the field will not be

significantly deformed from its field space path found using the constant friction equations of

motion, although the field profile in physical space will change. In other words, if we write
the solution to Eq. 5.14 as �(s) where s = s(x) is some parameter such that |d�/ds| = 1,
the effect of a change in the friction parallel to �(s) will only be to alter s(x). Meanwhile, a
change in the friction normal to the profile would result in a change of �(s) itself. Applying
this reasoning to the tanh ansatz (which we find to be a good fit to the constant friction
solution), the effect of altering only the friction parallel to the trajectory and neglecting
that normal to the path will simply be an overall simultaneous re-scaling of all the widths
and offsets:
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This is the only change in the tanh profile that will not deform the path in field space.
Then, starting from the constant friction solution, the problem can be reduced to finding
the values of v

w

and a such that the pressure and pressure gradient in the wall vanish:
Z

dx (Eq. 5.13) · d�

dx
= 0,

Z
dx (Eq. 5.13) · d2�

dx2

= 0.

(5.17)

The above constraints will only be satisfied for values of v
w

and a such that the wall is
not accelerating or expanding/contracting, as required for the steady-state solution we are
seeking. This is a simple generalization of the strategy used in the SM case in Refs. [54,
76, 77], where v

w

and L
w

are varied.
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Suggests	the	following	prescription:

1.	Compute	nucleation	temperature	and	initial	profile

2.	Solve	for	constant	friction	profile.	Fit	to	tanh

3.	Solve	hydrodynamic	equations	to	determine	T	near	the	wall	
(see	Jose	Miguel’s	talk)

4.	Vary	values	of	vw ,	a.	For	each	pair,	solve	for	perturbations

5.	Inset	perturbations	and	profile	into	EOM	and	impose	
constraints

Values	of	vw ,	a	approximately	solving	full	set	of	EOMs	and	Boltzmann	
equations	correspond	to	those	satisfying	the	constraints.

A	prescription
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Walls	move	quickly

For	strong	enough	phase	transitions,	no	subsonic	solutions

Likely	optimistic	friction	estimate	(rates	can	be	larger,	singlet	friction	
neglected)

Results
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Figure 2. Wall velocities for the xSM parameter space described in the text. The solid (dashed)
curves depict the results neglecting (including) the SU(2)L gauge boson contributions to the finite
temperature effective potential and friction. No subsonic solutions are found with �h(Tn)/Tn & 1

(& 1.1) for the points in Set 1 neglecting (including) the gauge bosons. The curves corresponding
to Set 2 would extend beyond �h(Tn)/Tn = 1.1, however the perturbative fluid approximation
begins to break down significantly for stronger transitions, and so we restrict our results to the
region shown. The red dotted line shows the speed of sound in the plasma, above which non-
local electroweak baryogenesis is not possible. Note that we have searched exclusively for subsonic
solutions to the equations of motion.

smaller pressure difference between the phases. The friction on the bubble wall also tends
to be enhanced for larger thermal masses.

Interestingly, for strong first-order phase transitions, we find that subsonic solutions
to the equations of motion may not exist. This is because as v

w

! c
s

, the background
temperature contribution begins to dominate in the Higgs and singlet field EOMs (it is
proportional to 1/(c2

s

� v2
w

)). As pointed out in Ref. [54], the background terms typically
enter with a relative sign to those from the heavy species, thus reducing the total friction
for subsonic deflagrations. This behavior is seen for Set 1 in Fig. 2: no subsonic solution
exists for the gauge-invariant case with �

h

(T
n

)/T
n

& 1. Including the gauge-dependent
terms, subsonic solutions can extend up to �

h

(T
n

)/T
n

⇠ 1.1, but not higher. We conclude
that viable non-local electroweak baryogenesis in singlet-driven models is incompatible with
very strong first-order phase transitions, at least in some cases. This can be at odds with
sphaleron suppression inside the bubble, as seen for Set 1.

