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1.   Introduction and Motivation 



1.1   Light quark masses 

•  Fundamental unknowns of the the QCD Lagrangian 
In the following, consider the 3 light flavours u,d,s 

•  High precision physics at low energy as a key of new physics? 
md  - mu : small isospin breaking corrections but to be taken into account for 
high precision physics 
 
Ex: Vus from                                  decays  

 
 
 
 
 
 
 
 

 
•  No direct access to the quarks due to confinement! 
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1.2   Meson masses from ChPT 

•                     : masses treated as small perturbations 
           expansion in powers of  
 
 

•  Gell-Mann-Oakes-Renner relations:  

 

 
 
 
 

•  From LO ChPT without e.m effects: 

 
 

•  Electromagnetic effects: Dashen’s theorem 
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1.2   Meson masses from ChPT 

         Quark mass ratios  
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1.3   Lattice QCD 

•  Compute the quark masses from first principles 
                     on the lattice 

 

Ø  QCD Lagrangian as input 

Ø  Calculate the spectrum of the low-lying states for different quark 
masses 

 

Ø  Tune the values of the quark masses such that the QCD spectrum is 
reproduced 

Ø  Set the scale by adding an external input or extract quark mass ratios 
 

•  NB: computation in the isospin limit: 

•  To get              , needs handle on e.m. effects: 
Ø  Input from phenomenology (e.g., Kaon mass difference)  

 

Ø  Put photons on the lattice  
     See FLAG’10’13 
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1.4   η→ π+ π- π0  

•  Decay forbidden by isospin symmetry 
 
 
 

 

•          effects are small         Sutherland’66, Bell & Sutherland’68 
          Baur, Kambor, Wyler’96, Ditsche, Kubis, Meissner’09 

 
 

•  Decay rate measures the size of isospin breaking (mu − md) in the SM:  
 

             Clean access to (mu− md) 
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1.5   Quark mass ratios 

•  Mass formulae to second chiral order                 Gasser & Leutwyler’85 

 
 
 
 

      with 
     
•  The same O(m) correction appears in both ratios 
            Take the double ratio 

 
 
 
 
Very Interesting quantity to determine since Q2 does not receive any 
correction at NLO! 

 
 

 
 
 
 
 

 

 
•  Using Dashen’s theorem and inserting Weinberg LO values 
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1.5   Quark mass ratios 

•  From Q         Ellipse in the plane ms/md, mu/md            Leutwyler’s ellipse 
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1.5   Quark mass ratios 

•  Estimate of Q: 
 
 
 

 
Ø  From corrections to the Dashen’s theorem  

 
 
The corrections can be large due to e2ms corrections, difficult to 
estimate due to LECs 

 
 
Ø  From η→ π+ π- π0 : 

 
 
 
•  In the following, compute the normalized amplitude M(s,t,u) with the 

best accuracy          extraction of Q 

 

 
 
 
 
 

•  From lattice determinations of        and       +  
  

 
 
 
 

•  In the following, extraction of Q from η→ π+ π- π0  
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1.5   Quark mass ratios 

•  Use Q to determine       and        from lattice determinations of        and  
 
 
 
 
 
 

 
 

•  From lattice determinations of        and      +  
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2.  η→ π+ π- π0 decays 



2.1   Definitions 

•  η decay: η→ π+ π- π0 

 
 

 
 

•  Mandelstam variables 
 

      only two independent variables 
 
 
 

•  Current Algebra 
 
 
      

 
•  Relate the amplitude to meson masses using Dashen’s theorem 

 

      LO chiral prediction: 
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2.2   Solution of the puzzle 

•  Discrepancy current algebra vs. experiment discovered and discussed in 
the 70’s 

 

•  Solution found in the 80’s: Large final state interactions  
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•  Chiral Perturbation Theory 
Systematic method to take into account these effects 
 At one loop, only one LEC related to ππ scattering 

 
 
 
 
 
 
 

•  Important theoretical error: ± 50 eV         estimate of the higher order 
corrections, typical SU(3) error of 25% 

 
 
 
 
 

•  Seemed to solve the problem (                             in 1985), but now 
 

           ! 

