Survey of EDM Experiments and prospects (sans nEDM) "The Once and Future EDM" Tim Chupp University of Michigan

- 1. Definitions, etc.
- 2. Electron-spin dependent (d_e/C_S) Molecules ThO/HfF+ Other eEDM
- Nuclear spin dependent Hg, Xe (HeXe), TlF Octupole deformed Ra/Rn
- 4. Storage Ring EDMs

EDMs

 $\mathcal{CP} \longleftrightarrow$ Baryon Asymmetry \longleftrightarrow NEW PHYSICS (BSMP)

Atomic/Molecular EDMs arise from many sources

Atomic/Molecular EDMs arise from many sources

Atomic/Molecular EDMs arise from many sources

 $d_A = \eta_e d_e + \kappa_S S(\theta_{OCD}, g_{\pi}) + (k_T C_T + k_S C_S) + h.o$

EDM results

	Result	95% u.l	.•	ref.
	Paramagnetic syst	ems		
Xe^m	$d_A = (0.7 \pm 1.4) \times 10^{-22}$	3.1×10^{-22}	$e \mathrm{cm}$	a
Cs	$d_A = (-1.8 \pm 6.9) \times 10^{-24}$	1.4×10^{-23}	$e \mathrm{cm}$	b
	$d_e = (-1.5 \pm 5.7) \times 10^{-26}$	1.2×10^{-25}	$e \mathrm{cm}$	
	$C_S = (2.5 \pm 9.8) \times 10^{-6}$	2×10^{-5}		
Tl	$d_A = (-4.0 \pm 4.3) \times 10^{-25}$	1.1×10^{-24}	$e \mathrm{cm}$	С
	$d_e = (6.9 \pm 7.4) \times 10^{-28}$	1.9×10^{-27}	$e \mathrm{cm}$	
YbF	$d_e = (-2.4 \pm 5.9) \times 10^{-28}$	1.2×10^{-27}	$e \mathrm{cm}$	d
ThO	$d_e = (4.3 \pm 4.0) \times 10^{-30}$	1.2×10^{-29}	$e \mathrm{cm}$	e
	$C_S = (2.8 \pm 2.6) \times 10^{-10}$	8.0×10^{-10}		
HfF ⁺	$d_e = (0.9 \pm 7.9) \times 10^{-29}$	1.6×10^{-28}	$e \mathrm{cm}$	f
	Diamagnetic syste	ems		
¹⁹⁹ Hg	$d_A = (2.2 \pm 3.1) \times 10^{-30}$	7.4×10^{-30}	$e \mathrm{cm}$	g
¹²⁹ Xe	$d_A = (0.7 \pm 3.3) \times 10^{-27}$	6.6×10^{-27}	$e \mathrm{cm}$	h
$ ^{225}$ Ra	$d_A = (4 \pm 6) \times 10^{-24}$	1.4×10^{-23}	$e \mathrm{cm}$	i
TlF	$d = (-1.7 \pm 2.9) \times 10^{-23}$	6.5×10^{-23}	$e \mathrm{cm}$	j
n	$d_n = (-0.21 \pm 1.82) \times 10^{-26}$	3.6×10^{-26}	$e \mathrm{cm}$	k
μ	$d_{\mu} = (0.0 \pm 0.9) \times 10^{-19}$	1.8×10^{-19}	$e \mathrm{cm}$	l
τ	$Re(d_{\tau}) = (1.15 \pm 1.70) \times 10^{-17}$	3.9×10^{-17}	$e \mathrm{cm}$	m
Λ	$d_{\Lambda} = (-3.0 \pm 7.4) \times 10^{-17}$	1.6×10^{-16}	$e \mathrm{cm}$	n

- Strong electric field (static): need neutral particles (or confined ion)
- Large signal needs POLARIZATION (usually optical pumping)

Paramagnetic Molecules: (YbF₂), ThO, HfF⁺

- 1. Large internal electric fields.
 - 1. $E_{eff} \sim 10^{11} \text{ V/cm}.$
 - Compared to $E_{lab} < 10^5 \text{ V/cm}$.
- 2. Accessible internal electric fields.
 - Easy to electically polarize, need only $E_{lab} \sim 1 \text{ V/cm}$.

15

10

10

Applied field E (kV/cm)

20

30

 Ξ_{eff} (GV/cm)

- 3. Rejection of systematic errors.
 - Electron spins triple/L=1 (J=0) μ small
 - E_{eff} *independent* of E_{lab} .

Molecules of Choice:

- Yale: TlF (diamagnetic)
- Imperial College, London: YbF
- Harvard/Yale: ThO
- Yale: PbO
- JILA: HfF

12/6/18

Molecules: **TIF**, YbF, HfF⁺

- 1. Large internal electric fields.
 - 1. $E_{eff} \sim 10^{11} \text{ V/cm}.$
 - Compared to $E_{lab} < 10^5 \text{ V/cm}$.
- 2. Accessible internal electric fields.
 - Easy to electically polarize, need only $E_{lab} \sim 1 \text{ V/cm}$.
 - Can be laser cooled
- 3. Rejection of systematic errors.
 - Electron spins triple/L=1 (J=0) μ small
 - E_{eff} *independent* of E_{lab}.

