Charged Pion Polarizability & Muon g-2

M.J. Ramsey-Musolf U Mass Amherst

Amherst Center for Fundamental Interactions

http://www.physics.umass.edu/acfi/

ACFI-J Lab Workshop March 2014

Outline

- I. Intro & Motivation: SM & Beyond
- II. Hadronic Light-by-Light: Review & Status
- III. Charged Pion Loops revisited
- IV. Summary and Outlook

Intro & Motivation: SM & Beyond

- $a_{\mu}(EW) = 154 (2) \times 10^{-11}$
- $a_{\mu}(HVP-LO) = 7015 (47) \times 10^{-11}$
- $a_{\mu}(HVP-NLO) = -98 (1) \times 10^{-11}$
- $a_{\mu}(HLBL) = 116 (39) \times 10^{-11}$ 105 (26) × 10⁻¹¹
 - $\delta a_{\mu}^{TH} = + 53 \times 10^{-11}$
 - $\delta a_{\mu}^{EXP} = + 63 \times 10^{-11}$ BNL E821

- $a_{\mu}(EW) = 154 (2) \times 10^{-11}$
- $a_{\mu}(HVP-LO) = 7015 (47) \times 10^{-11}$
- $a_{\mu}(HVP-NLO) = -98 (1) \times 10^{-11}$
- $a_{\mu}(HLBL) = 116 (39) \times 10^{-11}$ 105 (26) × 10⁻¹¹
 - $\delta a_{\mu}^{TH} = + 53 \times 10^{-11}$
 - δa_{μ}^{EXP} = + 63 x 10-11 BNL E821

$$\Delta a_{\mu} = a_{\mu}^{EXP} - a_{\mu}^{TH} = 287 (83) \times 10^{-11}$$

- $a_{\mu}(EW) = 154 (2) \times 10^{-11}$
- $a_{\mu}(HVP-LO) = 7015 (47) \times 10^{-11}$
- $a_{\mu}(HVP-NLO) = -98 (1) \times 10^{-11}$
- $a_{\mu}(HLBL) = 116 (39) \times 10^{-11}$ 105 (26) × 10⁻¹¹
 - $\delta a_{\mu}^{TH} = \frac{+53 \times 10^{-11}}{53 \times 10^{-11}}$ $\delta a_{\mu}^{EXP} = \frac{+63 \times 10^{-11}}{10^{-11}}$
 - ⁺_ 63 x 10⁻¹¹ BNL E821 ⁺_ 16 x 10⁻¹¹ FNAL New g-2

 $\Delta a_{\mu} = a_{\mu}^{EXP} - a_{\mu}^{TH} = 287 (83) \times 10^{-11}$

a _µ (EW)	=	154 (2) x 10 ⁻¹¹	
a _µ (HVP-LO)) =	7015(47) x 10 ⁻¹¹	
a _µ (HVP-NL0	C) =	-98 (1) x 10 ⁻¹¹	
a _µ (HLBL)	=	116 (39) x 10 ⁻¹¹ 105 (26) x 10 ⁻¹¹	Most challenging
$\delta a_{\mu}{}^{ au extsf{H}}$	=	+_ 53 x 10 ⁻¹¹	
$\deltaa_{\mu}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	=	+_ 63 x 10 ⁻¹¹ +_ 16 x 10 ⁻¹¹	BNL E821 FNAL New g-2
$\Delta a_{\mu} = a_{\mu}^{EXP} - a_{\mu}$	u TH =	287 (83) x 10 ⁻¹¹	

Hadronic Light-by-Light: Review & Status

 $a_{\mu}(\chi PT) = (57^{+50}_{-60} + 31 \ C) \times 10^{-11}$

Representative Models

- Hidden Local Symmetry (HLS) [1]
- Extended NJL (ENJL)/VMD[1,2]
- Constituent Chiral Quark Model (C_χQM) [3]
- AdS/CFT [4]
- Dyson-Schwinger [5]

[1] Hayakawa, Kinoshita, Sanda '95
[2] Bijnens, Pallante, Prades '96
[3] De Rafael '12; Boughezal & Melkinov '11
[4] Hong & Kim '09; Cappiello, Cata, D'Ambrosio '11
[5] Goeke, Fischer, Williams '11, '12