 

 

 
 

      

 
 

exp 295 20 eVΓ = ±

2.3   Solution of the puzzle 
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2.4   Amplitude beyond one loop 

•  Possible sources of discrepancy 

 
Ø  Electromagnetic effects, control of Ο(e2m) corrections���

	
            ChPT with photons: corrections small of ~1% 
 
Ø  Higher order corrections: ChPT at two loops  

but many LECs to determine at O(p6) !                     Bijnens  & Ghorbani’07 
 

             see Talk by Hans Bijnens 
  

•  Use of dispersion relations 

Ø  analyticity, unitarity and crossing symmetry             

Ø  Take into account all the rescattering effects 
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•  Decay amplitude  

 
 

 
 

 
 

 

 
 

 
   

 

 

 
 

      

 
 

2.5   Neutral Channel : η→ π0 π0 π0  
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3.   Dispersive Analysis of η→ π+ π- π0 decays  



3.1   A new dispersive analysis 

•  Dispersive analysis in the 90’s 

 
 

•  Why a new analysis? 

Ø  New inputs available: extraction ππ phase shifts has improved 

 

Ø  New experimental programs, precise Dalitz plot measurements 

Ø  Possible improvements:  
‒  Inelasticity 

‒  Electromagnetic effects, complete analysis of O(e2m) effects 
 

 

‒  Isospin breaking effects: new techniques      NREFT  
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3.1   A new dispersive analysis 

•  Compare to other approaches  

Ø  η → 3π computed at NNLO in ChPT                            Bijnens  & Ghorbani’07  
 

 

Ø  η → 3π with analytical dispersive method 
 
 

•  Aim: determine Q with the best precision: 

Ø              experimentally measured 

Ø   
 
 

  computed from dispersive treatment 

Ø  Neutral channel: η→ π0 π0 π0: 
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Γη→3π ∝ A(s, t,u)
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3.2   Method: Representation of the amplitude 

•  Dispersion relations 

 
•  From the discontinuity, reconstruct the amplitude everywhere in the 

complex plane        need the discontinuity 
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3.2   Method: Representation of the amplitude 

•  Dispersion relations 

 
 

•  From the discontinuity, reconstruct the amplitude everywhere in the 
complex plane        need the discontinuity 
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•  Decomposition of the amplitude as a function of isospin states  

 
 

Ø         isospin I rescattering in two particles  
Ø  Amplitude in terms of S and P waves       exact up to NNLO (O(p6)) 
Ø  Main two body rescattering corrections inside MI 
 
 

•  Dispersion relation for the MI’s 

 

 

 

 
 

      

 
 

3.2   Method: Representation of the amplitude 
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•  Decomposition of the amplitude as a function of isospin states  

 
 

Ø         isospin I rescattering in two particles  
Ø  Amplitude in terms of S and P waves       exact up to NNLO (O(p6)) 
Ø  Main two body rescattering corrections inside MI 
 
 

•  Dispersion relation for the MI’s 

•  Inputs needed : S and P-wave phase shifts of ππ scattering 

 

 

 
 

      

 
 

3.2   Method: Representation of the amplitude 
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•  Decomposition of the amplitude as a function of isospin states  

 
 

Ø         isospin I rescattering in two particles  
Ø  Amplitude in terms of S and P waves       exact up to NNLO (O(p6)) 
Ø  Main two body rescattering corrections inside MI 
 

•  Dispersion relation for the MI’s 

 
 
 
 

•            : singularities in the t and u channels, depend on the other   
        subtract           from the partial wave projection of                           
        Angular averages of the other functions        Coupled equations 

 

 

 
 

      

 
 

3.2   Method: Representation of the amplitude 
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•  Decomposition of the amplitude as a function of isospin states  

 
 

Ø         isospin I rescattering in two particles  
Ø  Amplitude in terms of S and P waves       exact up to NNLO (O(p6)) 
Ø  Main two body rescattering corrections inside MI 
 
 

•  Dispersion relation for the MI’s 

•  Solution depends on subtraction constants only       solve by iterative procedure  

 

 

 
 

      

 
 

3.2   Method: Representation of the amplitude 
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3.3  Iterative Procedure 
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3.4  Subtraction constants 
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•  Extension of the numbers of parameters compared to Anisovich & Leutwyler’96 

 
 

•  In the work of Anisovich & Leutwyler’96 matching to one loop ChPT 
Use of the SU(2) x SU(2) chiral theorem 
       The amplitude has an Adler zero along the line s=u 

 
•  Now data on the Dalitz plot exist from KLOE, WASA and MAMI 

      Use the data to directly fit the subtraction constants 
 

•  Solution linear in the subtraction constants    Anisovich & Leutwyler’96  

 
 
 

          makes the fit much easier  
 

  P0(s) = α 0 + β0s + γ 0s
2 + δ 0s

3

  P1(s) = α 1 + β1s + γ 1s
2

  P2(s) = α 2 + β2s + γ 2s
2

  
M (s, t,u) = α 0Mα 0

(s, t,u) + β0Mβ0
(s, t,u) + ...



