Two-Photon Theory: Inelastic Effects and Partonic Approach

Andrei Afanasev

The George Washington University, Washington, DC, USA

Radiative corrections for charged lepton scattering Two-photon exchange effects (unpolarized and polarized) T-violation Summary

Ge/Gm Ratio: Polarization vs Rosenbluth

Recent review: A. Afanasev, P. Blunden, D. Hassell, B. Raue, https://arxiv.org/abs/1703.03874 Prog.Part.Nucl.Phys. **95** (2017) 245-278

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

Complete radiative correction in $O(\alpha_{em})$

Radiative Corrections:

- Electron vertex correction (a)
- Vacuum polarization (b)
- Electron bremsstrahlung (c,d)
- Two-photon exchange (e,f)
- Proton vertex and VCS (g,h)
- Corrections (e-h) depend on the nucleon structure
- •Meister&Yennie; Mo&Tsai
- •Further work by Bardin&Shumeiko;

Maximon&Tjon; AA, Akushevich, Merenkov;

•Guichon&Vanderhaeghen'03:

Can (e-f) account for the Rosenbluth vs. polarization experimental discrepancy? Look for $\sim 3\%$...

Main issue: Corrections dependent on nucleon structure

Model calculations:

•Blunden, Melnitchouk, Tjon, Phys.Rev.Lett.91:142304,2003

•Chen, AA, Brodsky, Carlson, Vanderhaeghen, Phys.Rev.Lett.93:122301,2004

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

е

Separating soft 2-photon exchange

- . Tsai; Maximon & Tjon ($k \rightarrow 0$); similar to Coulomb corrections at low Q^2
- . Grammer & Yennie prescription PRD 8, 4332 (1973) (also applied in QCD calculations)
- . Shown is the resulting (soft) QED correction to cross section
- . Already included in experimental data analysis for elastic ep
 - <u>Also done for pion electroproduction in AA, Aleksejevs, Barkanova, Phys.Rev. D88</u> (2013) 5, 053008 (inclusion of lepton masses is straightforward)

THE GEORGE WASHINGTON UNIVERSITY Lepton mass is not essential for TPE calculation in ultra-relativistic case; Two-photon effect below 1% for lower energies and $Q^2 < 0.1 GeV^2$

Andrei Afanasev, The Electroweak Box Workshop, Umass Amherst, Sept 28-30, 2017

General Analysis of ep->ep (including 2-photon exchange)

- Reaction $e(1/2,\lambda_1)+p(1/2,h_1)$ -> $e(1/2,\lambda_2)+p(1/2,h_2) => 16$ possible helicity combinations
- Parity: $T_{\lambda_1 h_1}^{\lambda_2 h_2} = (-1)^{(\lambda_1 h_1) (\lambda_2 h_2)} T_{-\lambda_1 h_1}^{-\lambda_2 h_2}$ \Longrightarrow 8 amplitudes
 - Time-reversal: $T_{\lambda_1 h_1}^{\lambda_2 h_2} = (-1)^{(\lambda_1 h_1) (\lambda_2 h_2)} T_{-\lambda_2 h_2}^{-\lambda_1 h_1}$
 - =>6 amplitudes

Independent helicity amplitudes:

$$\begin{split} A_{1} &= T_{\frac{1}{2}\frac{1}{2}}^{\frac{1}{2}}, A_{2} = T_{\frac{1}{2}-\frac{1}{2}}^{\frac{1}{2}-\frac{1}{2}}, A_{3} = T_{\frac{1}{2}-\frac{1}{2}}^{\frac{1}{2}}, \\ A_{4} &= T_{\frac{1}{2}\frac{1}{2}}^{-\frac{1}{2}\frac{1}{2}}, A_{5} = T_{\frac{1}{2}\frac{1}{2}}^{-\frac{1}{2}-\frac{1}{2}}, A_{6} = T_{\frac{1}{2}-\frac{1}{2}}^{-\frac{1}{2}\frac{1}{2}}, \\ for \ m_{e} &= 0, \ A_{4-6} = 0 \end{split} \qquad \begin{aligned} \sigma &= N(|A_{1}|^{2} + |A_{2}|^{2} + 2|A_{3}|^{2} + 2|A_{4}|^{2} + |A_{5}|^{2} + |A_{6}|^{2}) \\ \sigma P_{y} &= 2N \operatorname{Im}(F), \quad \sigma P_{x} &= 2N \operatorname{Re}(F) \\ F &= (A_{1} + A_{2})A_{3}^{*} + A_{4}(A_{6}^{*} - A_{5}^{*}), \\ \sigma P_{z} &= N(|A_{1}|^{2} - |A_{2}|^{2} + |A_{5}|^{2} - |A_{6}|^{2}) \end{split}$$

