EDMs & P-Conserving T-Violation

M.J. Ramsey-Musolf U Mass Amherst

Amherst Center for Fundamental Interactions

http://www.physics.umass.edu/acfi/

ACFI-JLab Workshop March 2014

Outline

- I. Intro & Motivation
- II. TVPC Interactions: Background
- III. EFT Illustration: $m_{\nu} \& \mu_{\nu}$
- IV. TVPC Interactions & EDMS
- V. Summary

Questions for Theory

C and P Symmetries (assuming CPT)

D. Mack, MENU

С	C, P, CP Strong, EM	C, P, CP Weak (loop-level)
	Big SM "background" in any search for new forces	Small SM "background" . New sources of P, CP constrained by EDM searches
G	G, P, CP Weak (loop-level) Small SM "background". New sources of P, CP less constrained by EDM searches	G, P, CP Weak Big SM "background" in any search for new forces New sources of PV also constrained by amplitude- sensitive PV asymmetry measurements

4

C Violation Basics

D. Mack, MENU

The charge conjugation operator C reverses all generalized charges, effectively replacing a particle by its anti-particle.

C violation is known only in

- 1. Weak interactions at tree level which violate P (hence conserving CP)
- 2. Weak interactions at loop level which violate CP

Both C- and CP-violation are among the Sakharov criteria for baryogensis.

Everybody knows strong and EM forces conserve C but direct bounds on C violation in these amplitudes are only ~0.5%. <u>How to improve this?</u>

It is surprisingly hard:

- i. Only a few neutral particles are states of good C and thus suitable for tests $(\gamma, \pi^0, \eta, J/\psi, \text{ or a self-conjugate system like } e^+e^-)$.
- *ii.* Most of the particles of good C appropriate for initial states aren't easy to make in large quantities (and with sufficiently low backgrounds).

D. Mack, MENU **n** Decays Testing C Violation

Why n's?

- The η full width is only 1.3 keV. It cannot decay by the isospin conserving strong interaction. This means that achievable BR's of 10⁻⁶ to 10⁻⁷ probe the weak scale.
- η decays are flavor-conserving, a sector less thoroughly studied than $\Delta S = 1$, etc.
- Theory calculations predict large mass enhancements, hence relatively crude η decay BR upper limits place tighter constraints than more precise π^0 decay BR upper limits.
- The η has a significant s-sbar content, unlike the π^{0} or nucleon.

Considerations of acceptance and phase space have focused us on $\eta \rightarrow 3\gamma$ and $\eta \rightarrow 2\pi^{0}\gamma$.

Most C test channels are <u>all-neutral</u> except for $\eta \rightarrow \pi^0 \gamma^* \rightarrow \pi^0 l^* l^*$.

D. Mack, MENU

Theory Issues for C Violation

Placing the tightest <u>direct</u> limits on C violation sounds interesting to experimentalists, but what about theorists?

•Little literature on C violation with P conservation.

(appropriate models for this would be non-renormalizable - Herczeg)

•Some literature on T violation with P conservation

(under CPT, equivalent to C violation with P conservation).

•By contrast, tremendous literature on CP violation and EDM's.

•C violation without P violation is apparently not on the radar of those working with SUSY, leptoquarks.

•*C* violation does arise in discussions of violation of Lorentz invariance, but the predicted *C* violating *n* decay BR's are effectively zero for any experiment, ever.

We'd like theorists studying T violation with P conservation to know that η decays can place tight limits in an isospin-violating sector.

TVPC Interactions: Background

TVPC Interactions

• Herczeg: No renormalizable TVPC boson-exchange interactions involving only SM fields [Hyperfine Int, **75** (1992) 127]

• Low-energy ($k << \Lambda_{EW}$) four fermion interactions first arise at d=7 :

$$\mathcal{O}_{7}^{ff'} = C_{7}^{ff'} \bar{\psi}_{f} \overleftrightarrow{D}_{\mu} \gamma_{5} \psi_{f} \bar{\psi}_{f'} \gamma^{\mu} \gamma_{5} \psi_{f'}$$

Khriplovich '91 Conti & Khriplovich '92 Engel, Frampton, Springer '96

TVPC Interactions, cont'd

• Additional low-energy ($k \leq \Lambda_{EW}$) d=7 interactions:

$$\mathcal{O}_{7}^{\gamma g} = C_{7}^{\gamma g} \bar{\psi} \sigma_{\mu\nu} \lambda^{a} \psi F^{\mu\lambda} G_{\lambda}^{a\nu}$$
$$\mathcal{O}_{7}^{\gamma Z} = C_{7}^{\gamma Z} \bar{\psi} \sigma_{\mu\nu} \psi F^{\mu\lambda} Z_{\lambda}^{\nu}$$

MR-M '99 Kurylov, McLaughlin, MR-M '01 + ...

