Standard Model β spectra

Leendert Hayen

ACFI Workshop, November 1st 2018
IKS, KU Leuven, Belgium

Table of contents

Motivation

Beta spectrum shape

Current status

Challenges

Motivation

Introduction

Three basic questions:
What's our goal?
Understand Standard Model \& Go Beyond

Introduction

Three basic questions:

What's our goal?
Understand Standard Model \& Go Beyond

Where to look for it?
Quirky weak interaction!

Introduction

Three basic questions:

What's our goal?
Understand Standard Model \& Go Beyond

Where to look for it?
Quirky weak interaction!

How to do this?
β Spectrum shape

1. Direct BSM sensitivity
2. Enters into reactor anomaly

Introduction

General Hamiltonian

$$
\mathcal{H}=\sum_{j=V, A, S, P, T}\langle f| \mathcal{O}_{j}|i\rangle\langle e| \mathcal{O}_{j}\left[C_{j}+C_{j}^{\prime} \gamma_{5}\right]|\nu\rangle+\text { h.c. }
$$

Introduction

General Hamiltonian

$$
\mathcal{H}=\sum_{j=V, A, S, P, T}\langle f| \mathcal{O}_{j}|i\rangle\langle e| \mathcal{O}_{j}\left[C_{j}+C_{j}^{\prime} \gamma_{5}\right]|\nu\rangle+\text { h.c. }
$$

Questions:

In Standard Model only $V-A \rightarrow$ where are the others?

Introduction

General Hamiltonian

$$
\mathcal{H}=\sum\langle f| \mathcal{O}_{j}|i\rangle\langle e| \mathcal{O}_{j}\left[C_{j}+C_{j}^{\prime} \gamma_{5}\right]|\nu\rangle+\text { h.c. }
$$

Questions:

In Standard Model only $V-A \rightarrow$ where are the others?

QCD influences \rightarrow induced currents, influenced through nuclear structure?

BSM Observables in β decay

Typical BSM searches through correlations

$$
\frac{d \Gamma}{d E_{e} d \Omega_{e} d \Omega_{\nu}} \propto 1+a_{\beta \nu} \frac{\overrightarrow{p_{e}} \cdot \overrightarrow{p_{\nu}}}{E_{e} E_{\nu}}+b_{F} \frac{m_{e}}{E_{e}}+A \frac{\overrightarrow{p_{e}}}{E_{e}}\langle\vec{l}\rangle+\ldots
$$

Measure effective correlations

$$
\tilde{X}=\frac{X}{1+b_{F}\left\langle\frac{m_{e}}{E_{e}}\right\rangle}
$$

BSM Observables in β decay

Typical BSM searches through correlations

$$
\frac{d \Gamma}{d E_{e} d \Omega_{e} d \Omega_{\nu}} \propto 1+a_{\beta \nu} \frac{\overrightarrow{p_{e}} \cdot \overrightarrow{p_{\nu}}}{E_{e} E_{\nu}}+b_{F} \frac{m_{e}}{E_{e}}+A \frac{\overrightarrow{p_{e}}}{E_{e}}\langle\vec{l}\rangle+\ldots
$$

Sensitivity comes from b_{F}

$$
b_{F}= \pm \frac{1}{1+\rho^{2}}\left[\operatorname{Re}\left(\frac{C_{S}+C_{S}^{\prime}}{C_{V}}\right)+\rho^{2} \operatorname{Re}\left(\frac{C_{T}+C_{T}^{\prime}}{C_{A}}\right)\right]
$$

because it's linear in coupling constants

BSM Observables in β decay

Typical BSM searches through correlations

$$
\frac{d \Gamma}{d E_{e} d \Omega_{e} d \Omega_{\nu}} \propto 1+a_{\beta \nu} \frac{\overrightarrow{p_{e}} \cdot \overrightarrow{p_{\nu}}}{E_{e} E_{\nu}}+b_{F} \frac{m_{e}}{E_{e}}+A \frac{\overrightarrow{p_{e}}}{E_{e}}\langle\vec{l}\rangle+\ldots
$$