Even if a subsonic solution exists, the bubbles tend to expand rather quickly from
the standpoint of successful EWB. For example, previous studies of CP -violating sources
in the MSSM [27–29] suggest that electroweak baryogenesis tends to be most efficient for
v
w

⇠ 0.01, while Fig. 2 indicates that v
w

> 0.2 for most points featuring a strongly first-
order phase transition. Viable bayogenesis in singlet-driven scenarios may thus require
substantially more CP -violation than in models with slow walls (such as the MSSM with
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Walls	move	quickly	and	they’re	thin

Results

� s
/T

�h(Tn)/Tn

Set 1

Set 2

-4

-2

0

2

4

0.6 0.7 0.8 0.9 1 1.1

L
h
/T

�h(Tn)/Tn

Set 1

Set 2

0

5

10

15

20

0.6 0.7 0.8 0.9 1 1.1

L
s
/T

�h(Tn)/Tn

Set 1

Set 2

0

5

10

15

20

0.6 0.7 0.8 0.9 1 1.1

Figure 3. Late-time bubble wall profiles relevant for electroweak baryogenesis obtained by solving
the wall equations of motion. The solid (dashed) curves depict the results neglecting (including) the
SU(2)L gauge boson contributions to the finite temperature effective potential and friction. The
top panel shows the singlet field offset, while the bottom two show the SM-like Higgs and singlet
wall widths. Bubbles with strong first-order phase transitions tend to feature Lh,s ⇠ 5/T and the
singlet lagging slightly behind the Higgs field.

light stops) to overcome the suppression arising from large v
w

.
Our methods also allow us to determine the wall widths and offset for the subsonic

configurations. These quantities are important inputs for microphysical calculations of
the baryon asymmetry. The resulting bubble wall profiles for Sets 1 and 2 are shown in
Fig. 3. The offset can change sign, with the singlet field lagging behind that of the SM-like
Higgs for stronger phase transitions. For �

h

(T
n

)/T
n

& 1, the wall widths are typically
⇠ O(5/T ). This is substantially smaller than typical values in Standard Model-like cases
and consistent with the findings of Ref. [48] in the NMSSM. Thin walls follow from the
large pressure difference due to the changing singlet VEV during the transition. This is in
fact promising for electroweak baryogenesis, since in many cases the CP -violating sources
scale as ⇠ 1/L

w

[28, 135].
One may ask to what extent we should expect similar results beyond the minimal real

singlet extension of the Standard Model. After all, the xSM is known to be incomplete
from the standpoint of electroweak baryogenesis, since it contains no new source of CP -
violation. However, the model can be modified slightly to incorporate CP -violation by e.g.
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a realistic case, but we will improve on it below. These equations are much simpler than
the full integro-differential equations of Eq. 5.13. As detailed in Ref. [48], the solution to
the equations of motion can be found numerically via path deformations, and corresponds
to a limit in which all the friction on the wall is parallel to the trajectory in the (�

h

, �
s

)

field space within the wall. This can be seen by noting that d�/dx is a “velocity” vector in
field space, so Fd�/dx always acts parallel to the trajectory. In all cases we consider, the
solution to these equations of motion is well-fit by a tanh ansatz with parameters

�
i

(x) =

�0

i

2

✓
1 + tanh

x � �
i

L
i

◆
(5.15)

in the fluid frame. Here L
i

= L
h

, L
s

are the wall widths and �
i

are offsets allowing for a
good fit to the numerical solution. We can take �

h

= 0 without loss of generality. Note
that if we had allowed �

s

6= 0 in the electroweak-symmetric phase, we could have instead
used �

s

(x) = �0

s

+ ��
s

/2

⇣
1 + tanh

x��s
Ls

⌘
for the ansatz, with �0

s

the singlet VEV in the
symmetric phase and ��

s

the change in VEV across the wall. The remaining analysis
would proceed in the same way.

How does the situation change when including a realistic friction term? The friction
is no longer proportional to d�/dx and so will have some component perpendicular to
the field space trajectory, acting as an effective “normal force" along the path. However,
there is a fortunate simplification we can make if the friction perpendicular to the field
space trajectory found by solving Eq. 5.14 is negligible. In this case, the field will not be

significantly deformed from its field space path found using the constant friction equations of

motion, although the field profile in physical space will change. In other words, if we write
the solution to Eq. 5.14 as �(s) where s = s(x) is some parameter such that |d�/ds| = 1,
the effect of a change in the friction parallel to �(s) will only be to alter s(x). Meanwhile, a
change in the friction normal to the profile would result in a change of �(s) itself. Applying
this reasoning to the tanh ansatz (which we find to be a good fit to the constant friction
solution), the effect of altering only the friction parallel to the trajectory and neglecting
that normal to the path will simply be an overall simultaneous re-scaling of all the widths
and offsets:

L
h,s

! aL
h,s

, �
s

! a�
s

. (5.16)

This is the only change in the tanh profile that will not deform the path in field space.
Then, starting from the constant friction solution, the problem can be reduced to finding
the values of v

w

and a such that the pressure and pressure gradient in the wall vanish:
Z

dx (Eq. 5.13) · d�

dx
= 0,

Z
dx (Eq. 5.13) · d2�

dx2

= 0.