Molecules of Choice:

- Yale: TlF (diamagnetic)
- Imperial College, London: YbF
- Harvard: ThO
- Yale: PbO
- JILA: HfF+

Order of Magnitude Smaller ARTICLE MULTICALE M

A precision measurement of the electron's electric dipole moment using trapped molecular ions

William B. Cairncross,^{*} Daniel N. Gresh, Matt Grau,[†] Kevin C. Cossel,[‡] Tanya S. Roussy, Yiqi Ni,[§] Yan Zhou, Jun Ye, and Eric A. Cornell

12/6/18

Solid State Searches for d_e

- i. a high number density of unpaired electrons $(10^{22} \text{ cm}^{-3})$, providing signal amplification; $d_{Gd^{3+}} \approx 20d_e$
- ii. confinement of the electrons, mitigating such effects as motional fields;
- iii. features of solid-state samples including collective effects, *e.g.* for ferro-electric systems, a large electric field spin-polarizes the electrons resulting in a magnetization that reverses with the electric field;
- iv. minimal magnetic order to mitigate spurious magnetic effects.

 $Gd_3Ga_5O_{12}$ $d_e = (-5.57 \pm 7.98_{stat} \pm 0.12_{syst}) \times 10^{-25} (\text{Kim } et \ al., 2015)$

Euc E Bao E TiO₂ $d_e = (-1.07 \pm 3.06_{stat} \pm 1.74_{syst}) \times 10^{-25} \ e \text{ cm.} \text{ (Eckel et al., 2012)}$

Nuclear-spin-dependent systems

¹²⁹Xe and ¹⁹⁹Hg - SM

 $S(^{129}\text{Xe}) \approx 1.75 \times 10^{-8} \eta_{np} \ e \ \text{fm}^3 \qquad d_A(^{129}\text{Xe})^{\text{CKM}(n)} \approx 6 \times 10^{-6} d_n$ $S(^{199}\text{Hg}) \approx -1.4 \times 10^{-8} \eta_{np} \ e \ \text{fm}^3. \qquad d_A(^{199}\text{Hg})^{\text{CKM}(n)} \approx 4 \times 10^{-4} d_n,$

 $\begin{aligned} |d_A(^{129}\text{Xe})^{\text{CKM}}| &\lesssim 5 \times 10^{-35} \ e \text{ cm} \qquad |d_A(^{129}\text{Xe})^{\text{CKM}(n)}| \lesssim 3.6 \times 10^{-37} \ e \text{ cm} \\ |d_A(^{199}\text{Hg})^{\text{CKM}}| &\lesssim 4 \times 10^{-34} \ e \text{ cm} \qquad |d_A(^{199}\text{Hg})^{\text{CKM}(n)}| \lesssim 2.4 \times 10^{-35} \ e \text{ cm}. \end{aligned}$

Experiment ~ 10^{-27} (Xe) and 10^{-29} (Hg)

$$205 \text{TlF}$$

$$d_{\text{TlF}}^{p-vol} = 0.46 \ d_p \quad \sim 10^{-32} \ e \ \text{cm}$$
Experiment ~ 10⁻²³

G

Reduced Limit on the Permanent Electric Dipole Moment of ¹⁹⁹Hg

B. Graner,^{*} Y. Chen (陳宜), E. G. Lindahl, and B. R. Heckel Department of Physics, University of Washington, Seattle, Washington 98195, USA

 $d_{\text{Hg}} = (-2.20 \pm 2.75_{\text{stat}} \pm 1.48_{\text{syst}}) \times 10^{-30} e \text{ cm}.$

LEPON 2017 Atomic EDMs

Measurement Technique

•Atoms are contained in a stack of 4 vapor cells in a common B field

•2 conducting plastic electrodes at the same potential hold the 2 outer cells

•Opposite E field causes an EDM to shift the relative frequency of the 2 inner cells

 ¹⁹⁹Hg is pumped to align spins with laser beams

Precession is observed by detecting
 Faraday rotation of weak, linear
 polarized light

12/6/18

Faraday Rotation Detection

•Atomic polarization changes the index of refraction for $\sigma_{\text{+}}$ and $\sigma_{\text{-}}$ light

 Incoming linearly polarized probe light is rotated

•Rotation angle oscillates at the Larmor frequency

•A polarizing beam splitter separates the beam into vertical, horizontal components

 Intensity of 2 orthogonal polarization states oscillate out of phase

12/6/18

Phase Difference Analysis

Instead of fitting a single long sample for $\boldsymbol{\omega}$, we can apply the Ramsey method: fit 2 samples for $\Delta \phi$ with light off in between for time Δt