Representative Models

- Hidden Local Symmetry (HLS) [1]
- Extended NJL (ENJL)/VMD[1,2]
- Constituent Chiral Quark Model (C_χQM) [3]
- AdS/CFT [4]
- Dyson-Schwinger [5]

[1] Hayakawa, Kinoshita, Sanda '95
[2] Bijnens, Pallante, Prades '96
[3] De Rafael '12; Boughezal & Melkinov '11
[4] Hong & Kim '09; Cappiello, Cata, D'Ambrosio '11
[5] Goeke, Fischer, Williams '11, '12

Short Distance Constraints

Vainshtein & Melnikov '04

 $\Delta a_{\mu}(OPE)$ = 30 x 10⁻¹¹ ($\rightarrow C$ = +1)

18

Charged Pion Loops Revisited

Kinoshita, Nizic, Okamoto '85; Hayakawa, Kinoshita, Sanda '95

Point-like pions: $-0.0383 (19) (\alpha / \pi)^3 = -48 (2) \times 10^{-11}$ Include $F_{\pi} (q^2)$: $-0.0125 (19) (\alpha / \pi)^3 = -16 (2) \times 10^{-11}$ "HLS": $-0.00355 (12) (\alpha / \pi)^3 = -4.5 (0.2) \times 10^{-11}$ ENJL: $-0.015 (4) (\alpha / \pi)^3 = -19 (5) \times 10^{-11}$

20

Kinoshita, Nizic, Okamoto '85; Hayakawa, Kinoshita, Sanda '95

Point-like pions: -0.0383 (19) $(\alpha / \pi)^3$ -48 (2) x 10⁻¹¹ = x 10-11 16 (2) Include $F_{\pi}(q^2)$: -0.0125 (19) $(\alpha / \pi)^3$ = *"HLS"*: x 10-11 $-0.00355 (12) (\alpha / \pi)^3 =$ -4.5 (0.2) x 10-11 **ENJL**: -0.015 (4) (α/π)³ 19 (5) =

21

Kevin Engel (Caltech), Hiren Patel (Wisconsin), MRM

Chiral Perturbation Theory

Pion: Goldstone boson of spont broken chiral symmetry

 $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$

$$\Sigma = \exp(i\tau^a \ \pi^a/F_\pi)$$

• Expand in p / Λ_{χ} Λ_{χ} ~ 1 GeV

$$\mathcal{L} \supset ie\alpha_9 F_{\mu\nu} \operatorname{Tr} \left(Q \left[D^{\mu} \Sigma, D^{\nu} \Sigma^{\dagger} \right] \right) + e^2 \alpha_{10} F^2 \operatorname{Tr} \left(Q \Sigma Q \Sigma^{\dagger} \right) ,$$

Kevin Engel (Caltech), Hiren Patel (Wisconsin), MRM

Beyond leading order: subgraphs

Pion charge radius: first non-trivial term in expansion of F_{π} (q²) O (p⁴) LEC: α_9

Pion polarizability: distinct physics from ff $O(p^4)$ LEC: $\alpha_9 + \alpha_{10}$

Kevin Engel (Caltech), Hiren Patel (Wisconsin), MRM

Beyond leading order: embedding subgraphs in full HLBL contribution

d=8 ops

Operator	1 loop $\chi \mathrm{PT}$	2 loop	VMD
${\cal O}_1^{(8)}$	1/9	$\frac{m_{\pi}^2}{F_{\pi}^2} \frac{16}{3} (\alpha_9^r + \alpha_{10}^r)$	0
$\mathcal{O}_2^{(8)}$	1/45	0	0

