A Measurement of the <sup>19</sup>Ne Beta Asymmetry & a Determination of  $|V_{ud}|$ 

#### A. R. Young NCSU/TUNL



## Beta Decay Observables



## **Beta Decay Parameters**

Jackson, Treiman and Wyld (Phys. Rev. 106 and Nucl. Phys. 4, 1957)



On-going or planned efforts to measure:

- (1) Decay rates and  $\beta$ -spectra ( $G_F V_{ud}, \xi, b$ )
- (2) Unpolarized angular correlations  $(a_{\beta\nu}, b)$
- (3) Polarized angular correlations  $(A_{\beta}, B_{\nu}, b, b_{\nu})$

(4) New program to measure circular polarization asymmetry

Mirrors are isobaric analog mixed decays → two measurements needed to determine both V and A Couplings: Decay Rate + Angular Correlation

#### Angular Correlations in Nuclei – Polarized Systems

Rather limited set of measurements on polarized nuclei at present-->

| Species                              | Decay | Method          | Corr                    | Corr.<br>unc | Group       |                     |
|--------------------------------------|-------|-----------------|-------------------------|--------------|-------------|---------------------|
| <sup>19</sup> Ne                     | F/GT  | Atomic<br>Beam  | Α <sub>β</sub>          | ~2%          | Princeton   | Complete<br>In 1995 |
| <sup>37</sup> K                      | F/GT  | Optical<br>Trap | Α <sub>β</sub>          | ~0.1%        | TRINAT-TAMU | ongoing             |
| <sup>21</sup> Na,<br><sup>37</sup> K | F/GT  | Atomic<br>Beam  | <b>σ-Α</b> <sub>β</sub> | ~0.1%        | NSCL        | ongoing             |

any others?

<sup>19</sup>Ne (Princeton): in situ polarimetry precision at 1.5%
 <sup>37</sup>K (TRINAT-TAMU): in situ polarimetry precision at ~0.1%
 <sup>Motivated to determine mixing ratio...
 Spin-asymmetry (NSCL): running soon, very strong constraints on RHC
</sup>

Many more measurements (on mirrors as well as other systems) planned for unpolarized nuclei..

More experiments coming (see later in talk)!

## The $\beta$ -asymmetry



 $R = R_o(1 + (v/c) P A(E) cosθ)$ β-asymmetry = A(E) in angular distribution of β

$$A_{\beta}(0) = \frac{\rho^2 - 2\rho\sqrt{J(J+1)}}{(1+\rho^2)(J+1)} \qquad \qquad \rho \equiv \frac{C_A M_{GT}}{C_V M_F}$$

Ignoring recoil order terms – just a function of  $\rho$ !

## **Measurement Challenges**

 $\beta$  directional distribution:  $1 + P \frac{v}{c} A(E) \cos\theta$  (polarized neutrons)



- $<\cos\theta>$   $\longrightarrow$  Scattering (esp. backscattering)

Spin ratios provide robust 1<sup>st</sup> order strategy for experiment – "superratio" eliminates detector efficiencies and rate variations

## $A_{\beta}$ in <sup>19</sup>Ne(1/2<sup>+</sup>) $\rightarrow$ <sup>19</sup>F(1/2<sup>+</sup>) Positron Decay

Calaprice group, thesis of Gordon Jones (1995); G. L. Jones, A. Ackerson, M. S. Anderson, F. P. Calaprice, F. Loeser, A. Razaghi, A. R. Young

Hero who finished analysis: D. C. Combs

 $A_{\beta} = -0.0391(14)$  (current)