TPVC Observables

• *"D Coefficient" in β-decay:*

$$\frac{d^3\Gamma}{dE_e d\Omega_e d\Omega_\nu} = \frac{1}{(2\pi)^5} p_e E_e (E_0 - E_e)^2 \xi \left\{ 1 + b \frac{m_e}{E_e} + a \frac{\vec{p_e} \cdot \vec{p_\nu}}{E_e E_\nu} + \langle \frac{\vec{J}}{J} \rangle \cdot \left[A \frac{\vec{p_e}}{E_e} + B \frac{\vec{p_\nu}}{E_\nu} + \left(D \frac{\vec{p_e} \times \vec{p_\nu}}{E_e E_\nu} \right] + \dots \right\} \right\}$$

• Correlations in \vec{n} +A scattering:

$$ec{\sigma}_n\cdotec{k}_n imesec{J}~\left(ec{k}_n\cdotec{J}
ight)$$

• $\eta
ightarrow 3\,\gamma$, $\eta
ightarrow 2\pi^{0}\,\gamma$,... :

TPVC Interactions & EDMs

• Conti & Khriplovich: TVPC interactions + SM radiative corrections (PV) induce non-vanishing EDMs

• EDM limits imply vanishingly small effects from TVPC interactions

$$C_7^{ff'} \lesssim \left(rac{\Lambda_{TVPC}}{1 \text{ TeV}}
ight) imes 10^{-3}$$

12

How Robust Is Bound?

- Non-renormalizable interactions: EFT, running, matching & "naturalness"
- Illustration with neutrino magnetic moments
- Application to TVPC interactions

Non-Renormalizable Interactions & EFT

Effective Theory I

$$\mathcal{L}_{\mathrm{CPV}} = \mathcal{L}_{\mathrm{CKM}} + \mathcal{L}_{\bar{\theta}} + \mathcal{L}_{\mathrm{BSM}}^{\mathrm{eff}}$$

$$\mathcal{L}_{\text{BSM}}^{\text{eff}} = \frac{1}{\Lambda^2} \sum_{i} \alpha_i^{(n)} O_i^{(6)}$$
Effective theory I: W, B, H, g, Q, q_R, L, e_R

15

+...

Effective Theory II

Effective Theory II

Matching I & II: compute in II with massive W,Z

Matching

Fermi Effective Theory

Standard Model

 v_{μ} W^{-} ~ *O*(*G_F*) m Ū \overline{v}_{a}

Matching

Fermi Effective Theory

Standard Model

$$\sim O(G_F^2 m_e^2)$$

Loop momenta $p \ll M_W^2$

MC

Loop momenta $p \sim M_W^2$

Matching

Standard Model

Match EFT onto full theory by considering $p \sim \Lambda$ (NDA)

Loop momenta $p \ll M_W^2$

· Ο(G_F α / π)

Loop momenta $p \sim M_W^2$

EFT Ilustration: $m_v \& \mu_v$

Bell, Cirigliano, R-M, Vogel, Wise '05 Also Bell, Gorchtein, R-M, Vogel, Wang '06 Erwin, Kile, R-M, Wang '07 Kile, R-M '07

Neutrino Magnetic Moments

Can neutrinos have magnetic moments?

Dirac neutrinos

 $\mathbf{v}_L \to e^{i \alpha_L} \mathbf{v}_L \ \mathbf{v}_R \to e^{i \alpha_R} \mathbf{v}_R$ $m_{\mathbf{v}} \, \bar{\mathbf{v}} \mathbf{v} = m_{\mathbf{v}} \{ \bar{\mathbf{v}}_L \mathbf{v}_R + \bar{\mathbf{v}}_R \mathbf{v}_L \}$

 \mathcal{L} not invariant if $m_v \neq 0$ and $\alpha_L \neq \alpha_R$ Magnetic moment operator forbidden

 $\mu_{\nu}\,\bar{\nu}\sigma_{\alpha\beta}\nu\,F^{\alpha\beta} = \mu_{\nu}\{\bar{\nu}_{L}\sigma_{\alpha\beta}\nu_{R} + \bar{\nu}_{R}\sigma_{\alpha\beta}\nu_{L}\}F^{\alpha\beta}$