\boldsymbol{n}	1 loop	2 loop	VMD
1	$\frac{1}{45}$	$\frac{1}{3} \left\{ \frac{1}{9} (m_{\pi} r_{\pi})^2 + \frac{4}{5} (\frac{m_{\pi}}{F_{\pi}})^2 (\alpha_9^r + \alpha_{10}^r) \right\}$	$\frac{2}{9} \frac{m_{\pi}^2}{M_V^2}$
2	$\frac{2}{45}$	$\frac{1}{9} \Big\{ \frac{1}{3} (m_{\pi} r_{\pi})^2 + \frac{1}{2} \frac{m_{\pi}^2}{\Lambda_{\chi}^2} + \frac{44}{5} (\frac{m_{\pi}}{F_{\pi}})^2 (\alpha_9^r + \alpha_{10}^r) \Big\}$	$\frac{2}{9} \frac{m_{\pi}^2}{M_V^2}$
3	$\frac{2}{315}$	$\frac{1}{135}(m_{\pi}r_{\pi})^2$	$\frac{2}{45} \frac{m_{\pi}^2}{M_V^2}$
4	$\frac{1}{189}$	$\frac{1}{135}(m_{\pi}r_{\pi})^2$	$\frac{2}{45} \frac{m_{\pi}^2}{M_V^2}$
5	$\frac{1}{135}$	$\frac{4}{45} (\frac{m_{\pi}}{F_{\pi}})^2 (\alpha_9^r + \alpha_{10}^r)$	0
6	$\frac{1}{315}$	0	0
7	$\frac{1}{945}$	0	0

PRD **86**:037502 (2012)

Kevin Engel (Caltech), Hiren Patel (Wisconsin), MRM

Beyond leading order: embedding subgraphs in full HLBL contribution

C)perator	1	loop χ PT 2 loop VMD		
	$\mathcal{O}_1^{(8)}$		$1/9 \qquad \frac{n_{\pi}^2}{r_{\pi}^2} \frac{16}{3} (\alpha_9^r + \alpha_{10}^r) \qquad 0 \qquad LO:$		
	$\mathcal{O}_2^{(8)}$		1/45 0 0 SUP	presse	за
	J				
r	1 loop		2 loop	VMD	
1	$\frac{1}{45}$		$\frac{1}{3} \left\{ \frac{1}{9} (m_{\pi} r_{\pi})^2 + \frac{4}{5} (\frac{m_{\pi}}{F_{\pi}})^2 (\alpha_9^r + \alpha_{10}^r) \right\}$	$\frac{2}{9} \frac{m_{\pi}^2}{M_V^2}$	
2	$\frac{2}{45}$	$\frac{1}{9}$	$\left\{\frac{1}{3}(m_{\pi}r_{\pi})^{2} + \frac{1}{2}\frac{m_{\pi}^{2}}{\Lambda_{\chi}^{2}} + \frac{44}{5}(\frac{m_{\pi}}{F_{\pi}})^{2}(\alpha_{9}^{r} + \alpha_{10}^{r})\right\}$	$\frac{2}{9} \frac{m_{\pi}^2}{M_V^2}$	
3	$\frac{2}{315}$		$\frac{1}{135}(m_{\pi}r_{\pi})^2$	$\frac{2}{45} \frac{m_{\pi}^2}{M_V^2}$	
4	$\frac{1}{189}$		$\frac{1}{135}(m_{\pi}r_{\pi})^2$	$\frac{2}{45} \frac{m_{\pi}^2}{M_V^2}$	
Ę	$\frac{1}{135}$		$\frac{4}{45} (\frac{m_{\pi}}{F_{\pi}})^2 (\alpha_9^r + \alpha_{10}^r)$	0	
6	$\frac{1}{315}$		0	0	
7	$\frac{1}{945}$		0	0	

PRD **86**:037502 (2012)

Kevin Engel (Caltech), Hiren Patel (Wisconsin), MRM

Beyond leading order: embedding subgraphs in full HLBL contribution

PRD 86:037502 (2012)

Kevin Engel (Caltech), Hiren Patel (Wisconsin), MRM

Beyond leading order: embedding subgraphs in full HLBL contribution

PRD 86:037502

(2012)

Kevin Engel (Caltech), MRM

Beyond leading order: embedding subgraphs in full HLBL contribution

Kevin Engel (Caltech), MRM

Beyond leading order: embedding subgraphs in full HLBL contribution

Kevin Engel (Caltech), MRM

Beyond leading order: embedding subgraphs in full HLBL contribution

Kevin Engel (Caltech), MRM

Beyond leading order: embedding subgraphs in full HLBL contribution

Bijnens & Abyaneh 1208.3548 : Include $\alpha_{9}+\alpha_{10}$ to $k_{loop} \sim 500 \text{ MeV}$ $\rightarrow 10\%$ increase in a_{μ} (π loop)

