# Sterile Neutrino Portals

David McKeen University of Pittsburgh ACFI Neutrino Workshop July 19, 2017

# Sterile Neutrino Portals [and Dark Matter(s)]

David McKeen University of Pittsburgh ACFI Neutrino Workshop July 19, 2017

Model Building a Dark Sector or: what is a "portal"? Standard Model  $SU(3)_c \times SU(2)_L \times U(1)_Y \to SU(3)_c \times U(1)_{em}$ symmetries

**Standard Model** particle content

 $\ell = \begin{pmatrix} \nu_L \\ e_L \end{pmatrix} e_R \\ q = \begin{pmatrix} u_L \\ d_L \end{pmatrix} u_R d_R \end{pmatrix} \times 3$  $H = \begin{pmatrix} \rho^+ \\ v + h + \rho^0 \end{pmatrix} \qquad G^a_\mu, \ W^b_\mu, \ B_\mu \to G^a_\mu, \ A_\mu$ 

Renormalization: lower dim. operators (fewer fields/particles) more important

Model Building a Dark Sector or: what is a "portal"? Standard Model symmetries  $SU(3)_c \times SU(2)_L \times U(1)_Y \rightarrow SU(3)_c \times U(1)_{em}$ 

Portals: coupling via stuff uncharged w.r.t. SM

Lead to minimal difficulties incorporating hidden sectors







#### Vector Portal











Neutrino Portal









#### Vector Portal



N

 $\ell H$ 



 $\bar{\chi}$ 

 $\chi$ 

 $\bar{N}, \bar{\nu}$ 

 $N, \nu$ 

#### **Higgs Portal**





# Why bother with a portal?





#### Ostriker & Peebles, ApJ, **186**, 467 ('73)









#### Ostriker & Peebles, ApJ, **186**, 467 ('73)







Ostriker & Peebles, ApJ, 186, 467 ('73)





Consider thermal relic DM



# How do you generate that coupling

#### Basic Idea

 $\mathcal{L} \supset -\lambda \bar{L}HN - y\bar{N}\chi\phi + \text{h.c.} \rightarrow -\lambda v\bar{\nu}N - y\bar{N}\chi\phi + \text{h.c.}$  $\nu_l = \sqrt{1 - U^2}\nu + UN$  $\nu_h = -U\nu + \sqrt{1 - U^2}N$ 



Case II:  $m_{\chi} < M$ 



 $\propto U^2$ 







Batell, Han, & Shams Es Haghi 1704.08708



#### Minimal Model

 $\mathcal{L} \supset -\lambda_i \bar{L}_i H N_R - M_N \bar{N}_L N_R - \phi \bar{\chi} \left( y_L N_L + y_R N_R \right) + \text{h.c.}$  $\rightarrow -\lambda_i v \bar{\nu}_{iL} N_R - M_N \bar{N}_L N_R - \phi \bar{\chi} \left( y_L N_L + y_R N_R \right) + \text{h.c.}$ 

> lepton number conserved (for small v masses & large mixing)

Bertoni, Ipek, DM, & Nelson 1412.3113 Batell, Han, DM, & Shams Es Haghi *in prep.* 





#### Atmospheric Neutrino Oscillations

 $\nu_{\mu}, \nu_{\tau N}$  Hamiltonian:

$$H = \left(\frac{\Delta m^2}{4E}\right) \left(\begin{array}{cc} -\cos 2\theta & \sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{array}\right) + \left(\begin{array}{cc} V_{\mu} & 0 \\ 0 & V_{\tau N} \end{array}\right)$$



#### Are there hints for DM-neutrino interactions?

Count satellites of Milky Way galaxy:

Hooper, Kaplinghat, Strigari, & Zurek



100 000 ly



 $m_N = 10m_\chi \qquad m_N = 400 \text{ GeV}$ 

Can summarize using particular combination of couplings:

$$Y \equiv y_L^4 \left(\sum_i |U_{i4}|^2\right)^2 \frac{m_\chi^4}{m_\phi^4} = 32\pi m_\chi^2 \langle \sigma v \rangle$$





 $m_N = 10m_\chi \qquad m_N = 400 \text{ GeV}$ 

Can summarize using particular combination of couplings:

$$Y \equiv y_L^4 \left(\sum_i |U_{i4}|^2\right)^2 \frac{m_\chi^4}{m_\phi^4} = 32\pi m_\chi^2 \langle \sigma v \rangle$$