Sensitivity comes from b_{F}

$$
b_{F}= \pm \frac{1}{1+\rho^{2}}\left[\operatorname{Re}\left(\frac{C_{S}+C_{S}^{\prime}}{C_{V}}\right)+\rho^{2} \operatorname{Re}\left(\frac{C_{T}+C_{T}^{\prime}}{C_{A}}\right)\right]
$$

because it's linear in coupling constants
\rightarrow measure β spectrum directly \& fit for $1 / E_{e}$

Beta Spectrum Shape

Exploring the Standard Model and Beyond via the allowed β spectrum shape:

$$
\frac{d N}{d E_{e}} \propto 1+b_{\text {Fierz }} \frac{m_{e}}{E_{e}}+b_{W M} E_{e}
$$

$b_{\text {Fierz: }}$: Proportional to scalar (Fermi) and tensor (Gamow-Teller) couplings
$b_{W M}$: Weak Magnetism (main induced current), poorly known for $A>60$, forbidden decays

Beta Spectrum Shape

Exploring the Standard Model and Beyond via the allowed β spectrum shape:

$$
\frac{d N}{d E_{e}} \propto 1+b_{\text {Fierz }} \frac{m_{e}}{E_{e}}+b_{W M} E_{e}
$$

$b_{\text {Fierz: }}$ Proportional to scalar (Fermi) and tensor (Gamow-Teller) couplings
$b_{W M}$: Weak Magnetism (main induced current), poorly known for $A>60$, forbidden decays

This requires knowledge of the theoretical spectrum shape to $\leq 10^{-3}$ level!

Beta spectrum shape

Beta Spectrum Shape

3-body decay

$$
P\left(E_{e}\right)=\left(E_{0}-E_{e}\right)^{2} E_{e} p_{e} \approx\left(E_{0}-E_{e}\right)^{2} E_{e}^{2}
$$

Beta Spectrum Shape

3-body decay

$$
P\left(E_{e}\right)=\left(E_{0}-E_{e}\right)^{2} E_{e} p_{e} \approx\left(E_{0}-E_{e}\right)^{2} E_{e}^{2}
$$

Ellis \& Chadwick, 1914

Beta Spectrum Shape

Active participation of QED, QCD \& WI \rightarrow Complicated system

Weak Hamiltonian is modified

1. Emitted β particle immersed in Coulomb field: (electroweak) radiative corrections

Beta Spectrum Shape

Active participation of QED, QCD \& WI \rightarrow Complicated system

Weak Hamiltonian is modified

1. Emitted β particle immersed in Coulomb field: (electroweak) radiative corrections
2. QCD adds extra terms in weak vertex: induced currents

Beta Spectrum Shape

Active participation of QED, QCD \& WI \rightarrow Complicated system

Weak Hamiltonian is modified

1. Emitted β particle immersed in Coulomb field: (electroweak) radiative corrections
2. QCD adds extra terms in weak vertex: induced currents

Large scale gap to cross

Quark \rightarrow Nucleon \rightarrow Nucleus \rightarrow Atom \rightarrow Molecule

Beta Spectrum Shape

Active participation of QED, QCD \& WI \rightarrow Complicated system

Weak Hamiltonian is modified

1. Emitted β particle immersed in Coulomb field: (electroweak) radiative corrections
2. QCD adds extra terms in weak vertex: induced currents

Large scale gap to cross

Quark \rightarrow Nucleon \rightarrow Nucleus \rightarrow Atom \rightarrow Molecule
Whole slew of approximations introduced