Analgous problem: Pseudoscalar EM mass splitting

Donoghue, Holstein, Wyler '93

$$\Delta m_{\pi}^{2} = \delta m_{+}^{2} - \delta m_{0}^{2}$$

$$= \frac{e^{2}}{2} \int \frac{d^{4}q}{(2\pi)^{4}} \frac{1}{q^{2}} g^{\mu\nu} [T_{\mu\nu}^{+}(p,q) - T_{\mu\nu}^{0}(p,q)]$$

Analgous problem: Pseudoscalar EM mass splitting

Donoghue, Holstein, Wyler '93

$$\Delta m_{\pi}^{2} = \delta m_{+}^{2} - \delta m_{0}^{2}$$

$$= \frac{e^{2}}{2} \int \frac{d^{4}q}{(2\pi)^{4}} \frac{1}{q^{2}} g^{\mu\nu} [T_{\mu\nu}^{+}(p,q) - T_{\mu\nu}^{0}(p,q)]$$

Pure EFT: Divergent → *Modeling required*

Analgous problem: Pseudoscalar EM mass splitting

Donoghue, Holstein, Wyler '93

$$\Delta m_{\pi}^{2} = \delta m_{+}^{2} - \delta m_{0}^{2}$$

$$= \frac{e^{2}}{2} \int \frac{d^{4}q}{(2\pi)^{4}} \frac{1}{q^{2}} g^{\mu\nu} [T_{\mu\nu}^{+}(p,q) - T_{\mu\nu}^{0}(p,q)]$$

$$q^2 o \infty: \qquad T_{\mu
u}(p,q) \quad \sim \quad rac{1}{q^2}$$

Analgous problem: Pseudoscalar EM mass splitting

Donoghue, Holstein, Wyler '93

$$\Delta m_{\pi}^{2} = \delta m_{+}^{2} - \delta m_{0}^{2}$$

$$= \frac{e^{2}}{2} \int \frac{d^{4}q}{(2\pi)^{4}} \frac{1}{q^{2}} g^{\mu\nu} [T_{\mu\nu}^{+}(p,q) - T_{\mu\nu}^{0}(p,q)]$$

$$q^2 o \infty: \qquad T_{\mu
u}(p,q) \quad \sim \quad rac{1}{q^2}$$

$${1\over Q^2+M_V^2} \longrightarrow r_\pi^2 = {6\over M_V^2}$$

$$\frac{1}{Q^2 + M_A^2} \quad \longrightarrow \quad \alpha_9 + \alpha_{10} \sim \frac{1}{M_A^2}$$

Analgous problem: Pseudoscalar EM mass splitting

Donoghue, Holstein, Wyler '93

Finite Δm_{π}^{2} *requires additional form factors*

See Donoghue & Perez '96

$$q^2 \to \infty$$
: $T_{\mu\nu}(p,q) \sim \frac{1}{q^2}$

$$\frac{1}{Q^2 + M_V^2} \quad \longrightarrow \quad r_\pi^2 = \frac{6}{M_V^2}$$

$$\frac{1}{Q^2 + M_A^2} \quad \longrightarrow \quad \alpha_9 + \alpha_{10} \sim \frac{1}{M_A^2}$$

Analgous problem: Pseudoscalar EM mass splitting

Donoghue, Holstein, Wyler '93

Model:
$$\Delta m_{\pi}^{2} = 2 m_{\pi} x 5.6 \text{ MeV}$$

Expt: $\Delta m_{\pi}^{2} = 2 m_{\pi} x 4.6 \text{ MeV}$

$$q^2 \to \infty$$
: $T_{\mu\nu}(p,q) \sim \frac{1}{q^2}$

$$\frac{1}{Q^2+M_V^2} \quad \longrightarrow \quad r_\pi^2 = \frac{6}{M_V^2}$$

$$\frac{1}{Q^2 + M_A^2} \quad \longrightarrow \quad \alpha_9 + \alpha_{10} \sim \frac{1}{M_A^2}$$

Charged Pion Contribution: Model

Kevin Engel (Caltech), MRM

arXiv: 1309.2225

Interpolating from chiral to high momentum regime:

- Match onto $O(p^4) \chi PT$ results in low p regime
- Reproduce $1/q^2$ asymptotic behavior for $T_{\mu\nu}$
- Incorporate resonance saturation physics
- Produce finite a_{μ}
- Reproduce EM Δm_{π}^{2} if possible

Note: Δm_{π}^{2} receives contribution from

$$\mathcal{L} \supset rac{e^2 C}{F_\pi^2} \operatorname{Tr} \left(Q \Sigma Q \Sigma^\dagger
ight)$$

Charged Pion Contribution: Model

Kevin Engel (Caltech), MRM

+ ρ pole

Charged Pion Contribution: Model

Kevin Engel (Caltech), MRM

arXiv: 1309.2225

Two Models:

$$\mathcal{L}_{I} = -\frac{e^{2}}{4} F_{\mu\nu} \pi^{+} \left(\frac{1}{D^{2} + M_{A}^{2}}\right) F^{\mu\nu} \pi^{-} + \text{h.c.} + \cdots$$

Finite Δm_{π}^2 for $M_A^2 = 2 M_V^2$

$$\mathcal{L}_{II} = -\frac{e^2}{2M_A^2} \pi^+ \pi^- \left[\left(\frac{M_V^2}{\partial^2 + M_V^2} \right) F^{\mu\nu} \right]^2 + \cdots$$

$$4 M_{A^{2}} (\alpha_{9} + \alpha_{10}) = F_{A^{2}}$$

40

Pion Polarizability Experiment

$$(\alpha_1 - \beta_1)_{\pi^+} = 8\alpha(\alpha_9^r + \alpha_{10}^r)/(F_{\pi}^2 m_{\pi}) + \cdots$$

Pion Polarizability Experiment

$$(\alpha_1 - \beta_1)_{\pi^+} = 8\alpha(\alpha_9^r + \alpha_{10}^r)/(F_{\pi}^2 m_{\pi}) + \cdots$$

Charged Pion Contribution: Results

Kevin Engel (Caltech), MRM

arXiv: 1309.2225

Approach	$a_{\mu}^{\pi^{+}\pi^{-}} \times 10^{11}$ (a)	$a_{\mu}^{\pi^{+}\pi^{-}} \times 10^{11}$ (b)
LO	-44	-44
HLS	-4.4 (2)	-4.4 (2)
ENJL	-19 (13)	-19(13)
NLO/cut-off	-20 (5)	-24 (5)
Model I	-11	-34
Model II	-40	-71
$(\alpha_9 + \alpha_{10})$:	Rad π decay	$\gamma p ightarrow \gamma^{'} \pi^{\!\scriptscriptstyle +} n$
Recall:	$(lpha_1-eta_1)_{\pi^+}=8lpha$	$(\alpha_9^r + \alpha_{10}^r)/(F_\pi^2 m_\pi) + \cdots$

43

Charged Pion Contribution: Results

Kevin Engel (Caltech), MRM

arXiv: 1309.2225

Approach	$a_{\mu}^{\pi^{+}\pi^{-}} \times 10^{11} $ (a)	$a_{\mu}^{\pi^{+}\pi^{-}} \times 10^{11} \text{ (b)}$
LO	-44	-44
HLS	-4.4 (2)	-4.4 (2)
ENJL	-19 (13)	-19(13)
NLO/cut-off	-20 (5)	-24(5)
Model I	-11	-34
Model II	-40	-71

 $(\alpha_9 + \alpha_{10})$: Rad π decay $\gamma p \rightarrow \gamma' \pi^+ n$

~ 30 x 10⁻¹¹ spread from (α_9 + α_{10})

~ 30 x 10⁻¹¹ spread from interpolation (modeling)

Summary & Outlook

• Charged pion polarizability previously omitted from SM prediction for muon g-2

• Inclusion tends to increase discrepancy between experimental value and SM prediction

• Parametric and modeling uncertainties are significant compared to expected precision of FNAL measurement

