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Overview

* Gravitational waves (GWs) now accessible as probes of dense matter

* For binary systems:

interpreting the data requires detailed theoretical understanding & accurate modeling
* Brief glimpse of challenges, approaches, and status of models that include matter effects

* Outlook: unique scientific prospects with future measurements but only with significant
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further advances in modeling




GW measurements (binary systems)

» Details of the waveforms encode fundamental source properties (masses, spins, ...)

AN

» Measurements cross-correlate millions of template models with the data to determine the

source parameters

» Computation of template waveforms is very challenging:

Must solve the nonlinear Einstein Field equations

coupled with the matter equations of motion for

the dynamical spacetime

credit: GSF




Approaches to computing waveforms

* Numerical relativity simulations: access to complex merger regimes ... limited in parameter space .
sometimes difficult to identify fundamental physics parameters based solely on numerical outputs

* When different physics dominate at different scales:

e tapestry of approximation schemes in different patches of spacetime

Example for comparable-mass inspirals:
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Main GWV signatures of matter

— Black holes — Neutron stars
ringdown,
merger | disruption,
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Spin-induced tidal effects:
multipoles excitation of isolated quasi-normal modes
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GW spectroscopy of matter

Inspiral: small effects but clean and cumulative, accessible with current detectors



Dominant tidal effects

° In a binary: tidal field &'jj= Roip; due to spacetime curvature from companion

When variations in tidal field are much faster than

NS’s internal timescales (adiabatic limit):

Induced deformation:

= —AE

> deformation of spacetime /

away from spherical symmetry tidal deformability parameter

=0 for a black hole

Similarly for higher multipoles



Properties of NS matter reflected in tidal deformability

NS matter models
(equations of state EoS)
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Main influence on GWVs

°* Energy goes into deforming the NS: Q=-)\E W
E ~E ! E > -
~ Eorbit + ZQ mys o« 2 M

* moving multipoles contribute to gravitational radiation

. 43 2
Ecw ~ |33 (Qorbit + Q)

* approx. GW phase evolution from energy balance: AdGy ~ IV E
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More realistic descriptions of tidal effects

* NSs have a rich spectrum of quasi-normal oscillation modes
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* Spectroscopy of NS interiors, possible EM flares

* Even non-resonant excitations can lead to significant effects, e.g. fundamental modes with @,

Example fundamental-mode tidal response during inspiral (NSBH)
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More realistic description of matter effects on the dynamics

spacetime near the NS viewed on the orbital scale:
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tidally induced mass & (matter contributions to) current multipoles

Effective action describing the binary dynamics:
Internal dynamics of the

redshift multipoles (modes)
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More realistic couplings of matter to orbital dynamics

~ R
Multipoles behave as harmonic oscillators:

LOSCNZ < Q(n) Q(n) Z
- - 4)\(n)z2

Different quadrupolar modes
contribute, dominated by

Q(R)Q(n) 4.

fundamental modes

= _
w(”) ar ar 4/\(n) + similarly for higher multipoles
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Finite size effects included in models for data analysis

Matter effects on top of full black hole baseline models
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Effective one body (EOB) models:

resummation of information
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Matter effects in models for data analysis

* For inspirals: variety of physics & assumptions, e.g. some but not all of the models

« Rely on quasi-universal relations used to reduce matter parameters to Aj, A2

* Are calibrated to numerical relativity

* Include some dynamical tidal effects

merger=

peak in GW

amplitude

Comparison with numerical relativity:
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GW signal from NS-black hole (BH) binaries

—— NS - BH

—— BH - BH ﬂ * alternative outcome: plunge
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tidal disruption
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Key signature:
‘shutoff’ in GW Shutoff frequency depends on

parameters

amplitude (mass ratio, spins, EoS, ...)

+ Multimessenger counterparts



Modeling uncertainties

sources of inaccuracies:

* Same ‘physics’, different modeling choices
(e.g. EOB, Phenom families, various tidal models)
* Missing physics

a lot is missing ... but also not all micro details are probed by GW measurements

* For events measured to date:
impact of modeling uncertainties still subdominant compared to statistical errors,

as far as could be determined, but starting to become noticeable in some cases

Abbot+2020, GWTC-2 (Appendix on waveform systematics)



Near-term future prospects

next observing run O4: LIGO/Virgo near/reaching design sensitivity

Credit: LIGO Further upgrades scheduled

* More accurate measurements of nearby sources

- greater number & diversity of events

Credit: KAGRA




Plans for next-generation detectors moving ahead

O(100 000) binary merger detections per year
High precision studies of nearby sources

Wider frequency range:

* Low-frequency:
=10 km" triangle

* tidal resonances, ...

> Prototype being built in Maastricht * infer ‘initial state’ & ‘control parameters’ of the collision

* Early alerts for EM

US vision * High frequency:
* measure tidal disruptions

* Probe NS mergers & beyond




A few examples of remaining theoretical challenges

* high-accuracy and efficient waveforms over wide parameter space

* Inspirals/tidal disruptions: more matter effects & relativistic corrections, higher GW modes,

arbitrary spins, role of beyond zero-temperature, equilibrium matter?, eccentricity, ...

* Deeper understanding of complex NS-NS merger regimes with more realistic physics, robustly

quantify numerical errors, ....

* degeneracies (e.g. modified gravity, dark matter), ...



Summary and outlook

* GWs are new probes of NS physics: clean gravitational channel of information a
* Exciting near- & longer-term prospects with larger & more precise datasets

* Simultaneous advances in modeling are essential to fully realize the science potential, reduce

biases in measurements and interpretation

* Significant recent progress on understanding, methods, modeling of relevant phenomena but

much work remains

* Synergy of theoretical approaches (different analytical approximations + numerical relativity)

important

* Interdisciplinary cooperation needed on connections and fundamental inputs



