

Neutrinos and CMB experiment

Clarence Chang

Astronomy & Astrophysics and the KICP University of Chicago

HEP Division Argonne National Lab

Angular Power Spectrum

Neutrino Mass: From the Terrestrial Laboratory to the Cosmos, ACFI (2015)

Angular Power Spectrum

Neutrino Mass: From the Terrestrial Laboratory to the Cosmos, ACFI (2015)

Large aperture CMB telescopes

Also small aperture CMB telescopes

Satellite proposals: LiteBird, PIXIE

The South Pole Telescope (SPT)

A very high-tech 10-meter submm wave telescope

100 150 220 GHz and1.6 1.2 1.0 arcmin resolution

2007: SPT-SZ 960 detectors (UCB) 100,150,220 GHz

2012: SPTpol 1600 detectors 100,150 GHz *+Polarization*

2016: SPT-3G 16,400 detectors 100,150, 220 GHz *+Polarization*

The South Pole Telescope Collaboration

Neutrino Mass: From the Terrestrial Laboratory to the Cosmos, ACFI (2015)

Neutrino Mass: From the Terrestrial Laboratory to the Cosmos, ACFI (2015)

Neutrino Mass: From the Terrestrial Laboratory to the Cosmos, ACFI (2015)

Neutrino Mass: From the Terrestrial Laboratory to the Cosmos, ACFI (2015)

Neutrino Mass: From the Terrestrial Laboratory to the Cosmos, ACFI (2015)

CMB polarimetry

 CMB polarized via Thomson scattering and local anisotropy (e.g. Sun scattering in atmosphere)

CMB polarimetry: E-modes

- CMB polarized via Thomson scattering and local anisotropy (e.g. Sun scattering in atmosphere)
- Density/Temperature anisotropy generates intrinsic CMB polarization

CMB polarimetry: E-modes

- CMB polarized via Thompson scattering and local anisotropy (e.g. Sun scattering in atmosphere)
- Density/Temperature anisotropy generates intrinsic CMB polarization

 EE power spectrum is a different probe of same physics producing TT spectrum

Spectra generated with WMAP7 parameters using CAMB, Lewis and Challinor

Measuring CMB polarization with SPTpol

SPTpol: Detectors

SPTpol used two different detectors technologies

- At 90 GHz, individual pixels, crossed absorbers with TES made at Argonne
- At 150 GHz, array of antenna-coupled TES made at NIST (Boulder)

SPTpol polarization sensitive camera

(1176x) 150 GHz detectors (NIST)

....

(376x) 90 GHz detectors, (Argonne National Labs)

(1176x) 150 GHz detectors (NIST)

n sensitive camera

(1176x) 150 GHz detectors (NIST)

SPTpol 1st light January 2012

(376x) 90 GHz detectors, (Argonne National Labs)

TE, EE Compilation Power Spectrum

Neutrino Mass: From the Terrestrial Laboratory to the Cosmos, ACFI (2015)

Crites et al. ApJ, 805 (2015)

N_{eff} and Y_P from CMB acoustic features

21

Large-Scale Structure Lenses the CMB

- RMS deflection of ~2.5'
- Lensing efficiency peaks at z
 2, or 7000 Mpc distance
 Coherent on ~degree (~300

Mpc) scales

Lensing of the CMB

17°x17°

lensing potential

unlensed cmb

from Alex van Engelen

Lensing of the CMB

17°x17°

lensing potential

lensed cmb

from Alex van Engelen

high resolution and sensitivity map of the CMB from SPT covering 1/16 of the sky

CMB Lensing Map reconstruction of mass projected along the line of sight to the CMB

Lensing convergence map smoothed to 1 deg resolution from CMB lensing analysis of SPT 2500 deg² survey

It's really the Dark Matter:

100 sq. deg. of Herschel SPIRE data on "SPT deep field"

RGB = 500,350,250 um

Smooth 500um map to ~1 degree scales (~100 com. Mpc).

Neutrino Mass: From the Terrestrial Laboratory to the Cosmos, ACFI (2015)

Smooth 500um map to ~1 degree scales (~100 com. Mpc).

Add mass contours from SPT CMB lensing.

Smooth 500um map to ~1 degree scales (~100 com. Mpc).

Add mass contours from SPT CMB lensing.

 $\sim 10\sigma$ correlation signal

Holder et al., ApJL, 771 (2013) 16 van Engelen et al., ApJ 808, 7 (2015)

Neutrino Mass: From the Terrestrial Laboratory to the Cosmos, ACFI (2015)

Smooth 500um map to ~1 degree scales (~100 com. Mpc).

Add mass contours from SPT CMB lensing.