THE GEORGE WASHINGTON UNIVERSITY

Andrei Afanasev, The Electroweak Box Workshop, Umass Amherst, Sept 28-30, 2017

Short-range effects (Chen,AA, Brodsky, Carlson,Vanderhaeghen)

Two-photon probe directly interacts with a (massless) quark Emission/reabsorption of the quark is described by GPDs

$$\begin{split} A_{eq \to eq}^{2\gamma} &= \frac{e_q^2}{t} \frac{\alpha_{em}}{2\pi} (V_e \otimes V_q \times f_V + A_e \otimes A_q \times f_A) \\ f_V &= -2[\log(-\frac{u}{s}) + i\pi]\log(-\frac{t}{\lambda^2}) - \frac{t}{2} [\frac{1}{s} (\log(\frac{u}{t}) + i\pi) - \frac{1}{u} \log(-\frac{s}{t})] + \\ &+ \frac{(u^2 - s^2)}{4} [\frac{1}{s^2} (\log^2(\frac{u}{t}) + \pi^2) + \frac{1}{u^2} \log(-\frac{s}{t}) (\log(-\frac{s}{t}) + i2\pi)] + i\pi \frac{u^2 - s^2}{2su} \\ f_A &= -\frac{t}{2} [\frac{1}{s} (\log(\frac{u}{t}) + i\pi) + \frac{1}{u} \log(-\frac{s}{t})] + \\ &+ \frac{(u^2 - s^2)}{4} [\frac{1}{s^2} (\log^2(\frac{u}{t}) + \pi^2) - \frac{1}{u^2} \log(-\frac{s}{t}) (\log(-\frac{s}{t}) + i2\pi)] + i\pi \frac{t^2}{2su} \end{split}$$

Afanasev, Brodsky, Carlson, Chen, Vanderhaeghen, Phys.Rev.Lett.**93**:122301,2004; Phys.Rev.D**72**:013008,2005

Andrei Afanasev, The Electroweak Box Workshop, Umass Amherst, Sept 28-30, 2017

WASHINGTON UNIVERSITY WASHINGTON, DC

THE GEORGE

Quark-Level Calculations

AA, Brodsky, Carlson, Chen, Vanderhaeghen, Phys.Rev.Lett.**93**:122301,2004;

Phys.Rev.D72:013008,2005

THE GEORGE WASHINGTON UNIVERSITY

Andrei Afanasev, The Electroweak Box Workshop, Umass Amherst, Sept 28-30, 2017

Results for cross section measurements

 New correction brings results of Rosenbluth and polarization techniques into agreement (data shown are from Andivahis et al, PRD 50, 5491 (1994)

THE GEORGE WASHINGTON UNIVERSITY

Andrei Afanasev, The Electroweak Box Workshop, Umass Amherst, Sept 28-30, 2017

Updated Ge/Gm plot

AA, Brodsky, Carlson, Chen, Vanderhaeghen, Phys.Rev.Lett.93:122301, 2004; Phys.Rev.D72:013008, 2005 Review: Carlson, Vanderhaeghen, Ann.Rev.Nucl.Part.Sci. 57 (2007) 171-204

- Significant part of the discrepancy is removed by the TPE mechanism
- Verification coming from
 - VEPP: PRL 114 (2015) 6, 062005
 - CLAS: PRL 114 (2015) 6, 062003
 - OLYMPUS: PRL 118 (2017) 092501

Recent review: A. Afanasev, P. Blunden, D. Hassell, B. Raue, <u>https://arxiv.org/abs/1703.03874</u>, Prog. Nucl. Part. Phys. June 2017

Prog.Nucl.Part.Phys. June 2017.