•  Adler zero: the real part of the amplitude along the line s=u has a zero 

 
 

3.4  Subtraction constants 
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Experimental measurements  

•  Dalitz plot measurement : Amplitude expanded in X and Y around X=Y=0 

  A s, t,u( ) 2
= Γ(X ,Y ) = N 1 + aY + bY 2 + dX 2 + fY 3( ) with 

( )3
2 c

X u t
M Qη

= −

02cQ M M Mη π π+≡ − −

( )( )0

23 1
2 c

Y M M s
M Q η π

η

= − − −

  Z = X 2 +Y 2
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Experimental measurements : Charged channel 

•  Charged channel measurements with high statistics from KLOE and WASA 
 

e.g. KLOE: ~1.3 x 106 η→ π+ π- π0  events from e+e-→ ϕ → η γ	


Emilie Passemar ( )3
2 c

X u t
M Qη

= −( )( )0

23 1
2 c

Y M M s
M Q η π

η

= − − −

KLOE’08 
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  Ac s, t,u( ) 2
= N 1 + aY + bY 2 + dX 2 + fY 3( )



Experimental measurements : Neutral channel 

•  Neutral channel measurements with high statistics from MAMI-B, MAMI-C  
and WASA e.g. MAMI-C: ~3 x 106 η→ 3π0 events from γ p → ηp 

	
Extraction of the slope : 

( )3
2 c

X u t
M Qη

= −

( )( )0

23 1
2 c

Y M M s
M Q η π

η

= − − −

  
An s, t,u( ) 2

= N 1 + 2α Z + 6βY X 2 − Y 2

3
⎛
⎝⎜

⎞
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+ 2γ Z 2⎛

⎝⎜
⎞
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  Z = X 2 +Y 2

MAMI-C’09  
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3.4  Subtraction constants 
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•  As we have seen, only Dalitz plots are measured, unknown normalization! 

               To determine Q, one needs to know the normalization 
 

                                     For the normalization one needs to use ChPT 
 

•  The subtraction constants are 
 

 
 
 
 

       Only 6 coefficients are of physical relevance 

  P0(s) = α 0 + β0s + γ 0s
2 + δ 0s

3

  P1(s) = α 1 + β1s + γ 1s
2

  P2(s) = α 2 + β2s + γ 2s
2
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3.4  Subtraction constants 
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•  As we have seen, only Dalitz plots are measured, unknown normalization! 

               To determine Q, one needs to know the normalization 
 

                                     For the normalization one needs to use ChPT 
 

•  The subtraction constants are  

 
 
 
 

       Only 6 coefficients are of physical relevance 
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3.4  Subtraction constants 
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•  The subtraction constants are  

 
 
 
 

       Only 6 coefficients are of physical relevance 
 

•  They are determined from  
–  Matching to one loop ChPT 
–  Combine ChPT with fit to the data             and       are determined from 

the data 

•  Matching to one loop ChPT : Taylor expand the dispersive MI   
Subtraction constants         Taylor coefficients	


	


  P0(s) = α 0 + β0s + γ 0s
2 + δ 0s

3

  P1(s) = α 1 + β1s + γ 1s
2

  P2(s) = α 2 + β2s + γ 2s
2

 δ 0 = γ 1 = 0

 δ 0  γ 1
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3.4  Subtraction constants 
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•  Matching to one loop ChPT : Taylor expand the dispersive MI   
Subtraction constants         Taylor coefficients 

 
 
 

Ø  gauge freedom        a0, b0, a1, a2 tree level ChPT values 
Ø  fix the remaining ones with one-loop ChPT c0, b1, b2, c2 

Ø  matching to one loop : d0 = c1 = 0 or fit : d0 and c1 from the data 
 

•  Problem : this identification assumes there is not significant contributions 
from higher orders of the chiral expansion        not well-justified for the s3 
terms!  

•  Solution: Match the SU(2) x SU(2) expansion of the dispersive 
representation with the one of the one loop representation     In progress 

•  Important : Adler zero should be reproduced!       Can be used to constrain 
the fit 

  M0(s) = a0 + b0s + c0s
2 + d0s

3 + ...

  M1(s) = a1 + b1s + c1s
2 + ...