~10 σ correlation signal

Holder et al., ApJL, 771 (2013) 16 van Engelen et al., ApJ 808, 7 (2015)

CMB Lensing Map reconstruction of mass projected along the line of sight to the CMB

Lensing convergence map smoothed to 1 deg resolution from CMB lensing analysis of SPT 2500 deg² survey

Das et al., PRL 107, 021301 (2011) van Engelen et al., ApJ 756 (2012)

Das et al., PRL 107, 021301 (2011) van Engelen et al., ApJ 756 (2012)

CMB Lensing via CMB polarization

 $\phi(\hat{n}) = -2 \int_0^{\chi_*} d\chi \frac{f_K(\chi_* - \chi)}{f_K(\chi_*) f_K(\chi)} \Psi(\chi \hat{n}; \eta_0 - \chi)$

Lensing mixes E into B

E-modes from SPTpol

E-modes from SPTpol Φ-modes from CIB (Herschel)

E-modes from SPTpol Φ-modes from CIB (Herschel)

Traces DM/lensing potential

 $\begin{array}{ccc} \text{E-modes from} \\ \text{SPTpol} \end{array} \begin{array}{c} & & & \\ &$

Cross template w/ B-mode map and look for signal

7.7σ detection of CMB lensing B-modes

Hanson et al., PRL, 111 (2013) van Engelen et al., ApJ 808, 7 (2015)

7.7σ detection of CMB lensing B-modes

Hanson et al., PRL, 111 (2013) van Engelen et al., ApJ 808, 7 (2015)

BB Compilations

Full lensing

FIG. 6.— Lensing potential power spectrum bandpowers estimated from SPTpol, as well as those previously reported for temperature by SPT-SZ (van Engelen et al. 2012), ACT (Das et al. 2014), *Planck* (Planck Collaboration XVII 2013), and for polarization by POLARBEAR (POLARBEAR Collaboration). The black solid line shows the PLANCK+LENS+WP+HIGHL best-fit ACDM model.

CMB polarization measurements

Moving forward

Fundamental limits of CMB measurement

Uncertainty on measured photon power in time, τ

$$\sigma_P = \frac{h\nu\sigma}{\eta} = \frac{h\nu}{\sqrt{\Delta\nu\tau}} \sqrt{\frac{n_0(1+\eta n_0)}{\eta}} \,\Delta\nu$$

Have to measure lots of photons

Jonas Zmuidzinas Applied Optics, Vol. 42, Issue 25, pp. 4989-5008 (2003)

Background limited detectors

Detectors are now photon noise limited

Neutrino Mass: From the Terrestrial Laboratory to the Cosmos, ACFI (2015)

Δ

SPT experimental trajectory

More detectors!

Multichroic for more detectors per pixel

Large wafers for more pixels per wafer

High throughput fab for more wafers per focal plane

Next for SPT → **SPT-3G** ~15K detectors!

Bigger cryostats

Fermilab

Bigger cryostats

SPTpol and SPT-3G projections

* includes BOSS prior

l

The next big step

Snowmass CF5 Neutrinos Document arxiv:1309.5383; figure by Clem Pryke

Maintaining Moore's Law: focal planes are saturated so must use parallel processing and multiple telescopes.

multiple telescopes and sites to map $\gtrsim 70\%$

of sky.

Strawman CMB-S4 specifications

• Survey(s):

- Inflation, Neutrino, and Dark Energy science requires an optimized survey(s) using a range of resolution and sky coverage from deep to wide.

Sensitivity:

- polarization sensitivity of ~1 uK-arcm over ≥70% of the sky

Resolution:

- exquisite low-*l* coverage for inflationary B modes (degree)
- $\ell_{max} \sim 5000$ for CMB lensing & neutrino science (arc-minute)

- higher-ℓ improves dark energy constraints, gravity tests on large scales via the SZ effects, and more...

Configuration:

- O(500,000) detectors on multiple telescopes (small and large aperture)
- spanning ~ 30 300 GHz for foreground mitigation

Coverage from Chile and South Pole

70% of the sky, overlapping the large optical surveys

Overlapping sky with DES, DESI and LSST

Snowmass joint projections N_{eff} - Σm_{ν}

Technical connections?

Light Detector

Neutrino Mass: From the Terrestrial Laboratory to the Cosmos, ACFI (2015)

CUPID

Summary

- CMB experiments will study the Cosmic Neutrino Background
 - Acoustic features measure neutrinos in the early univers
 - Lensing measures neutrino mass
 - Need CMB polarization measurements to capture all the information (also only way to measure Inflationary Gravitational Waves)
- Staged trajectory for the field of CMB polarization
 - Stage II: O(1000) detectors (SPTpol)
 - Stage III: O(10,000) detectors (SPT-3G)
 - Stage IV: O(100,000) detectors (CMB-S4)
- Technical challenge is scaling up detector arrays. TES is technology of choice
- Strong connections with both science & technology

Neutrino Mass: From the Terrestrial Laboratory to the Cosmos, ACFI (2015)