Standard Model Calculation: Quark

Starting from the Standard Model $S U(2)_{L} \times U(1)_{Y}$ EW sector

$$
\mathcal{M}=\frac{g^{2}}{8} V_{u d} \bar{u} \gamma^{\mu}\left(1-\gamma^{5}\right) d \frac{g_{\mu \nu}-q_{\mu} q_{\nu} / M_{W}^{2}}{q^{2}-M_{W}^{2}} \bar{e} \gamma^{\nu}\left(1-\gamma^{5}\right) \nu
$$

Standard Model Calculation: Quark

Starting from the Standard Model $S U(2)_{L} \times U(1)_{Y}$ EW sector

$$
\mathcal{M}=\frac{g^{2}}{8} V_{u d} \bar{u} \gamma^{\mu}\left(1-\gamma^{5}\right) d \frac{g_{\mu \nu}-q_{\mu} q_{\nu} / M_{W}^{2}}{q^{2}-M_{W}^{2}} \bar{e} \gamma^{\nu}\left(1-\gamma^{5}\right) \nu
$$

Since $q \ll M_{W}$, identify Fermi coupling constant

$$
G_{F}=\frac{g^{2}}{8 M_{W}^{2}}
$$

Standard Model Calculation: Nucleon

Moving to the nucleon system, we face

$$
\langle p| \bar{u} \gamma^{\mu}\left(1-\gamma^{5}\right) d|n\rangle
$$

Standard Model Calculation: Nucleon

Moving to the nucleon system, we face

$$
\langle p| \bar{u} \gamma^{\mu}\left(1-\gamma^{5}\right) d|n\rangle
$$

Symmetries to the rescue! CVC \& PCAC define new nucleon currents

$$
V^{\mu}+A^{\mu} \approx g_{V}\left(q^{2}\right) \gamma^{\mu}\left(1-\lambda \gamma^{5}\right)
$$

where $g_{V}\left(q^{2}\right) \approx 1$ and λ from the lattice

Standard Model Calculation: Nucleon

Strong interaction introduces extra terms into the vertex \rightarrow
Construct all Lorentz invariants

$$
\begin{aligned}
\langle p| V^{\mu}|n\rangle & =\bar{p}\left[g_{V} \gamma^{\mu}+\frac{g_{M}-g_{V}}{2 M} \sigma^{\mu \nu} q_{\nu}+i \frac{g_{S}}{2 M} q^{\mu}\right] n \\
\langle p| A^{\mu}|n\rangle & =\bar{p}\left[g_{A} \gamma^{\mu} \gamma^{5}+\frac{g_{T}}{2 M} \sigma^{\mu \nu} q_{\nu} \gamma^{5}+i \frac{g_{P}}{2 M} q^{\mu} \gamma^{5}\right] n
\end{aligned}
$$

Standard Model Calculation: Nucleon

Strong interaction introduces extra terms into the vertex \rightarrow
Construct all Lorentz invariants

$$
\begin{aligned}
\langle p| V^{\mu}|n\rangle & =\bar{p}\left[g_{V} \gamma^{\mu}+\frac{g_{M}-g_{V}}{2 M} \sigma^{\mu \nu} q_{\nu}+i \frac{g_{S}}{2 M} q^{\mu}\right] n \\
\langle p| A^{\mu}|n\rangle & =\bar{p}\left[g_{A} \gamma^{\mu} \gamma^{5}+\frac{g_{T}}{2 M} \sigma^{\mu \nu} q_{\nu} \gamma^{5}+i \frac{g_{P}}{2 M} q^{\mu} \gamma^{5}\right] n
\end{aligned}
$$

Introduction of recoil $(\sim q / M)$ terms

Standard Model Calculation: Nucleon

Strong interaction introduces extra terms into the vertex \rightarrow
Construct all Lorentz invariants

$$
\begin{aligned}
\langle p| V^{\mu}|n\rangle & =\bar{p}\left[g_{V} \gamma^{\mu}+\frac{g_{M}-g_{V}}{2 M} \sigma^{\mu \nu} q_{\nu}+i \frac{g_{S}}{2 M} q^{\mu}\right] n \\
\langle p| A^{\mu}|n\rangle & =\bar{p}\left[g_{A} \gamma^{\mu} \gamma^{5}+\frac{g_{T}}{2 M} \sigma^{\mu \nu} q_{\nu} \gamma^{5}+i \frac{g_{P}}{2 M} q^{\mu} \gamma^{5}\right] n
\end{aligned}
$$