- $\begin{array}{c} \begin{array}{c} & & & & \\ 1.554 \text{ MeV}, 3/2^{+} & & & \\ & & & \\ 1.554 \text{ MeV}, 3/2^{+} & & \\ & & & \\ & & & \\ 0.110 \text{ MeV}, 1/2 & & \\ & & & \\ 0 \text{ MeV}, 1/2^{+} & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ 0 \text{ MeV}, 1/2^{+} & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ \end{array} \end{array}$ {c} \begin{array}{c} & & & & \\ \end{array} \begin{array}{c} & & & & \\ \end{array} \begin{array}{c} & & & & \\ & & & \\ \end{array} \end{array}{c} \end{array} \begin{array}{c} & & & & \\ & & & & \\ \end{array} \end{array}{c} \end{array}\begin{array}{c} & & & & \\ & & & \\ \end{array} \end{array}{c} \end{array} \begin{array}{c} & & & & \\ & & & \\ \end{array} \end{array}{c} \end{array}{c} \end{array} \begin{array}{c} & & & & \\ & & & \\ \end{array} \end{array}{c} \end{array}{c} \end{array}{c} \end{array}
- Accidental cancellation makes  $A_\beta$  very sensitive to  $\rho {:}~\delta A/A \sim 13 d\rho/\rho$

Relaxes demands on systematic error budget! (δA translates into much smaller δρ)

• Critical work sorting out nuclear corrections for mirrors done in 2008 & 2009:

Severijns et al., PRC **78**, 055501 (2008) Naviliat and Severijns, PRL **102**, 142302 (2009) T<sub>1/2</sub> to ground state: 17.2818(94)

2.727 MeV, 1/2

K.E. max = 2.216 keV

$$\begin{split} \mathsf{M}_{\mathsf{F}} &= 1\\ \mathsf{f}_{\mathsf{A}}/\mathsf{f}_{\mathsf{V}} &= 1.0143(29)\\ (1+\Delta_{\mathsf{R}}) &= 1.02361(38)\\ (1+\delta_{\mathsf{R}}) &= 1.01533(12)\\ (1+\delta_{\mathsf{NS}}) &= .9948(4) \end{split}$$

#### Princeton/Berkeley Polarized Atomic Beam Apparatus

(State of the Art until well after 2000)



~2000 – 3000 polarized decays/sec in cell

Asymmetry



P=+1.6015(29) for convention of Severijns et al

Error Budget <sup>19</sup>Ne

| Systematic                            | Correction (10 <sup>-4</sup> ) | Uncertainty (10 <sup>-4</sup> ) |
|---------------------------------------|--------------------------------|---------------------------------|
| Monte Carlo Corrections:              |                                |                                 |
| Above threshold in both detectors:    |                                |                                 |
| Backscatter correction                | +14.5                          | ±3.6                            |
| Energy loss correction                | -2.0                           | $\pm 0.5$                       |
| Above threshold in a single detector: |                                |                                 |
| Backscatter correction                | +3.0                           | $\pm 0.8$                       |
| Energy loss correction                | -0.9                           | ±0.2                            |
| Below threshold in both detectors:    | -0.5                           | ±0.1                            |
| Polarization                          | _                              | +5.7 -0.0                       |
| Spin relaxation                       | +5.3                           | <b>±5</b> .3                    |
| Energy non-linearity                  | -                              | $\pm 0.5$                       |
| Dead time                             | -0.5                           | $\pm 0.4$                       |
| Pileup                                | -0.6                           | $\pm 0.4$                       |
| Background subtraction                | +0.2                           | ±0.2                            |
| Statistical                           | _                              | ± 3.0                           |
| Total                                 | +18.5                          | +9.2 -7.2                       |

#### $\delta A/A = 2.47\%$

(previous value, 3.9%)