  M2(s) = a2 + b2s + c2s
2



4.   Preliminary Results 



4.1  Dalitz plot distribution of η→ π+ π- π0 decays  

•  The amplitude squared along the line t = u :  

 

•  Good agreement between theory and experiment 
•  The theoretical error bars are large        fit the subtraction constants  

to the data to reduce the uncertainties 

  Mπ
2⎡⎣ ⎤⎦
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4.2  Z distribution for η→ π0 π0 π0 decays  

•  The amplitude squared in the neutral channel is  

Here also the  
agreement looks  
very good but 
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4.2  Z distribution for η→ π0 π0 π0 decays  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
•  The uncertainties coming from the matching with ChPT are very large  

        there is room for improvement using the data   

NRFT in η decays 
Gullstrom, Kupsc, Rusetsky’09 
Schneider, Kubis, Ditsche’11 
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4.2  Z distribution for η→ π0 π0 π0 decays  

•  If one wants to fit the data, at this level of precision the e.m. corrections matter 
      use the one loop e.m. calculations from Ditsche, Kubis and Meissner’08 
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4.3  Qualitative results of our analysis  

47 

 
•   Determination of Q from the dispersive approach : 

 

•  Determination of α	

 

 

3 295 20 eVη π→Γ = ± PDG’12 

( ) max

0
min

22 24 ( ) 2
4 4 3 4 3 ( )

1  ( , , )
6912

s u sKK
s u s

M MM ds du M s t u
Q M F M

π
η π π π

π π ηπ
+

+ −
−

→

−
Γ = ∫ ∫

2 2
2

2 2

ˆs

d u

m mQ
m m

⎛ ⎞−
≡⎜ ⎟−⎝ ⎠

  An s, t,u( ) 2
= N 1 + 2α Z( )
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4.3  Qualitative results of our analysis  

•  Plot of Q versus α : 

 
 
•  All the data give consistent results. The preliminary outcome for Q is 

intermediate between the lattice result and the one of Kastner and Neufeld.   
48 

NB: Isospin breaking  
has not been accounted for 

  Q = 20.7 ±1.2
From kaon mass spliting : 

Kastner & Neufeld’08 



4.3  Qualitative results of our analysis  

•  Plot of Q versus α : 

 
 
 
 

•  All  our preliminary results give a negative value for α. In particular the result 
using KLOE data for η→ π+ π- π0 is in perfect agreement with the PDG value! 
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NB: Isospin breaking  
has not been accounted for 



4.4  Comparison of results for Q 
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Preliminary 



4.5  Comparison of results for α	
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Preliminary 



•  Amplitude along the line s=u  

•  Adler zero not reproduced! 
  

 

4.6  Comparison with KKNZ 
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•  Smaller values for Q        smaller values for ms/md and mu/md than LO ChPT  
  

 

4.7  Light quark masses 
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Courtesy of H.Leutwyler 



 
 
 
 
 

  
  

 

4.7  Light quark masses 
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4.7 Light quark masses 
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Courtesy of H.Leutwyler 
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5.   Conclusion and outlook 



5.1   Conclusion 

•  η→ 3π  decays represent a very clean source of information on the quark 
mass ratio Q 

•  A reliable extraction of Q requires having the strong rescattering effects in the 
final state under control 

•  This is possible thanks to dispersion relations 
   need to determine unknown subtraction constants 

•  This was done up to now relying exclusively on ChPT but precise 
measurements have become available 

 

Ø  In the charged channel: KLOE and WASA 
 

Ø  In the neutral channel: MAMI-B, MAMI-C, WASA 

Ø  More results are expected: KLOE, CLAS 
 

               will allow to reduce the uncertainties in the significant way 
     seems to push the value for Q towards low results  
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5.2   Outlook 

•  Analysis still in progress : 
Ø  Determination of the subtraction constants : 

                   combine ChPT and the data in the optimal way 
 

Ø  Take into account the e.m. corrections  
       implementation of the one loop e.m. corrections from  

             Ditsche, Kubis and Meissner’08 to be able to fit to the data         
       charged and neutral channel 

 

Ø  Matching to NNLO ChPT 
               Constraints from experiment: possible insights on        values 

 

Ø  Careful estimate of all uncertainties 
 

Ø  Inelasticities   
•  Our preliminary results give a consistent picture between  

Ø  all experimental measurements: Dalitz plot measurements  
Ø  theoretical requirements: e.g. Adler zero 
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6.   Prospects at JLab  



6.1  Introduction 

•  Attempt to quantify roughly the uncertainties 
 

  
 

                Careful estimate of the uncertainties in progress 
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Preliminary 
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6.1  Introduction 