The Scale of m_v and μ_v

Minimal extension of the Standard Model with v_R and non-vanishing m_v gives

$$\mu_{\rm v} \approx 3 \times 10^{-19} \mu_B \ [m_{\rm v}/1 \,{\rm eV}]$$

Too small to be observed

What about new physics at scale $\Lambda > v$? NDA

 $\frac{\mu_{\nu} \sim eG/\Lambda}{m_{\nu} \sim \frac{\Lambda^2}{2m_e} \frac{\mu_{\nu}}{\mu_B} \sim \frac{\mu_{\nu}}{10^{-18} \mu_B} \left(\frac{\Lambda}{1 \text{ TeV}}\right)^2 \text{ eV}}$

Evading the NDA Estimates

NDA

$$m_{\nu} \sim \frac{\Lambda^2}{2m_e} \frac{\mu_{\nu}}{\mu_B} \sim \frac{\mu_{\nu}}{10^{-18}\mu_B} \left(\frac{\Lambda}{1\,\mathrm{TeV}}\right)^2 \mathrm{eV}$$

The "Voloshin" mechanism a loophole

 $SU(2)_v$ symmetry: (v, v^c) transf as doublet m_v term transforms as tripletforbidden μ_v transforms as singletallowed

Evading the NDA Estimates

NDA

$$m_{\rm v} \sim \frac{\Lambda^2}{2m_e} \frac{\mu_{\rm v}}{\mu_B} \sim \frac{\mu_{\rm v}}{10^{-18}\mu_B} \left(\frac{\Lambda}{1\,{\rm TeV}}\right)^2 {\rm eV}$$

The "Voloshin" mechanism a loophole

electroweak μ_v operators

Radiatively-induced neutrino mass

Voloshin sym & generalizations broken by SM gauge & Yukawa interactions: m_v bounds on μ_v

Dirac Neutrinos

$$\delta m_{\nu} = -C_3^6(\nu) \frac{\nu^3}{2\sqrt{2}\Lambda^2} \qquad \frac{\mu_{\nu}}{\mu_B} = -4\sqrt{2} \left(\frac{m_e \nu}{\Lambda^2}\right) C_+(\nu) \qquad C_+ = C_1^6 + C_2^6$$

*

Operator Basis:

$$O_M^{(4)} = \bar{L}\tilde{\phi}\nu_R \qquad \tilde{\phi} = i\tau_2\phi$$
$$O_1^{(6)} = g_1(\bar{L}\sigma^{\mu\nu}\tilde{\phi})\ell_R B_{\mu\nu}$$
$$O_2^{(6)} = g_2(\bar{L}\sigma^{\mu\nu}\tau^a\tilde{\phi})\nu_R W_{\mu\nu}^a$$
$$O_3^{(6)} = (\bar{L}\tilde{\phi}\nu_R) (\phi^+\phi)$$

Dirac Neutrinos

$$\delta m_{\nu} = -C_3^6(\nu) \frac{\nu^3}{2\sqrt{2}\Lambda^2} \qquad \frac{\mu_{\nu}}{\mu_B} = -4\sqrt{2} \left(\frac{m_e \nu}{\Lambda^2}\right) C_+(\nu) \qquad C_+ = C_1^6 + C_2^6$$

Operator Basis:

$$O_M^{(4)} = \bar{L}\tilde{\phi}v_R \qquad \tilde{\phi} = i\tau_2\phi^*$$

$$O_1^{(6)} = g_1(\bar{L}\sigma^{\mu\nu}\tilde{\phi})\ell_R B_{\mu\nu}$$
$$O_2^{(6)} = g_2(\bar{L}\sigma^{\mu\nu}\tau^a\tilde{\phi})\nu_R W_{\mu\nu}^a$$
$$O_3^{(6)} = (\bar{L}\tilde{\phi}\nu_R) (\phi^+\phi)$$

Close under renormalization

Dirac Neutrinos: Mixing

Operator Basis:

$$O_M^{(4)} = \bar{L}\tilde{\phi}v_R \qquad \tilde{\phi} = i\tau_2\phi^*$$

$$O_1^{(6)} = g_1(\bar{L}\sigma^{\mu\nu}\tilde{\phi})\ell_R B_{\mu\nu}$$
$$O_2^{(6)} = g_2(\bar{L}\sigma^{\mu\nu}\tau^a\tilde{\phi})\nu_R W_{\mu\nu}^a$$
$$O_3^{(6)} = (\bar{L}\tilde{\phi}\nu_R) (\phi^+\phi)$$

Close under renormalization

E

...

