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 Questions for Theory 



C and P Symmetries 
(assuming CPT) 
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C, P, CP 
Weak 

 
Big SM “background”  

in any search for new forces 

 New sources of PV also 
constrained by amplitude-
sensitive PV asymmetry 

measurements 

D. Mack, MENU 



C Violation Basics 

     The charge conjugation operator C reverses all generalized charges, effectively 
replacing a particle by its anti-particle.  
 
C violation is known only in  
 

1.  Weak interactions at tree level which violate P (hence conserving CP)  
2.  Weak interactions at loop level which violate CP 
 

 
 
    Everybody knows strong and EM forces conserve C …. but direct bounds on C 
violation in these amplitudes are only ~0.5%. How to improve this?  
 
 It is surprisingly hard:  
 
i.  Only a few neutral particles are states of good C and thus suitable for tests 
       (γ, π0, η, J/ψ, or a self-conjugate system like e+e-).  
 
ii.  Most of the particles of good C appropriate for initial states  aren’t easy to make 

in large quantities (and with sufficiently low backgrounds).   
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Both C- and CP-violation are among the Sakharov criteria for baryogensis.  

D. Mack, MENU 



η Decays Testing C Violation 

Final 
State 

Branching Ratio  
(upper limit) 

Gammas 
in Final 
State 

3γ < 1.6•10-5  
3                        “π0γ” < 9•10-5 

2π0γ < 5•10-4  
 
5                        

3γπ0 Nothing published 

3π0γ < 6•10-5  
7                         3γ2π0 Nothing published 

PDG 
2012 
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 Considerations of acceptance and phase space have focused us on η!3γ and η! 
2π0γ . 
 

Most C test channels are all-neutral except for η!π0γ*! π0l+l- .  

Why η’s? 
•  The η full width is only 1.3 keV . It cannot decay by the isospin conserving strong 

interaction.  This means that achievable BR’s of 10-6 to 10-7 probe the weak scale.  
•  η decays are flavor-conserving, a sector less thoroughly studied than ΔS = 1, etc.  
•  Theory calculations predict large mass enhancements, hence relatively crude η decay 

BR upper limits place tighter constraints than more precise π0 decay BR upper limits.  
•  The η has a significant s-sbar content, unlike the π0 or nucleon.  

D. Mack, MENU 



Theory Issues for C Violation 
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Placing the tightest direct limits on C violation sounds interesting to experimentalists, 
but what about theorists? 
 
• Little literature on C violation with P conservation.  
 

(appropriate models for this would be non-renormalizable - Herczeg) 
 
• Some literature on T violation with P conservation 

 (under CPT, equivalent to C violation with P conservation). 

• By contrast, tremendous literature on CP violation and EDM’s.  
 
• C violation without P violation is apparently not on the radar of those working with 
SUSY, leptoquarks. 
  
• C violation does arise in discussions of violation of Lorentz invariance, but the 
predicted C violating η decay BR’s  are effectively zero for any experiment, ever.  
 
 
 

We’d like theorists studying T violation with P conservation to know that  
η decays can place tight limits in an isospin-violating sector. 

D. Mack, MENU 



8 

 TVPC Interactions: Background 



9 

TVPC Interactions 

•  Herczeg: No renormalizable TVPC boson-exchange 
interactions involving only SM fields [ Hyperfine Int, 75 
(1992) 127 ] 

•  Low-energy ( k << ΛEW ) four fermion interactions first 
arise at d=7 : 

Khriplovich ‘91 
Conti & Khriplovich ‘92 
Engel, Frampton, Springer ‘96 
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TVPC Interactions, cont’d 

•  Additional low-energy ( k << ΛEW ) d=7 interactions: 

MR-M ‘99 
Kurylov, McLaughlin, MR-M ‘01  

+ … 
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TPVC Observables 

•  “D Coefficient” in β-decay: 

•  Correlations in n+A scattering: 

•  η ! 3 γ , η ! 2π0 γ ,… : 
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TPVC Interactions & EDMs 

•  Conti & Khriplovich: TVPC interactions + SM radiative 
corrections (PV) induce non-vanishing EDMs 

•  EDM limits imply vanishingly small effects from TVPC 
interactions 
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How Robust Is Bound?  

•  Non-renormalizable interactions: EFT, running, matching 
& “naturalness” 

•  Illustration with neutrino magnetic moments 

•  Application to TVPC interactions 
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Non-Renormalizable Interactions & EFT 

ΛBSM	


ΛEW	


ΛHAD	


Full theory; unknown d.o.f. 