WASHINGTON UNIVERSITY WASHINGTON, DC

THE GEORGE

Electron/Positron Ratios

Recent results from CLAS, VEPP and OLYMPUS

- Prior results analyzed, eg, in E. Tomasi-Gustafsson, M. Osipenko, E. A. Kuraev, and Yu. Bystritsky, Phys. Atom. Nucl. 76, 937 (2013), arXiv:0909.4736
- For new discussion, see A. Afanasev et al., <u>https://arxiv.org/abs/1703.03874</u>, Prog.Nucl.Part.Phys. June 2017.

THE GEORGE WASHINGTON UNIVERSITY

•

Andrei Afanasev, The Electroweak Box Workshop, Umass Amherst, Sept 28-30, 2017

2γ-exchange Correction to Parity-Violating Electron Scattering Afanasev, C.E. Carlson, PRL94 (2005) 212301

Proton radius puzzle

Slide credit: Miha Mihavilovic, JLAB Seminar, March'17

Andrei Afanasev, The Electroweak Box Workshop, Umass Amherst, Sept 28-30, 2017

WASHINGTON UNIVERSITY WASHINGTON, DC

THE GEORGE

MUSE Prospectives

MUSE:

- Experiment preparation underway in PSI and MUSE collaborating institutions
- . The effort on the radiative corrections aims at proper accounting of the radiative effects, that appear to show significant difference between electron and muon scattering (Afanasev, Strauch, Bernauer, Koshchii)
- Radiative corrections shown to be <1% for muons; included in MUSE analysis
- . Two-photon effects can be studied directly in the ratio of μ + and μ cross sections

Helicity-Flip in TPE; estimate of inelastic contribution

- New dynamics from scalars (σ , f-mesons). No pseudo-scalar contribution for unpolarized particles
- . Scalar t-channel exchange contributes to TPE (no longer setting m_{lepton} to zero!)

- No information on $F_{\sigma\mu\mu}$ coupling is available. Need model estimates.
- . Theory analysis by AA, Koshchii, Phys.Rev. D 94, 116007 (2016).

Can be studied directly in the ratio of μ + and μ - cross sections

Andrei Afanasev, The Electroweak Box Workshop, Umass Amherst, Sept 28-30, 2017

THE GEORGE WASHINGTON UNIVERSITY

Inelastic+Elastic

 Tomalak, Vanderhaeghen, arXiv:1512.09113Eur. Phys. J. C 76, no. 3, 125 (2016)
Both inelastic and elastic contributions included
Elastic TPE dominates, Inelastic ~ 10⁻⁴ effects;
TPE for electrons is about twice larger than for muons.

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

RadCor for MUSE

- . Radiative corrections show significant difference between electron and muon scattering in MUSE, must be properly accounted for
- . Radiative corrections calculated to be about 1-1.5% for muons and varies from -4% to +3% for electrons
 - Uncertainties mainly from acceptances, need to include in detector simulations (Monte Carlo generator of radiative events was developed for MUSE). Theory uncertainties <0.1% (muons), <0.5% (electrons)
- Two-photon exchange <1% (electrons), <0.5% (muons), ~0.01% (inelastic excitations)
- . Two-photon effects can be studied directly in the ratio of μ + and μ -, <u>e</u>⁺ and <u>e</u>⁻ cross sections; TPE cancel in the sum of particle+antiparticle <u>cross sections</u>

Single-Spin Asymmetries in Elastic Scattering

Parity-conserving

. Observed spin-momentum correlation of the type:

$$\vec{s} \cdot \vec{k}_1 \times \vec{k}_2$$

where $k_{1,2}$ are initial and final electron momenta, *s* is a polarization vector of a target OR beam

• For elastic scattering asymmetries are due to *absorptive part* of 2-photon exchange amplitude

Parity-Violating

$$\vec{s} \cdot \vec{k}_1$$

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

Normal Beam Asymmetry in Moller Scattering

- Pure QED process, $e^+e^- \rightarrow e^-+e^-$
 - . Barut, Fronsdal , Phys.Rev.120:1871 (1960): Calculated the asymmetry in first non-vanishing order in QED $O(\alpha)$
 - Dixon, Schreiber, Phys.Rev.D69:113001,2004, Erratumibid.D71:059903,2005: Calculated O(α) correction to the asymmetry