(5.17)

The above constraints will only be satisfied for values of v
w

and a such that the wall is
not accelerating or expanding/contracting, as required for the steady-state solution we are
seeking. This is a simple generalization of the strategy used in the SM case in Refs. [54,
76, 77], where v

w

and L
w

are varied.
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Don’t	always	have	to	compute	wall	velocity	from	scratch.	Can	match	
onto	existing	results	for	models	with	similar	features

This	is	fortunate,	but	results	only	as	good	as	the	underlying	
microphysical	calculation	you	are	matching	onto

Extending	to	other	models

In general, one needs to solve the coupled set of Boltzmann equations represented by

Eq. 41 to determine the perturbations �i. However, the situation is simplified by noting that,

when the wall velocity is small and the wall is not too thin, the terms involving �0i ⇠ �i/Lw

are multiplied by cjvw and can thus be significantly smaller than the terms involving the �i

(the latter are multiplied by the various rates which are typically of O(10�2 T ) or larger).

Thus, in this regime, we can approximate the perturbations as roughly constant in the wall,

�0 = 0. Of course this approximation breaks down for faster moving, thinner walls, but

we use it here to obtain a rough estimate to compare between our benchmarks and the

MSSM. Ref. [100] compared the friction coe�cients found using this approximation with

the full numerical solution for the light stop MSSM scenario and found discrepancies up

to a factor of 3 for the case of light stops. When discussing the wall velocities for each of

our benchmarks we address the implications of these possible di↵erences and find that our

overall conclusions remain unchanged.

Under this simplifying assumption, the Boltzmann equations can be easily inverted for

the perturbations �j, resulting in ~� = �

�1

F. Plugging in these solutions, the equations of

motion become

�00

i �
@V (�, T )

@�i

= ⌘ivw�
�2

i

T
�0

i (44)

where the �0

i arises from the @tm
2(�) term on the RHS of Eq. 40. The ⌘i are (constant)

viscosity coe�cients which characterize the friction from the plasma on the field direction

i of the expanding bubble wall. These coe�cients depend on the interactions of all species

present in the plasma with one another and with the bubble wall and their calculation is

quite di�cult. We dedicate Sec. VC below to their computation.

The form of Eq. 44 does not yet match that of the fluid equation (34). In particular, the

damping term in Eq. 44 carries additional space-time dependence by virtue of the �2 term

multiplying the derivative. However, � and ⌘ can be easily related as follows [106]: let us

consider only one field direction for simplicity, with viscosity coe�cient ⌘ in Eq. 44 and �

in Eq. 34 (the generalization to multiple field directions is given below). Multiplying Eq. 34

by �0 and integrating over x results in

�vw� = �V (45)

where �V ⌘ V (�
0

, Tn)� V (�n, Tn) is the pressure di↵erence between the phases and

� ⌘
Z

(�0)2dx (46)

38

Phenomenological	friction	terms;	matched	to	microphysical	
calculation.	Can	have	more	complicated	parametric	
dependence
See	e.g.	Huber	+	Sopena,	2013;	Megevand,	2013l;	Konstandin et	al,	2014…
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Lots	of	theoretical	uncertainties	associated	with	approximations	in	
microphysical	calculation	of	wall	velocities

-Simplified	hydro
-Fluid	approximation
-Interaction	rates	(kinetic	theory,	high-T/leading	log	expansion)
-Free	passage	for	singlet

These	lead	to	large	(~100%)	uncertainties	on	vw

Many	opportunities	for	improving	these	calculations

Closing	thoughts
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Zeroth	order	determination	of	whether	to	expect	fast/”runaway”	
bubbles	can	be	obtained	using	Bodeker-Moore	criterion.	Probably	
sufficient	for	gravitational	wave	spectrum,	but	no	analog	for	checking	
whether	vw<cs.

Phenomenological	approaches	allow	one	to	bootstrap	using	existing	
results	(if	model	doesn’t	look	too	different).	Still,	this	approach	is	at	
most	as	accurate	as	the	underlying	microphysical	calculation.

Good	idea	to	check	robustness	of	baryon	asymmetry	calculation	WRT	
to	vw (and	don’t	use	the	MSSM	predicted	value!).

Ultimately,	sharp	predictions	for	the	baryon	asymmetry	will	likely	
require	improving	these	microphysical	calculations.

Closing	thoughts
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