Introduction of recoil ($\sim q / M$) terms

CVC requires $g_{S}=0 \& g_{M}=\mu_{p}^{a n}-\mu_{n}=4.7$

Standard Model Calculation: Nucleus

Nucleus is spherical system \rightarrow multipole decomposition, elementary particle

Standard Model Calculation: Nucleus

Nucleus is spherical system \rightarrow multipole decomposition, elementary particle

Relativistic generalization in Breit frame

$$
\langle f| V^{0}+A^{0}|i\rangle \propto \sum_{L M}(-)^{J_{f}-M_{f}}\left(\begin{array}{ccc}
J_{f} & L & J_{i} \\
-M_{f} & M & M_{i}
\end{array}\right)\left(Y_{L}^{M}\right)^{*} F_{L}\left(q^{2}\right)
$$

Standard Model Calculation: Nucleus

Nucleus is spherical system \rightarrow multipole decomposition, elementary particle

Relativistic generalization in Breit frame

$$
\langle f| V^{0}+A^{0}|i\rangle \propto \sum_{L M}(-)^{J_{f}-M_{f}}\left(\begin{array}{ccc}
J_{f} & L & J_{i} \\
-M_{f} & M & M_{i}
\end{array}\right)\left(Y_{L}^{M}\right)^{*} F_{L}\left(q^{2}\right)
$$

Form factors \sim reduced matrix elements

Standard Model Calculation: Nucleus

Require transformation from form factors to matrix elements

Standard Model Calculation: Nucleus

Require transformation from form factors to matrix elements

Immediately faced with several issues:

- Weak current in strongly bound system?

Standard Model Calculation: Nucleus

Require transformation from form factors to matrix elements

Immediately faced with several issues:

- Weak current in strongly bound system?
- Relativistic nuclear wave functions

Standard Model Calculation: Nucleus

Require transformation from form factors to matrix elements

Immediately faced with several issues:

- Weak current in strongly bound system?
- Relativistic nuclear wave functions
- Final state interactions

Standard Model Calculation: Nucleus

Require transformation from form factors to matrix elements

Immediately faced with several issues:

- Weak current in strongly bound system?
- Relativistic nuclear wave functions
- Final state interactions

Here the going gets rough \rightarrow severe approximations

Standard Model Calculation: Nucleus

Weak current in strongly bound system?
\rightarrow Impulse approximation, non-interacting nucleons

Standard Model Calculation: Nucleus

Weak current in strongly bound system?
\rightarrow Impulse approximation, non-interacting nucleons

- Neglects meson exchange
- Nucleon-nucleon interaction present in many-body methods

Standard Model Calculation: Nucleus

Weak current in strongly bound system?
\rightarrow Impulse approximation, non-interacting nucleons

- Neglects meson exchange
- Nucleon-nucleon interaction present in many-body methods

Relativistic nuclear wave functions
\rightarrow Non-relativistic nucleons

- expand operator to $\mathcal{O}(v / c)$
- Incomplete wave function basis, core polarization

Standard Model Calculation: Nucleus

Final state interactions

1. Coulomb interaction

Standard Model Calculation: Nucleus

Final state interactions

1. Coulomb interaction

\rightarrow Fermi function, induced Coulomb terms

Standard Model Calculation: Nucleus

Final state interactions

1. Coulomb interaction

Make several approximations

- Initial \& Final Coulomb potentials are same

Standard Model Calculation: Nucleus

Final state interactions

1. Coulomb interaction

Make several approximations

- Initial \& Final Coulomb potentials are same
- Typically neglect intermediate decays