•  Attempt to quantify roughly the uncertainties 
 

  
 

                Careful estimate of the uncertainties in progress 
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Preliminary 

JLab experiments can help to  
reduce 2 sources of uncertainties 
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6.2  η→ 2γ   via Primakoff experiment 

•  η→ 2γ enters              determination :  

•  Large fluctuations mainly due to the total decay width fixed via the process η→ 2γ    

 
Γη→3π

S. Lanz, PhD Thesis’11 
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6.2  η→ 2γ   via Primakoff experiment 

•  2 different measurements:  
Ø  2 photons production: e+e- → e+e-γ* γ* →e+e- η 

 
 

Ø  Primakoff production : 

 
 
 
 
•  2 sets of measurements do not agree  PDG’94:  

Ø  2 photons production, average : 

Ø  Primakoff measurement : 
 

 
•  Primakoff measurement excluded from PDG average in 2004, need to be 

reamesured                      at Jlab! 

 

η
PrimEx  

 Γ(η → 2γ ) = 0.510 ± 0.026 keV

 Γ(η → 2γ ) = 0.324 ± 0.046 keV

PrimEx  

Emilie Passemar 

Browman’74 
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6.2  η→ 2γ   via Primakoff experiment 

•  2 different measurements:  
Ø  2 photons production: e+e- → e+e-γ* γ* →e+e- η 

 
 

Ø  Primakoff production : 

 
 
 
 
 
 
 

•  Uncertainty on Q generated by the decay width input:    
  

 
 
 
 
 

Overall expected uncertainty approximately 
 
 

Possible improvement with new measurement?   

 

η
PrimEx  
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Γη→3π = 295 ± 20 eV   Q ~ 22 ± 0.31 

 ±1.00

64 



6.3  Measurement of  η → 3π at Jlab eta factory 

•  Only one recent published result for the Dalitz plot parameters in the charged 
channel  by KLOE 
 

 
 
 
 
 
 

Ø  Charge conjugation:         symmetry X        -X  
Ø  h consistent with zero 

•  One new analysis by WASA underway, CLAS? 
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( , , ) ( , , ) ( , , ) ( , , )A s t u A s t u A t u s A u s t= + +

  Ac s, t,u( ) 2
= N 1 + aY + bY 2 + cX + dX 2 + eXY + fY 3 + gX 3 + hX 2Y + IXY 2( )

Talk by Ambrosino, Hadron’11 
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6.3  Measurement of  η → 3π at Jlab eta factory 

•  More information in the charged compared to the neutral channel  
       neutral channel sum over isospin:  
 
 
 
Only one Dalitz plot parameter determined α 
 
 

•  Some possible inconsistencies between charged and neutral channel pointed 
out:  
 

 
 
 
 

•  Δ can be calculated using NREFT including ππ rescattering effects  
 

From KLOE Dalitz plot parameters                              
 

in disagreement with KLOE direct measurement and PDG average! 

•  Disagrement due to predicted b two times larger than the experimental 
result :  

Emilie Passemar 

( , , ) ( , , ) ( , , ) ( , , )A s t u A s t u A t u s A u s t= + +

  An s, t,u( ) 2
= N 1 + 2α Z( )

Bijnens & Ghorbani’07  

 α = −0.059(7)

  bNREFT = 0.308 > bKLOE = 0.124

Schneider, Kubis, Ditche’11  

66 



6.3  Measurement of  η → 3π at Jlab eta factory 

•  Matching wih CHPT and experiment: main source of uncertainty on Q ! 
Only statistical uncertainties  

          Improvement on the measurement of the charged channel would help to        
          reduce the uncertainties on Q! 
 

Can one do better at JLab? 
 
•  A dedicated experimental analysis using the dispersive approach to extract Q 

will allow for the best determination, systematics could be taken into account 
                          use basis functions 
 

Emilie Passemar 

  Q ~ 22 ± 0.50 
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6.3  Measurement of  η → 3π at Jlab eta factory 

•  On the neutral channel: several experimental measurements: 

 
 
 
 

•  Any sensitivity to higher order coefficients? 
 
 
 

Emilie Passemar 

  α  0.015

0.0317 0.0016α = − ±

  
An s, t,u( ) 2

= N 1 + 2α Z + 6βY X 2 − Y 2

3
⎛
⎝⎜

⎞
⎠⎟
+ 2γ Z 2⎛

⎝⎜
⎞

⎠⎟
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6.3  Measurement of  η → 3π at JLab eta factory 

•  Questions for experimentalists: 
Ø  Which level of statistics? 
Ø  Which sensitivity? 
Ø  How about the systematics? 
Ø  Which time scale? 
Ø  Is there interest for analysing this « non-rare » channel? 