SLAC E158 Results [Phys.Rev.Lett. 95 (2005) 081601] An(exp)= 7.04 ± 0.25 (stat) ppm THE GEORAP (theory)= 6.91 ± 0.04 ppm WASHINGTON UNIVERSITY

Andrei Afanasev, The Electroweak Box Workshop, Umass Amherst, Sept 28-30, 2017

Quark+Nucleon Contributions to Target Asymmetry

- Single-spin asymmetry or polarization normal to the scattering plane
- Handbag mechanism prediction for single-spin asymmetry of elastic eN-scattering on a polarized nucleon target (AA, Brodsky, Carlson, Chen, Vanderhaeghen)

$$A_{n} = \sqrt{\frac{2\varepsilon(1+\varepsilon)}{\tau}} \frac{1}{\sigma_{R}} \left[G_{E} \operatorname{Im}(A) - \sqrt{\frac{1+\varepsilon}{2\varepsilon}} G_{M} \operatorname{Im}(B) \right] \quad Only$$

Only minor role of quark mass

Single-spin Asymmetries at JLAB

- Polarized target (He3) JLAB E-05-015 (Zhang et al, Phys. Rev. Lett. 115, 172502 (2015))
- Recoil polarimetry (proton): possible but challenging due to systematic corrections

THE GEORGE WASHINGTON UNIVERSITY

Comparison with E158 data

- . SLAC E158:
- An=-2.89±0.36(stat)±0.17(syst) ppm
- (K. Kumar, private communication)
- . Theory (AA, Merenkov):
 - An=-3.2ppm
- Good agreement justifies application of this approach to the real part of twoboson exchange (γZ box)

WASHINGTON, DC

THE GEORGE WASHINGTON UNIVERSITY

Transverse Beam Asymmetries on Nuclei (HAPPEX+PREX)

Abrahamyan et al, Phys.Rev.Lett. 109 (2012) 192501

- . Good agreement with theory for nucleon and light nuclei
- Puzzling disagreement for ²⁰⁸Pb measurement; if confirmed, need to include additional electron interaction with highly excited intermediate nuclear state, magnetic terms, etc (= effects of higher order in α_{em}). Interesting nuclear effect! Experimentally, need additional measurements for intermediate-mass targets (e.g., Al, Ca, Fe)

Low energy expansion for beam SSA: Diaconescu, Musolf, PRC70 (2004) 054003

Target	Н	$^{4}\mathrm{He}$	^{12}C	²⁰⁸ Pb
$A_{\rm n}({\rm ppm})$	-6.80	-13.97	-6.49	0.28
$\sigma(A_{\rm n})({\rm ppm})$	± 1.54	± 1.45	± 0.38	± 0.25
$\sqrt{Q^2}$ (GeV)	0.31	0.28	0.099	0.094
A/Z	1.0	2.0	2.0	2.53
\hat{A}_n (ppm/GeV)	-21.9	-24.9	-32.8	+1.2
$\sigma(\hat{A}_n)(\text{ppm/GeV})$	± 5.0	± 2.6	± 1.9	± 1.1

Comparing with positrons can help to understand disagreement or ²⁰⁸Pb

Andrei Afanasev, The Electroweak Box Workshop, Umass Amherst, Sept 28-30, 2017

Two-Photon Exchange in inclusive DIS

- <u>Theory</u>: Afanasev, Strikman, Weiss, **Phys.Rev.D77:014028,2008**
 - Asymmetry due to 2γ -exchange $\sim 1/137$ suppression
 - Addional suppression due to transversity parton density => predict asymmetry at $\sim 10^{-4}$ level
 - EM gauge invariance is crucial for cancellation of collinear divergence in theory predictions
 - Hadronic non-perturbative $\sim 1\%$ vs partonic 10^{-4}
- Prediction consistent with HERMES measurements who set upper limits $\sim (0.6-0.9) \times 10^{-3}$:

THPASS.Reft.B682:351-354,2010 WASHINGTON UNIVERSITY

Relating Inclusive SSA to TMDs

- Important: Inclusive asymmetries from TPE, coupling to the same quark vs different quarks A. Metz, D. Pitonyak, A. Schafer, M. Schlegel, W. Vogelsang, J. Zhou, Phys.Rev. D86 (2012) 114020
- . SIDIS: Schlegel, Metz, arXiv:0902.0781