Standard Model Calculation: Nucleus

Final state interactions
2. EW Radiative corrections

Standard Model Calculation: Nucleus

Final state interactions
2. EW Radiative corrections

+ higher orders, γW boxes: see previous talks

Standard Model Calculation: Atom

Must consider total nuclear + atomic Hamiltonian

Standard Model Calculation: Atom

Must consider total nuclear + atomic Hamiltonian

Changes

- Available phase space
- Final state interactions
- Opens new decay modes (bound \& exchange)

Standard Model Calculation: Atom

Must consider total nuclear + atomic Hamiltonian

Changes

- Available phase space
- Final state interactions
- Opens new decay modes (bound \& exchange)

Require atomic wave functions

- Central \& static potential
- Sudden approximation

Standard Model Calculation: Molecule

Similar as atomic system, but changes

- Available phase space
- Molecular excitation, ionization
- Recoil correction \& distribution

Standard Model Calculation: Molecule

Similar as atomic system, but changes

- Available phase space
- Molecular excitation, ionization
- Recoil correction \& distribution

Enter quantum chemistry

- Born-Oppenheimer approximation
- MOLCAO

Current status

Beta Spectrum Shape

Active participation of QED, QCD \& WI \rightarrow Complicated system

Large scale gap to cross:

Quark \rightarrow Nucleon \rightarrow Nucleus \rightarrow Atom \rightarrow Molecule

Beta Spectrum Shape

Active participation of QED, QCD \& WI \rightarrow Complicated system

Large scale gap to cross:

Quark \rightarrow Nucleon \rightarrow Nucleus \rightarrow Atom \rightarrow Molecule

$$
\begin{aligned}
N(W) d W= & \frac{G_{V}^{2} V_{u d}^{2}}{2 \pi^{3}} F_{0}(Z, W) L_{0}(Z, W) U(Z, W) R_{N}\left(W, W_{0}, M\right) \\
& \times Q(Z, W, M) R\left(W, W_{0}\right) S(Z, W) X(Z, W) r(Z, W) \\
& \times C(Z, W) D_{C}\left(Z, W, \beta_{2}\right) D_{\mathrm{FS}}\left(Z, W, \beta_{2}\right) \\
& \times p W\left(W_{0}-W\right)^{2} d W
\end{aligned}
$$

LH et al., Rev. Mod. Phys. 90 (2018) 015008; 1709.07530

Analytical β spectrum shape

80 years of history, in detail

Item	Effect	Formula	Magnitude
1	Phase space factor	$p W\left(W_{0}-W\right)^{2}$	
2	Traditional Fermi function	F_{0}	Unity or larger
3	Finite size of the nucleus	L_{0}	
4	Radiative corrections	R	
5	Shape factor	C	$10^{-1}-10^{-2}$
6	Atomic exchange	X	
7	Atomic mismatch	r	

Added/Improved/Didactic

Analytical β spectrum shape

Item	Effect	Formula	Magnitude
8	Atomic screening	S	
9	Shake-up	See 7	
10	Shake-off	See 7	
11	Isovector correction	C_{I}	
12	Recoil Coulomb correction	Q	$10^{-3}-10^{-4}$
13	Diffuse nuclear surface	U	
14	Nuclear deformation	$D_{\text {FS }}$	
15	Recoiling nucleus	R_{N}	
16	Molecular screening	$\Delta S_{\text {Mol }}$	
17	Molecular exchange	Case by case	

Added/Improved/Didactic

Performance summary

Comparison against numerical results for superallowed \& mirror transitions

Agreement is very good

Serves as input for several experiments, $\mathrm{C}++$ code available
L. H. et al., 1803.00525, github.com/leenderthayen/BSG