•  If this decay is measured with a high precision some works to do on the 
theoretical level: 
Ø  Matching with NNLO ChPT 
Ø  Electromagnetic corrections 
Ø  Inelasticities 
Ø  Isospin breaking effects etc… 

 

             Joined analysis 
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7.   Back-up 



Comparison with original analysis 
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MI 
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Comparison for Q 
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Comparison for α 
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1.5   Quark masses 

•  But in the real world quarks are massive       G also explicitly broken 
by quark masses  

 
 
 
 
 
 
 
 
 
 

•  The mass term        gives the masses to the Goldstone bosons 
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with 0
QCD QCD m= +L L L m q q= −L M

0 0
0 0
0 0

u

d

s

m
m

m

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎝ ⎠

M =and 

mL



1.6   Construction of an effective theory: ChPT 

•  Effective Field Theory approach: At a given energy scale 

Ø  Degrees of freedom 
Ø  Symmetries 

  Decoupling : Ex : To play pool you don’t need to know the movement 
  of earth around the sun 

 
 

•  Chiral Perturbation Theory (ChPT)  
 
      

 
 

Emilie Passemar CPT, Marseille, June 1st, 2012 76 
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 Method: Representation of  the amplitude 

•  Consider the s channel        Partial wave expansion of M(s,t,u):  

•  Elastic unitarity 

 with            partial wave of elastic ππ scattering 
 
•  M(s,t,u) right-hand branch cut in the complex s-plane starting at the  

ππ threshold 

•  Left-hand cut present due to crossing 

•  Same situation in the t- and u-channel 

0 1( , , ) ( ) ( )cos ...M s t u f s f s θ= + +

Watson’s theorem 

( ) ( ) ( )disc f s t s f s∗∝⎡ ⎤⎣ ⎦l l l

( )t sl



Discontinuities of the MI(s) 

Emilie Passemar University of Lund, 6 May 2011 78 
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•  Ex: 
  

( )0 0 0 1 2 1
2 20 2ˆ ( ) 2 ( )
3 9 3

M s M s s M M s zMκ= + − + +

Non trivial angular averages        need to deform the integration 
path to avoid crossing cuts Anisovich & Anselm’66 

where ( ) ( )1

1

1  ( , ) ,
2

n n
I Iz M s dz z M t s z

−
= ∫ cosz θ= scattering angle 



Discontinuities of the MI(s) 
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•  Ex: 
  

( )0 0 0 1 2 1
2 20 2ˆ ( ) 2 ( )
3 9 3

M s M s s M M s zMκ= + − + +

Non trivial angular averages        need to deform the integration 
path to avoid crossing cuts Anisovich & Anselm’66 

where ( ) ( )1

1

1  ( , ) ,
2

n n
I Iz M s dz z M t s z

−
= ∫ cosz θ= scattering angle 
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3.7  Comparison of  values of  Q 

Fair agreement with the determination from meson masses 

22.8Q =

22Q =

21.5Q =

20.7Q =

20.7 1.2Q = ±

22.3 0.9Q = ±
22.1 0.9Q = ±

24.2Q =



Emilie Passemar 81 

Comparison with Q from meson mass splitting 

•                                                        is only valid for e=0  

•  Including the electromagnetic corrections, one has 

 
•  Corrections to the Dashen’s theorem  

  The corrections can be large due to e2ms corrections: 
 
 

 

0

2 22
2 2

2 2 2 1 ( )KK
q

K K

M MMQ O m
M M M

π

π +

− ⎡ ⎤= +⎣ ⎦−

24.2DQ =

Urech’98,  
Ananthanarayan & Moussallam’04 

( ) ( ) ( ) ( )0 0
2 2 2 2 2 2 2 2

1 2 3em em
- - KK K

M M M M e M A A A O e Mππ π+ +− = + + +
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3.6 Corrections to Dashen’s theorem 

•  Dashen’s Theorem 

•  With higher order corrections 
 
•  Lattice : 

•  ENJL model: 

•  VMD: 

•  Sum Rules: 