Emphasized $sin(2\varphi)$ effect for SIDIS arising from two-photon exchange

$$A_{LU}^{\sin(2\phi)} = \alpha \frac{y \left(1 + \frac{2-y}{1-y} \ln y\right)}{1 - y + \frac{1}{2}y^2} \sin(2\phi) \frac{\sum_q e_q^3 \mathscr{C} \left[\frac{2(\vec{h} \cdot \vec{k}_T)(\vec{h} \cdot \vec{p}_T) - \vec{k}_T \cdot \vec{p}_T}{2Mm_{\pi}} h_1^{\perp q} H_1^{\perp q}\right]}{\sum_q e_q^2 \mathscr{C} \left[f_1^q D_1^q\right]}$$

Target asymmetry:

$$A_{UT}(x_{\mathcal{B}}, y, \phi_{s}) = \alpha \frac{x_{\mathcal{B}}M}{2Q} \frac{y(1-y)\sqrt{1-y}}{1-y+\frac{1}{2}y^{2}} |\vec{S}_{T}| \sin(\phi_{s}) \left(\ln \frac{Q^{2}}{\lambda^{2}} + \text{finite}\right) \frac{\sum_{q} e_{q}^{3} g_{T}^{q}(x_{\mathcal{B}})}{\sum_{q} e_{q}^{2} f_{1}^{q}(x_{\mathcal{B}})}$$

THE GEOR

Andrei Afanasev, The Electroweak Box Workshop, Umass Amherst, Sept 28-30, 2017

Experiment in JLAB Hall A

. Katichet al., Phys.Rev.Lett. 113 (2014)022502

- . Shows per-cent level asymmetry in ${}^{3}\text{He}\uparrow(e,e')X$
- Presents an issue for analysis for TMD extraction from T-odd asymmetries in SIDIS

THE GEORGE WASHINGTON UNIVERSITY

Andrei Afanasev, The Electroweak Box Workshop, Umass Amherst, Sept 28-30, 2017

Two-Photon Exchange in Exclusive Electroproduction of Pions

- Standard contributions considered, e.g., AA, Akushevich, Burkert, Joo, PRD66:074004 (2002) also produced code EXCLURAD for data analysis)
- <u>Additional contributions due to two-photon exchange</u>, calculated by AA, Aleksejevs, Barkanova, PRD88:053008 (2013) Calculated in soft-photon approximation

Andrei Afanasev, The Electroweak Box Workshop, Umass Amherst, Sept 28-30, 2017

TPE vs T-violation

- . Single-spin asymmetries in inclusive DIS may be caused by
 - . Effects beyond Born approximation
 - . Violation of time-reversal symmetry
- . The effects can be separated using positron vs electron comparison
 - . TPE effects are charge-odd
 - . T-violation is time-even
- . First suggested by Tsai
- Important Note: *if* CPT is a good symmetry, then constraints on CPviolation in leptonic sector is $<10^{-6}$. But higher-order QED loops will also produce C-even SSA (three-photon exchange) at a level of 10^{-4} .
- Possible experiment with e⁺/e⁻: Looking for T-violation in lepton scattering at sub-percent level.

THE GEORGE WASHINGTON UNIVERSITY

Summary

- TPE theory consistent with available e⁺/e⁻ data. Data at higher Q² is desirable to resolve Rosenbluth-polarization puzzle.
- MUSE is the only planned e+/e-, μ+/μ- proton scattering experiment. Constraining MUSE systematics due to rad.corrections is crucial for the experiment's success
- . SSA due to TPE
 - . Beam asymmetry in good agreement with theory except high-Z target. Raises concern for PREX. Medium-Z (CREX) is important.
 - . Measured target asymmetry appears too unsuppressed ($\sim 1\%$) in conflict with partonic calculations => Issue for TMD program
- T-violation in lepton scattering: SSA technique works up to $\sim 10^{-4}$, limitation due to higher-order QED loops (*three*-photon exchange)

Andrei Afanasev, The Electroweak Box Workshop, Umass Amherst, Sept 28-30, 2017

THE GEORGE WASHINGTON UNIVERSITY