Order of magnitude estimates

Nuclear structure sensitivity in shape factor

$$
C(Z, W) \sim 1 \pm \frac{4}{3} \frac{W}{M_{N}} \frac{\boldsymbol{b}}{A c} \pm \frac{4 \sqrt{2}}{21} \alpha Z W R \boldsymbol{\Lambda}-\frac{1}{3 W M c}(\pm 2 \boldsymbol{b}+\boldsymbol{d})
$$

Order of magnitude estimates

Nuclear structure sensitivity in shape factor

$$
C(Z, W) \sim 1 \pm \frac{4}{3} \frac{W}{M_{N}} \frac{\boldsymbol{b}}{A c} \pm \frac{4 \sqrt{2}}{21} \alpha Z W R \boldsymbol{\Lambda}-\frac{1}{3 W M c}(\pm 2 \boldsymbol{b}+\boldsymbol{d})
$$

Fill in typical numbers to obtain

Matrix element	Name	Slope (\% MeV-1)
b	Weak Magnetism	0.5
d	Induced Tensor	0.1
Λ	Induced Pseudoscalar	0.1

Weak magnetism is generally more stable than others
\rightarrow essential to get this right

Weak magnetism

Mirror nuclei have CVC-determined WM

open: I $+1 / 2$, closed: $I-1 / 2$

Weak magnetism

'Easy' matrix elements only accurate to 10-20\%

Weak magnetism

How does shell model perform right now?

$\Delta b / A c=1 \rightarrow 0.1 \% \mathrm{MeV}^{-1}$

Induced tensor

Still large discrepancies for $d / A c$

PHYSICAL REVIEW C 95, 035501 (2017)

$$
2_{1}^{+} \text {to } 3_{1}^{+} \gamma \text { width in }{ }^{22} \mathrm{Na} \text { and second class currents }
$$

S. Triambak,,${ }^{1,2,{ }^{*}}$ L. Phuthu, ${ }^{1}$ A. García, ${ }^{3}$ G. C. Harper, ${ }^{3}$ J. N. Orce, ${ }^{1}$ D. A. Short, ${ }^{3}$ S. P. R. Steininger, ${ }^{3}$ A. Diaz Varela, ${ }^{4}$ R. Dunlop, ${ }^{4}$ D. S. Jamieson, ${ }^{4}$ W. A. Richter, ${ }^{1}$ G. C. Ball, ${ }^{5}$ P. E. Garrett, ${ }^{4}$ C. E. Svensson, ${ }^{4}$ and C. Wrede ${ }^{3,6}$

$$
21(6) \geq d / A c \geq 3(6)
$$

Factor 7 differences depending on shell model results \rightarrow killer!

Challenges

Challenges

At $\mathcal{O}\left(10^{-3}\right)$, nuclear structure is main culprit

- Nuclear matrix elements only precise to $10-20 \%$
- Generally: large meson exchange corrections on induced currents
- Isospin multiplet decays are way to go: WM from CVC, induced tensor $=0$

Challenges

At $\leq \mathcal{O}\left(10^{-4}\right)$, everything breaks

Challenges

At $\leq \mathcal{O}\left(10^{-4}\right)$, everything breaks, but not in the same place!

- Low energy: Atomic \& Molecular effects (exchange)
- Endpoint: Final state interactions, excitations
- Radiative corrections: higher order, model dependence
- Low Z : recoil corrections to matrix elements
- High Z : everything electromagnetic

Conclusions

Spectrum shape measurements are valuable tests for S, T currents

Conclusions

Spectrum shape measurements are valuable tests for S, T currents

Theoretical spectrum is theoretically valid to few 10^{-4}

Conclusions

Spectrum shape measurements are valuable tests for S, T currents

Theoretical spectrum is theoretically valid to few 10^{-4}

Nuclear structure generally is main current generation bottleneck

Conclusions

Spectrum shape measurements are valuable tests for S, T currents

Theoretical spectrum is theoretically valid to few 10^{-4}

Nuclear structure generally is main current generation bottleneck

Further, radiative \& recoil corrections become bottleneck even for nuclear-structure-favorable transitions