#### Neutrino Oscillations when large tau mixing

Assume mixing is dominantly with τ, just 1 more mixing angle in addition to the usual 3, and just 1 more (large) mass splitting

$$U = \begin{pmatrix} U_{e1}^{3\times3} & U_{e2}^{3\times3} & U_{e3}^{3\times3} & 0\\ U_{\mu1}^{3\times3} & U_{\mu2}^{3\times3} & U_{\mu3}^{3\times3} & 0\\ c_{\theta}U_{\tau1}^{3\times3} & c_{\theta}U_{\tau2}^{3\times3} & c_{\theta}U_{\tau3}^{3\times3} & s_{\theta}\\ -s_{\theta}U_{\tau1}^{3\times3} & -s_{\theta}U_{\tau2}^{3\times3} & -s_{\theta}U_{\tau3}^{3\times3} & c_{\theta} \end{pmatrix}$$

$$\begin{split} &|U_{e2}|^{2} |U_{\mu2}|^{2} + |U_{\tau2}|^{2} \text{ solar neutrinos } \Rightarrow \\ &|U_{e1}|^{2} |U_{e2}|^{2} \text{ KamLAND} \\ &|U_{\mu3}|^{2} \left(1 - |U_{\mu3}|^{2}\right) \text{ atmospheric/accelerator} \\ &|U_{e3}|^{2} \left(1 - |U_{e3}|^{2}\right) \text{ short baseline reactors} \\ &|U_{e3}|^{2} |U_{\mu3}|^{2} \text{ long baseline accelerator} \\ \end{split}$$



### Neutrinos from Supernovae



32

## Supernovae Limits

Neutrinos produced in SN at T~30 MeV

Initial neutronization burst of ve followed by cooling

DM light enough to be produced but doesn't contribute to cooling, thermal dist. with neutrinos to large radii

Neutrinos free stream when density is low, T~5 MeV: DM production suppressed, similar to strong v self-interactions

Fayet, Hooper, & Sigl, hep-ph/0602169 find

 $m_{\chi} > 10 \text{ MeV}$ 

Mangano et al., hep-ph/0606190 & Boehm et al., 1303.6270:



## Supernovae Limits

Large fraction of DM gravitationally bound:  $v_{esc} \sim 0.5 c$ 

Is location (temperature) of v-sphere changed?

What are effects of flavor?

Could v "dwell" time be increased?

Very complicated...

### Future tests



35

## Can an O(3-4k) v<sub>τ</sub> sample at SHiP impact a scenario like this?



# Sterile neutrino portal to a light scalar Consider $\mathcal{L}_{mass} = -m_D \nu N - m_N N N + h.c.$ with $m_N (A) = m_0 + \kappa A$ $V_0 = \Lambda^4 \log \left( 1 + \left| \frac{A}{\sigma} \right| \right)$ $V(A,T) = \Lambda^4 \log \left( 1 + \left| \frac{A}{\sigma} \right| \right) + \frac{m^2 (A) T^2}{24}$ $m \propto \frac{1}{A}$

Temperaturedependent potential



## Sterile neutrino portal to a light scalar $\mathcal{L}_{\text{mass}} = -m_D \nu N - m_N N N + \text{h.c.}$ Consider with $m_N(A) = m_0 + \kappa A$ $V_0 = \Lambda^4 \log\left(1 + \left|\frac{A}{\sigma}\right|\right)$ $V(A,T) = \Lambda^4 \log\left(1 + \left|\frac{A}{\sigma}\right|\right) + \frac{m^2(A)T^2}{24}$ 100

Temperaturedependent masses



#### Sterile neutrino portal to a light scalar $\mathcal{L}_{\text{mass}} = -m_D \nu N - m_N N N + \text{h.c.}$ Consider with $m_N(A) = m_0 + \kappa A$ $V_0 = \Lambda^4 \log\left(1 + \left|\frac{A}{\sigma}\right|\right)$ $V(A,T) = \Lambda^4 \log\left(1 + \left|\frac{A}{\sigma}\right|\right) + \frac{m^2(A)T^2}{24}$ 10<sup>8</sup> Add small active $M_{1,2}$ $10^{4}$ Majorana mass for $m_{1,2}$ dark energy eV

 $\mathcal{L} \supset -\mu\nu\nu$ 





T(eV)

## Wrap up

Neutrino portal is a viable, less well studied way to couple to dark sector

Leads to a rich phenomenology

Can help with some problems in dark matter

Interesting new probes—lots of connections across fields!