Effective theory I: W, B, H, g, 
Q, qR , L, eR   

Effective theory II: γ, g, q, l 

Effective theory III: γ, l, π, N… 

match 

match 

match 

ru
n 

ru
n 



15 

Effective Theory I 

+… 

Effective theory I: W, B, H, g, 
Q, qR , L, eR   
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Effective Theory II 

+… 
Effective theory II: γ, g, q, l 
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Effective Theory II 

+… 
Effective theory II: γ, g, q, l 

Matching I & II: compute in 
II with massive W,Z 



Matching 
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Match EFT onto full theory 
by considering p ~ Λ (NDA)  
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 EFT Ilustration: mν & µν 

Bell, Cirigliano, R-M, Vogel, Wise ’05 
Also 
Bell, Gorchtein, R-M, Vogel, Wang ‘06 
Erwin, Kile, R-M, Wang ‘07 
Kile, R-M ‘07 



Neutrino Magnetic Moments 

The Standard Model with mν = 0 has a chiral 
symmetry so all chiral odd operators must vanish 

Dirac neutrinos 

L not invariant if               and               

Magnetic moment operator forbidden 

Can neutrinos have magnetic moments?  



The Scale of mν and µν 

Minimal extension of the Standard Model with νR 
and non-vanishing  mν  gives  

Too small to be observed 

What about new physics at scale Λ > υ ? NDA    



Evading the NDA Estimates 

The “Voloshin” mechanism 

NDA    

SU(2)ν symmetry:  
(ν ,ν c) transf as doublet 
mν term transforms as triplet    forbidden 
µν transforms as singlet   allowed 

: a loophole    



Evading the NDA Estimates 

The “Voloshin” mechanism 

NDA    

SU(2)ν symmetry:  
(ν ,ν c) transf as doublet 
mν term transforms as triplet    forbidden 
µν transforms as singlet   allowed 

Voloshin sym & generalizations broken by SM 
gauge & Yukawa interactions: mν bounds on µν   

Radiatively-induced 
neutrino mass 

 electroweak µν operators	


: a loophole    



Dirac Neutrinos 
Effective Theory:	


Operator Basis:	




Dirac Neutrinos 
Effective Theory:	


Operator Basis:	


Close under 
renormalization 



Dirac Neutrinos: Mixing 

Operator Basis:	


Close under 
renormalization 

Effective Theory:	


W, B 



Dirac Neutrinos: Mixing & “Naturalness” 

Renormalization Group: Leading Log	


Magnetic moment 

Contributions from scales 
between υ and Λ 

Solution with C3
6(Λ) = 0 : δmν generated 

entirely from radiative corrections 



Dirac Neutrinos 
Effective Theory:	


Operator Basis:	


Close under 
renormalization 

Matching at 
scale Λ 



Dirac Neutrinos: Matching & “Naturalness” 

Solution with C3
6(Λ) = 0 : δmν generated 

entirely from radiative corrections via kloop 
~ Λ , thereby inducing nonzero CM

4(Λ) 
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 Interpretation 

ΛBSM	


ΛEW	


ΛHAD	


match 

match 

match 

ru
n 
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n 

Matching: 
uncertain 

Running & mixing: 
calculable 
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 Applying to TVPC Interactions & EDMs 

•  Khripolovich approach: compute in EFT 
II w/ cut-off regulator 

 
•  Khriplovich approach a la MR-M: 

compute in EFT II w/ dim reg 

•  Recast in EFT I framework 



34 

 Applying to TVPC Interactions & EDMs 
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 Applying to TVPC Interactions & EDMs 
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 The EFT I Computation 
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 Limits: Short Distance Parity Cons 

ΛBSM	


ΛEW	


ΛHAD	


match 

match 
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Matching: uncertain 

Running & mixing: calculable 

A. ΛPV < ΛTVPC : CfV
(6) = 0 
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 Limits: Naturaleness 

ΛBSM	


ΛEW	


ΛHAD	


match 

match 

match 

ru
n 

ru
n 

Matching: uncertain 

Running & mixing: calculable 

B. “Naturalness”:  
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 Limits: Symmetry or Conspiracy 

ΛBSM	


ΛEW	


ΛHAD	


match 

match 

match 

ru
n 

ru
n 

Matching: uncertain 

Running & mixing: calculable 

C. Symmetry or conspiracy:  

 df  suppressed ! 
CTVPC  unconstrained 



Implications 
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A. ΛPV < ΛTVPC : CfV
(6) = 0 B. “Naturalness”  

C. Symmetry or conspiracy  

 for ΛTVPC  ~ v ,  p ~ 1 GeV 

 for ΛTVPC  ~ v ,  p ~ 1 GeV ,  and CTVPC ~ 1 



Implications: Further Thoughts 
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C. Symmetry or conspiracy  

η ! 3 γ  

EDM 

η

γ 

γ 

γ 

Cfγγ Ofγγ 

CfWB , CfWW , CfBB CfγZ = 0 , Cfγγ = 0  
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Summary & Outlook 

•  C-Violating $ TVPC interactions are a largely unexplored 
direction for fundamental symmetry tests 

•  Analyzing their effects for light quark systems requires an 
EFT approach, as the do not arise at tree-level via 
renormalizable gauge interactions 

•  In general, EDMs place stringent constraints on such 
interactions via EW radiative corrections from the standpoint of 
short distance parity restoration and/or naturalness 

•  Exceptions may exist in the presence of a conspiracy or new 
symmetry at the TVPC matching scale 

•  Magnitude of low-energy amplitude ~ (p/Λ)3 < 10-7 for Λ > v 

•  C-Violating $ TVPC interactions are an interesting direction 
worthy of further exploration 
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