Dirac Neutrinos: Mixing & "Naturalness"

Renormalization Group: Leading Log

Solution with $C_3^6(\Lambda) = 0$: δm_v generated entirely from radiative corrections

$$\frac{|\mu_{\nu}|}{\mu_{B}} = \frac{G_{F}m_{e}}{\sqrt{2}\pi\alpha} \left[\frac{\delta m_{\nu}}{\alpha\ln(\Lambda/\nu)}\right] \frac{32\pi\sin^{4}\theta_{W}}{9|f|}$$
$$f = (1-r) - \frac{2}{3}r\tan^{2}\theta_{W} - \frac{1}{3}(1+r)\tan^{4}\theta_{W} \qquad r = C_{-}/C_{+}$$

$$\frac{|\mu_{\rm v}|}{\mu_B} \lesssim 8 \times 10^{-15} \times \left(\frac{\delta m_{\rm v}}{1\,{\rm eV}}\right) \frac{1}{|f|}$$

Dirac Neutrinos

$$\delta m_{\nu} = -C_3^6(\nu) \frac{\nu^3}{2\sqrt{2}\Lambda^2} \qquad \frac{\mu_{\nu}}{\mu_B} = -4\sqrt{2} \left(\frac{m_e \nu}{\Lambda^2}\right) C_+(\nu) \qquad C_+ = C_1^6 + C_2^6$$

Operator Basis:

$$\begin{aligned}
O_M^{(4)} &= \bar{L}\tilde{\phi}\nu_R \qquad \tilde{\phi} = i\tau_2\phi^* \\
O_1^{(6)} &= g_1(\bar{L}\sigma^{\mu\nu}\tilde{\phi})\ell_R B_{\mu\nu} \\
O_2^{(6)} &= g_2(\bar{L}\sigma^{\mu\nu}\tau^a\tilde{\phi})\nu_R W_{\mu\nu}^a \\
O_3^{(6)} &= (\bar{L}\tilde{\phi}\nu_R) (\phi^+\phi)
\end{aligned}$$

Matching at scale Λ

Close under renormalization

Dirac Neutrinos: Matching & "Naturalness"

Solution with $C_3^{\ 6}(\Lambda) = 0$: δm_v generated entirely from radiative corrections via $k_{loop} \sim \Lambda$, thereby inducing nonzero $C_M^{\ 4}(\Lambda)$

$$\delta m_{\nu} \sim \frac{\alpha}{32\pi} \frac{\Lambda^2}{m_e} \frac{\mu_{\nu}}{\mu_B},$$

$$\frac{\mu_{\nu}}{\mu_{B}} \stackrel{<}{{}_\sim} 10^{-14} \left(\frac{1 \text{ TeV}}{\Lambda}\right)^2 \left(\frac{\delta m_{\nu}}{1 \text{ eV}}\right)$$

Applying to TVPC Interactions & EDMs

- Khripolovich approach: compute in EFT II w/ cut-off regulator
- Khriplovich approach a la MR-M: compute in EFT II w/ dim reg
- Recast in EFT I framework

Applying to TVPC Interactions & EDMs

$$\mathcal{O}_{7}^{\gamma g} = C_{7}^{\gamma g} \bar{\psi} \sigma_{\mu\nu} \lambda^{a} \psi F^{\mu\lambda} G_{\lambda}^{a\nu}$$
$$\mathcal{O}_{7}^{\gamma Z} = C_{7}^{\gamma Z} \bar{\psi} \sigma_{\mu\nu} \psi F^{\mu\lambda} Z_{\lambda}^{\nu}$$

$$C_5^f \sim e C_7^{\gamma Z} \left(\frac{M_Z}{\Lambda_{\text{TVPC}}}\right)^2 \left(\frac{1}{s_W c_W}\right) g_A^f \left(\frac{1}{96\pi^2}\right) \ln \frac{M_Z^2}{\mu^2}$$

Applying to TVPC Interactions & EDMs

$$\mathcal{O}_{7}^{ff'} = C_{7}^{ff'} \bar{\psi}_{f} \overleftrightarrow{D}_{\mu} \gamma_{5} \psi_{f} \bar{\psi}_{f'} \gamma^{\mu} \gamma_{5} \psi_{f'}$$

$$C_5^f \sim -eC_7^{ff'} \left(\frac{5}{12}\right) \left(\frac{M_Z}{\Lambda_{\text{TVPC}}}\right)^2 Q_f g_V^f g_A^{f'} \left(\frac{G_F M_Z^2}{\sqrt{2}}\right) \\ \times \left(\frac{1}{8\pi^2}\right)^2 \left(\ln\frac{M_Z^2}{\mu^2}\right)^2,$$