Not limited by statistics

| Error Budge                           | Systematic errors:             |                                 |                                        |
|---------------------------------------|--------------------------------|---------------------------------|----------------------------------------|
| Systematic                            | Correction (10 <sup>-4</sup> ) | Uncertainty (10 <sup>-4</sup> ) | the usual suspects.                    |
| Monte Carlo Corrections:              |                                |                                 |                                        |
| Above threshold in both detectors:    |                                |                                 |                                        |
| Backscatter correction                | +14.5                          | ±3.6                            |                                        |
| Energy loss correction                | -2.0                           | $\pm 0.5$                       |                                        |
| Above threshold in a single detector: |                                |                                 | Scattering corrections (2)             |
| Backscatter correction                | +3.0                           | $\pm 0.8$                       |                                        |
| Energy loss correction                | -0.9                           | ±0.2                            |                                        |
| Below threshold in both detectors:    | -0.5                           | $\pm 0.1$                       |                                        |
| Polarization                          | _                              | +5.7 -0.0                       |                                        |
| Spin relaxation                       | +5.3                           | <b>±5</b> .3                    | Polarization (1)                       |
| Energy non-linearity                  | -                              | ±0.5 ┥                          | —————————————————————————————————————— |
| Dead time                             | -0.5                           | $\pm 0.4$                       |                                        |
| Pileup                                | -0.6                           | $\pm 0.4$                       |                                        |
| Background subtraction                | +0.2                           | ±0.2 🗲                          | ——Background Subtraction               |
| Statistical                           | _                              | $\pm 3.0$                       |                                        |
| Total                                 | +18.5                          | +9.2 -7.2                       | _                                      |

 $\delta A/A = 2.47\%$ 

Error Budget <sup>19</sup>Ne



 $\delta A/A = 2.47\%$ 

Error Budget <sup>19</sup>Ne



 $\delta A/A = 2.47\%$ 

Dustin Combs thesis: re-analysis of scattering corrections, including backscattering reconstruction

## **Scattering Correction**

Strategy: use timing to reconstruct backscatters which hit one detector (e.g. D1) and then scatter into the second (D2) – use T1-T2 to determine initial direction of beta!



Full PENELOPE model of both beta-asymmetry timing spectrum and timing calibration measurements, together with detector model including charge transport of quasiparticles in Si Overlap region results in Errors in assignment of dir!

 $\Delta A_{\beta}/A_{\beta} = 3.8(0.9)\%$ 

PENELOPE v2002 – vetted with direct tests and in the UCNA experiment Backscattering most challenging – 25% uncertainty assigned to MC results

Error Budget <sup>19</sup>Ne



Gordon Jones did an excellent job of  $\delta A/A = 2.47\%$  optimizing the performance of the polarizer, a device in use for almost 40 years – expected polarization was > 99%

## Polarization (old school)



Set conservative lower limit on polarization by assuming background completely depolarized

Error Budget <sup>19</sup>Ne



$$\delta A/A = 2.47\%$$





## Status of <sup>19</sup>Ne

- Overall uncertainty  $dA_{\beta}/A_{\beta} = 2.47\%$
- Leading uncertainty from polarization (1.5% from beam polarization, 1.1% from depolarization), next is scattering (0.9%)
- Lifetime uncertainty ~0.02%
- Results in  $\delta V_{ud}/V_{ud} = 0.16\%$  for <sup>19</sup>Ne alone (superior to the PDG 2018 neutron value)
- Uncertainty from A now comparable to theory uncertainties  $(f_A/f_v)!$

## **Theory Needs**

$$f_V t (1 + \delta'_R) \left( 1 + \delta^V_{NS} - \delta^V_C \right) \\= \frac{K}{G_F^2 V_{ud}^2} \frac{1}{\left| M_F^0 \right|^2 C_V^2 \left( 1 + \Delta^V_R \right) \left( 1 + \frac{f_A}{f_V} \rho^2 \right)},$$

One other quantity that depends weakly on a shell-model calculation is the ratio  $f_A/f_v$  (column 4 in Table VIII). Here a modest shell-model calculation is sufficient. We can also use these shell-model calculations to determine the relative sign of the Fermi and Gamow-Teller matrix elements, which can then be taken as the sign of  $\rho$  in Eq. (22). Finally, the resulting Ft mirror values and corresponding values for  $\rho$  (using Ft<sup>0+ -0+</sup> = (3071.4 ± 0.8) s [25], and assigning an error of 20% to the calculated deviations of  $f_A/f_v$  from unity) are recorded in Table IX.