( ) ( )0 0
2 2 2 2

em em
- -

K K
M M M M

π π+ += ( )0
em

- 1.3 MeV
K K

M M+ =

( )0
em

- 1.9 MeV, 22.8
K K

M M Q+ = = Ducan et al.’96 

( )0
em

- 2.3 MeV, 22
K K

M M Q+ = = Bijnens & Prades’97 

( )0
em

- 2.6 MeV, 21.5
K K

M M Q+ = = Donoghue & Perez’97 

( )0
em

- 3.2 MeV, 20.7
K K

M M Q+ = = Anant & Moussallam’04 

Update  20.7 1.2Q = ± Kastner & Neufeld’07 



•  Decomposition of the amplitude as a function of isospin states  

 
 

Ø         isospin I rescattering in two particles  
Ø Amplitude in terms of S and P waves       exact up to NNLO (O(p6)) 
Ø Main two body rescattering corrections inside MI 

•  Functions of only one variable with only right-hand cut of the partial  
     wave 

•  Elastic unitarity 
 

   
 

 

 
 

      

 
 

with           partial wave of  elastic ππ 
scattering 
 

4.2   Method: Representation of the amplitude 
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( ) ( )0 1 1 2 2 2
2( , , ) ( ) ( ) ( ) ( ) ( ) ( )
3

M s t u M s s u M t s t M u M t M u M s= + − + − + + −

IM

Fuchs, Sazdjian & Stern’93 
Anisovich & Leutwyler’96 

( ) ( )I
Idisc M s disc f s⎡ ⎤≡⎡ ⎤⎣ ⎦ ⎣ ⎦l

Watson’s  theorem 

*( ) ( ) ( )I Idisc f s t s f s⎡ ⎤ ∝⎣ ⎦l l l ( )t sl



•  Knowing the discontinuity of            write a dispersion relation for it 

•  Cauchy Theorem and Schwarz reflection  
principle 

  
 

        can be reconstructed everywhere  
 from the knowledge of  

 
 

•  If       doesn’t converge fast enought for                     subtract the 
dispersion relation  

 

4.2   Method: Representation of the amplitude 
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24

( ')1( ) '
'M

I
I

disc M s
M s ds

s s i
π

π ε

∞ ⎡ ⎤⎣ ⎦=
− −∫

s →∞

( )2
1 '

4

( ')'( ) ( )
'

n
I

M
I n n

disc M ss dsM s P s
s s s i

π
π ε

∞

−

⎡ ⎤⎣ ⎦= +
− −∫ Pn-1(s) polynomial 

IM

IM
( )Idisc M s⎡ ⎤⎣ ⎦

IM
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•  Discontinuity of       : by definition 

 
 with            real on the right-hand cut  

•  The left-hand cut is contained in  

•  Determination of             :  
subtract       from the partial wave projection of  
 

•             singularities in the t and u channels, depend on the other   
 Angular averages of the other functions        Coupled equations 
  

ˆ ( )IM s

( ) ( )I
Idisc M s disc f s⎡ ⎤≡⎡ ⎤⎣ ⎦ ⎣ ⎦l

ˆ( ) ( ) ( )I
I If s M s M s= +l

ˆ ( )IM s

ˆ ( )IM s

( )0 1( , , ) ( ) ( ) ...M s t u M s s u M t= + − +

ˆ ( )IM s

4.3  Hat functions 

IM

IM ( , , )M s t u

IM



•  Ex: 
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4.3  Hat functions 

( )0 0 0 1 2 1
2 20 2ˆ ( ) 2 ( )
3 9 3

M s M s s M M s zMκ= + − + +

Non trivial angular averages        need to deform the integration 
path to avoid crossing cuts Anisovich & Anselm’66 

where ( ) ( )1

1

1  ( , ) ,
2

n n
I Iz M s dz z M t s z

−
= ∫

cosz θ= scattering angle 



4.4  Dispersion Relations for the MI(s)   
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•  Elastic Unitarity 

 
 

         Watson theorem: elastic ππ scattering phase shifts  

•  Solution: Inhommogeneous Omnès problem 
  

 
 
 
 

 Similarly for M1 and M2  
 

( )2

03
2 0 0

0 0 0 0 0 3
04

ˆsin ( ') ( ')'( ) ( )
' ( ') 'M

s M ss dsM s s s s
s s s s i

π

δα β γ
π ε

∞⎛ ⎞
⎜ ⎟= Ω + + +⎜ ⎟Ω − −⎝ ⎠

∫
Omnès function 
 

Iδ l

( ) ( )2 ˆ( ) 4 ( ) ( ) sin ( )
Ii sI I

I I Idisc M disc f s s M M s M s s e δ
πθ δ −⎡ ⎤⎡ ⎤= = − +⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦

l
l l

ππ phase shift 

[ ]1 for 1,  0 otherwiseI= = =l l

phase of the partial wave ( )If sl

24

( ')( ) exp '
'( ' )