35

The EFT I Computation

$$\mathcal{O}_{\rm fWB}^{(8)} = \bar{F}\sigma^{\mu\nu}\frac{\tau^a}{2}Hf_R\widetilde{W}^a_{\mu\alpha}B^\alpha_\nu$$
$$\mathcal{O}_{\rm fW}^{(8)} = \bar{F}\sigma^{\mu\nu}\frac{\tau^a}{2}Hf_R\widetilde{W}^a_{\mu\alpha}H^\dagger H$$
$$\mathcal{O}_{\rm fB}^{(8)} = \bar{F}\sigma^{\mu\nu}Hf_R\widetilde{B}^a_{\mu\alpha}H^\dagger H$$

$$C_{\rm fV}^{(8)} \sim \left(\frac{lpha}{4\pi}\right) \, C_{
m TVPC}^{(8)}$$

$$d_f \sim \frac{1}{v} \left[C_{\rm fV}^{(6)} \left(\frac{v}{\Lambda} \right)^2 + C_{\rm fV}^{(8)} \left(\frac{v}{\Lambda} \right)^8 + \cdots \right]$$

Limits: Short Distance Parity Cons

Limits: Naturaleness

Limits: Symmetry or Conspiracy

Implications

A. $\Lambda_{PV} < \Lambda_{TVPC}$: $C_{fV}^{(6)} = 0$

B. "Naturalness"

$$\alpha_T = \frac{\langle f | \mathcal{O}_{TVPC}^{(8)} | i \rangle}{\langle f | \mathcal{O}_{QCD} | i \rangle} \sim C_{\text{TVPC}}^{(8)} \left(\frac{v}{\Lambda_{TVPC}} \right) \left(\frac{p}{\Lambda_{TVPC}} \right)^3 \lesssim 10^{-15}$$

for
$$\Lambda_{TVPC} \sim v$$
, $p \sim 1 \text{ GeV}$

C. Symmetry or conspiracy

$$\alpha_T = \frac{\langle f | \mathcal{O}_{TVPC}^{(8)} | i \rangle}{\langle f | \mathcal{O}_{QCD} | i \rangle} \sim C_{\text{TVPC}}^{(8)} \left(\frac{v}{\Lambda_{TVPC}} \right) \left(\frac{p}{\Lambda_{TVPC}} \right)^3 \lesssim 10^{-7}$$

for
$$\Lambda_{TVPC} \sim v$$
, $p \sim 1$ GeV, and $C_{TVPC} \sim 1$

43

Implications: Further Thoughts

C. Symmetry or conspiracy

 $\mathcal{O}_{\rm fWB}^{(8)} = \bar{F}\sigma^{\mu\nu}\frac{\tau^{a}}{2}Hf_{R}\widetilde{W}_{\mu\alpha}^{a}B_{\nu}^{\alpha}$ $\mathcal{O}_{\rm fWW}^{(8)} = \bar{F}\sigma^{\mu\nu}Hf_{R}\widetilde{W}_{\mu\alpha}^{a}W_{\mu}^{a\,\alpha}$ $\mathcal{O}_{\rm fBB}^{(8)} = \bar{F}\sigma^{\mu\nu}Hf_{R}\widetilde{B}_{\mu\alpha}B_{\nu}^{\alpha}$

$$\mathcal{O}_{f\gamma\gamma}^{(8)} = \bar{F}\sigma^{\mu\nu}f_R \,\tilde{F}_{\mu\alpha}F_{\nu}^{\alpha} \qquad \eta \to 3$$
$$\mathcal{O}_{f\gamma Z}^{(8)} = \bar{F}\sigma^{\mu\nu}f_R \,\tilde{F}_{\mu\alpha}Z_{\nu}^{\alpha} \qquad EDM$$

 C_{fWB} , C_{fWW} , $C_{fBB} \longrightarrow C_{f\gamma Z} = 0$, $C_{f\gamma \gamma} \neq 0$

44

Summary & Outlook

• C-Violating \leftrightarrow TVPC interactions are a largely unexplored direction for fundamental symmetry tests

• Analyzing their effects for light quark systems requires an EFT approach, as the do not arise at tree-level via renormalizable gauge interactions

• In general, EDMs place stringent constraints on such interactions via EW radiative corrections from the standpoint of short distance parity restoration and/or naturalness

• Exceptions may exist in the presence of a conspiracy or new symmetry at the TVPC matching scale

• Magnitude of low-energy amplitude ~ $(p/\Lambda)^3 < 10^{-7}$ for $\Lambda > v$

• C-Violating \leftrightarrow TVPC interactions are an interesting direction worthy of further exploration 45

Back Up Slides