 $\rho^2$  a factor of 4 or more greater than other mirrors except neutron (where  $f_{a}/f_{v}$  correction is order 10<sup>-5</sup>)

## Next Generation Angular Correlations

#### How has the field moved forward to improve?

- Ion trap measurements of the beta-neutrino correlations,  $a_{\beta\nu}$
- Laser trap measurements of  $A_{\beta}$ ,  $a_{\beta\nu}$

#### How to improve precision:

- Produce highly localized, "massless" source (no cell) lon and optical traps ideal
- Reduce/eliminate scattering effects from grids, apertures, detectors
   Use position sensitive reconstruction, low mass,

#### low Z components

• Eliminate backgrounds

Two-stage trapping, pure samples, coincidence signals, event reconstruction

Common elements of current expts

When are we projected to be ready for an significant jump in the precision of these measurements?

# Now!

Example:

Laser-trapped species include Alkali metals (<sup>37</sup>K) and metastable noble gas atoms (<sup>19</sup>Ne)





# Over order of magnitude improvement relative to Princeton Measurement

![](_page_23_Figure_1.jpeg)

In situ polarimetry to 0.05% (!)

# Over order of magnitude improvement relative to Princeton Measurement

| Source                                                |                                                                                                                         | Correction                                                                          | Uncertainty                    |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--------------------------------|
| Systematics<br>Background<br>β scattering®            |                                                                                                                         | 1.0014<br>1.0230                                                                    | 0.0008                         |
| Trap(σ+ vsσ                                           | ) { position (typ ≲<br>sail velocity(ty<br>temperature (ty                                                              | $(\pm 20 \ \mu m)$<br>$p \lesssim \pm 30 \ \mu m/ms)$<br>$p \lesssim \pm 0.2 \ mK)$ | 0.0004<br>0.0005<br>0.0001     |
| Si-strip { radi<br>ener<br>thre                       | us*(15.5 <sup>+3.5</sup> mm)<br>gy agreement (±30<br>shold (60 → 40 keV                                                 | σ → ±5σ)<br>7)                                                                      | 0.0004<br>0.0002<br>0.0001     |
| Shakeoff elec                                         | tron TOF region (±                                                                                                      | $\pm 3.8 \rightarrow \pm 4.6$ ns)                                                   | 0.0003                         |
| Thicknes ses {                                        | SiC mirror <sup>a</sup> ( $\pm 6 \mu$ m)<br>Be window <sup>a</sup> ( $\pm 23$<br>Si-strip <sup>a</sup> ( $\pm 5 \mu$ m) | m)<br>μm)                                                                           | 0.0001<br>0.000 09<br>0.000 01 |
| Scintillator or<br>Scintillator th<br>Scintillator ca | ly vs $E + \Delta E^{*}$<br>reshold (400 $\rightarrow$ 100<br>libration (±0.4 ch/                                       | 00 keV)<br>'keV)                                                                    | 0.0001<br>0.000 03<br>0.000 01 |
| Total systemati<br>Statistics<br>Polarization         | 25                                                                                                                      | 1.0088                                                                              | 0.0013<br>0.0013<br>0.0005     |
| Total                                                 |                                                                                                                         | 1.0338                                                                              | 0.0019                         |

<sup>a</sup>Denotes sources that are related to  $\beta^+$  scattering.

Leading systematic corrections come from scattering and backgrounds

# Total precision improved by an order of magnitude

Technology exists to push <sup>19</sup>Ne to precision levels competitive with superallowed decays!

# Implications

- Incredible progress made on scattering corrections and polarimetry open the door to sub-.1% measurements on <sup>19</sup>Ne (being pursued by Ron's group at HUJI), <sup>37</sup>K and <sup>21</sup>Na! This will certainly impact the global beta decay landscape...
- Theory input is also needed. In the short run, the precision of f<sub>A</sub>/f<sub>V</sub> must be specified over an order of magnitude more precisely for <sup>19</sup>Ne. In the longer run, a deeper understanding of the nuclear structure corrections are needed to convincingly establish precision levels at the 0.02% level and below!

Would high precision beta spectra help constrain NS models?