I

I
M

s ss ds
s s s i

π

δ
π ε

∞⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟Ω = ⎜ ⎟− −⎢ ⎥⎝ ⎠⎣ ⎦

∫ l



4.4  Dispersion Relations for the MI(s)   
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•    

     Similarly for M1 and M2 
 

•  Four subtraction constants to be determined: α0, β0,  γ0  and one more in 
M1 (β1) 

 

•  Inputs needed for these and for the ππ phase shifts  
–  M0: ππ scattering, ℓ=0, I=0 
–  M1: ππ scattering, ℓ=1, I=1 
–  M2: ππ scattering, ℓ=0, I=2  

 

•  Solve dispersion relations numerically by an iterative procedure 

( )2

03
2 0 0

0 0 0 0 0 3
04

ˆsin ( ') ( ')'( ) ( )
' ( ') 'M

s M ss dsM s s s s
s s s s i

π

δα β γ
π ε

∞⎛ ⎞
⎜ ⎟= Ω + + +⎜ ⎟Ω − −⎝ ⎠

∫

Omnès function 
 

Iδ l



1.1   Quantum Chromodynamics 

•  Description of the strong interactions 

 
 
 
 
 
 
 
 

•  7 unknowns in the Lagrangian: 
 

Ø  strong coupling constant 

Ø  6 quark masses 
 
 

       Not predicted by the theory, should be measured by experiment 
 
 
 
 

•  Problem: no direct access to the quarks due to confinement! 
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LQCD = − 1

4
Ga

µνGµν
a + qk

k=1

NF

∑ iγ µ Dµ − mk( )qk

  
α S (µ ) =

gS
2 (µ )
4π

 mk
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Dµ = ∂µ − igs

λa

2
Aµ

a (x)
  
Gµν

a (x) = ∂µ Aν
a − ∂ν Aµ

a + gS fabc Aµ
b Aν

c



1.3   QCD at low energy 

•  At low energy, impossible to describe QCD with perturbation theory since 
αS becomes large 
 
      Need non perturbative  
      methods 
 

•  Model independent methods: 
–  Effective field theory           

 Ex: ChPT for light quarks 
 
‒  Numerical simulations on  

the lattice 

‒  Dispersion relations 
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[PDG‘12] 

Confinement 
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•  Method that relies on analyticity, unitarity and crossing symmetry 
      Model independent  
 

•  Connect different energy regions 
 
 

•  Summation of all the rescattering processes 
 
 

•  Very successful for describing hadronic decays at low energy, e.g. 
 
Ø  ππ scattering, ππ form factors  

 
 
 
 

       Decay of a light Higgs boson  
  

      Probing lepton flavour violating couplings of the Higgs from τ→ ππντ 	

	

	


 

1.4   Dispersion Relations 
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Ananthanarayan et al’01, Descotes-Genon et al’01 
Pich & Portoles’01, Gomez-Dumm & Roig’13 

Celis, Cirigliano & E.P.’13 

Donoghue, Gasser & Leutwyler’98 



•  Method that relies on analyticity, unitarity and crossing symmetry 
      Model independent  
 

•  Connect different energy regions 
 
 

•  Summation of all the rescattering processes 
 
 

•  Very successful for describing hadronic decays at low energy, e.g. 
 
Ø  Kπ scattering, Kπ form factors  

 
 
 
 

       Determination of Vus from  
–  Kl3 decays   

–   hadronic τ  decays	

	


 

1.4   Dispersion Relations 
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Buttiker et al’01, Jamin, Oller & Pich’01 
Bernard, Oertel, E.P., Stern’06’09, Bernard & E.P.’08 

Flavianet Kaon WG’08,’10 

Antonelli, Cirigliano, Lusiani & E.P.’13 



•  Adler zero not reproduced!  

  
 

5.4  Comparison with KKNZ 
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3.1   A new dispersive analysis 

•  Determination of Q: 

Ø             experimentally measured 
 
 

Ø   
 

                                            computed from dispersive treatment 
 
 

       Extraction of Q 
 

 

•  Neutral channel: η→ π0 π0 π0    
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Γη→3π ∝ A

2

∫

3η π→Γ

( , , )M s t u

( , , ) ( , , ) ( , , ) ( , , )A s t u A s t u A t u s A u s t= + +
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2 22

2 2 2

1( , , ) ( , , )
3 3
KK M MMA s t u M s t u

Q M F
π

π π

−= −