• J Lab polarizability measurement would eliminate parameteric uncertainty

• Future challenge: experimental test of interpolation with γ^* momentum

Back Up Slides

49

υc

HLBL: Compilation

Nyffeler 1001.3970

Contribution	BPP [8]	HKS, HK [9]	KN [10]	MV [11]	BP [5], MdRR [1]	PdRV [6]	N [13], JN [3]
π^0, η, η'	85 ± 13	$82.7{\pm}6.4$	83 ± 12	$114{\pm}10$	_	$114{\pm}13$	$99{\pm}16$
axial vectors	$2.5{\pm}1.0$	1.7 ± 1.7	_	22 ± 5	—	15 ± 10	22 ± 5
scalars	$-6.8{\pm}2.0$	_	_	_	_	-7 ± 7	-7 ± 2
π, K loops	-19 ± 13	-4.5 ± 8.1	_	_	—	-19 ± 19	$-19{\pm}13$
π, K loops +subl. N_C	_	_	_	0±10	_	_	_
quark loops	21 ± 3	$9.7{\pm}11.1$	_	_	-	2.3	21 ± 3
Total	83 ± 32	$89.6 {\pm} 15.4$	80±40	136 ± 25	$110{\pm}40$	105 ± 26	116 ± 39

HLBL: Compilation

Nyffeler 1001.3970

Contribution	BPP [8]	HKS, HK [9]	KN [10]	MV [11]	BP [5], MdRR [1]	PdRV [6]	N [13], JN [3]
π^0,η,η^\prime	85 ± 13	$82.7{\pm}6.4$	83 ± 12	$114{\pm}10$	—	114 ± 13	$99{\pm}16$
axial vectors	$2.5{\pm}1.0$	1.7 ± 1.7	_	22 ± 5	—	$15{\pm}10$	22 ± 5
scalars	$-6.8{\pm}2.0$	_	_	_	_	-7 ± 7	-7 ± 2
π, K loops	$-19{\pm}13$	-4.5 ± 8.1	_	_	_	$-19{\pm}19$	$-19{\pm}13$
π, K loops +subl. N_C	_	_	_	0±10	_	_	_
quark loops	21 ± 3	9.7 ± 11.1	_	_	_	2.3	21 ± 3
Total	83 ± 32	$89.6{\pm}15.4$	80±40	136 ± 25	$110{\pm}40$	105 ± 26	116 ± 39

HLBL: Compilation

Nyffeler 1001.3970

Contribution	BPP [8]	HKS, HK [9]	KN [10]	MV [11]	BP [5], MdRR [1]	PdRV [6]	N [13], JN [3]
π^0,η,η^\prime	85 ± 13	$82.7{\pm}6.4$	83 ± 12	$114{\pm}10$	_	114 ± 13	$99{\pm}16$
axial vectors	$2.5{\pm}1.0$	1.7 ± 1.7	_	22 ± 5	_	15 ± 10	22 ± 5
scalars	$-6.8{\pm}2.0$		_	_	_	-7 ± 7	-7 ± 2
π, K loops	-19 ± 13	-4.5 ± 8.1	_	_	_	-19 ± 19	$-19{\pm}13$
π, K loops +subl. N_C	_	_	_	0±10	_	_	_
quark loops	21 ± 3	9.7 ± 11.1	_	_	_	2.3	21±3
Total	83 ± 32	$89.6 {\pm} 15.4$	80±40	136 ± 25	110 ± 40	105 ± 26	116 ± 39

HLS

Lattice QCD

See A. Juttner (B1)

• Blum, Izubuchi, ...: QED + QCD

• Rakow (QCDSF): 4pt function

Tenth Order QED

Aoyama, Hayakawa, Kinoshita, Nio '12

$$a_{\mu}(\text{QED}) = \sum_{n=1}^{\infty} \left(\frac{\alpha}{\pi}\right)^n a_{\mu}^{(2n)},$$

TABLE III. Contributions to muon g - 2 from QED perturbation term $a_{\mu}^{(2n)}(\alpha/\pi)^n \times 10^{11}$. They are evaluated with two values of the fine-structure constant determined by the Rb experiment and by the electron g - 2 (a_e).

order	with $\alpha^{-1}(Rb)$	with $\alpha^{-1}(a_e)$
2	116 140 973.318 (77)	116 140 973.213 (30)
4	413 217.6291 (90)	413 217.6284 (89)
6	30 141.902 48 (41) 30 141.902 39 (40)
8	381.008 (19)	381.008 (19)
10	5.0938 (70)	5.0938 (70)
a_{μ} (QED) $\times 10^{11}$	116 584 718.951 (80)	116 584 718.846 (37)