•Freq. difference
$$(\omega_{MT} - \omega_{MB}) = \Delta \phi_{MT-MB}(t_f) - \Delta \phi_{MT-MB}(t_i)$$

$$\mathbf{d}_{\text{Hg}} \underset{12/6/18}{\text{signal}} = \Delta_{\text{HV}} [(\omega_{\text{MT}} - \omega_{\text{MB}}) - \frac{1/3(\omega_{\text{OT}} - \omega_{\text{OB}})]}{\text{LEPON 2017 Atomic EDMs}}$$

¹⁹⁹Hg Systematics

Source	Error (10 ⁻³¹ e cm)
Axial Cell Motion	12.6
Leakage Currents	5.02
Radial Cell Motion	3.36
E ² effects	3.04
Parameter Correlations	2.33
v x E B fields	2.29
Charging Currents	1.83
Geometric Phase	0.06
Quadrature sum	14.8

Current ¹²⁹Xe efforts

- TRIUMF/nEDM
- Active maser: Tokyo
- Xe-129/He-3 MIXed (Mainz/Heidelberg/Juelich)
- HeXe (TUM, PTB, MSU, Umich)

Tim Chupp - ACFI 2018 EDMs

¹²⁹Xe EDM: Spin Exchange Pumped Zeeman Maser

False EDM Signals

Cell Leakage Currents Two Species -- BUT not quite in the same place CHECK: (1µA loop around cell) d<1x10⁻²⁸ e-cm (20 pA) +HV

E² Correlations (Polarizability; Noise)

CHECK: $(dv/d(E^2) = (7\pm3)x10^{-9} Hz/kV^2/cm^2)$

Reference Oscillators Disturbed by E, E2

CHECK: (clock test) d<1x10⁻²⁸ e-cm

Charging Currents Magnetize Shields PLL Control Loop Droop Cavity Pulling Changes

CHECK: Zeros: d<1x10⁻²⁶ e-cm (stat)

Much smaller than statistical error.

-HV

HeXeEDM experiment at BMSR-2 (PTB-Berlin)

Superconducting Quantum Interference Devices (SQUIDs)

MRX SQUID system in the BMSR-2 at PTB Berlin.

- SQUIDs are very sensitive lowtemperature magnetometers
- More sensitive than atomic magnetometers for the frequency range of interest (10-100 Hz)
- The most sensitive SQUID magnetometers report a sensitivity of 100 aT/\sqrt{Hz}

SQUID sensitivity is limited by Johnson^{MRX SQUIDs} over a sealed cell at the FRM-II MSR. noise from dewar insulating and protective materials.

HeXeEDM experiment at BMSR-2 (PTB-Berlin)

Detection with SQUID magnetometer array

Systematic effects

 $\omega' \approx -\gamma_{\rm He} (1 - \sigma_{\rm He}) \Delta R B_0 + \gamma_{\rm Xe} (1 - \sigma_{\rm Xe}) (\Delta B_{\rm Xe} - \Delta B_{\rm He}) + \omega_{\rm Xe}^{sd} - R \omega_{\rm He}^{sd} + (1 - R) \vec{\Omega} \cdot \hat{B}.$

Source of systematic error	Description
Leakage current	HV leaking across cell to other electrode. Corkscrew pattern will generate a magnetic field
Charging currents	Current from charging electrode up to target HV. May magnetize materials on or near cell (like an o-ring) which will cause a magnetic field gradient across the cell.
E ² effects	Any effect that scales with the magnitude of the electric field, e.g., xenon chemical shift, HV-induced phase noise.
Comagnetometer drift	Residual longitudinal magnetization causes a drift seen in the comagnetometer corrected Xe frequency.
E-field uncertainty	Uncertainty in the electric field magnitude.
E-field correlated cell motion	The applied electric field may cause the cell to shift. This will cause the magnetic field and gradients within the cell to be slightly different.
Geometric phase	Motional magnetic field (v x E) effects.

Systematic effects

 $\omega' \approx -\gamma_{\rm He} (1 - \sigma_{\rm He}) \Delta R B_0 + \gamma_{\rm Xe} (1 - \sigma_{\rm Xe}) (\Delta B_{\rm Xe} - \Delta B_{\rm He}) + \omega_{\rm Xe}^{sd} - R \omega_{\rm He}^{sd} + (1 - R) \vec{\Omega} \cdot \hat{B}.$

Source	Sys. Error (e-cm)
Leakage Current	1.6×10^{-28}
Charging currents	1.7×10^{-29}
Comagnetometer drift	6.3×10^{-28}
<i>E</i> -correlated cell motion (rotation)	3.0×10^{-28}
<i>E</i> -correlated cell motion (translation*)	7.6×10^{-28}
Geometric phase	1×10^{-31}
E uncertainty	(0.1) $d_A(^{129}\text{Xe})$
$ E ^2$ effects	2×10^{-29}

Final result:

 \pm 2.4 (*stat*) \pm

Diamagnetic Molecules: TIF

- 1. Large internal electric fields.
 - 1. $E_{eff} \sim 10^{11} \text{ V/cm}.$
 - Compared to $E_{lab} < 10^5 \text{ V/cm}.$
- 2. Accessible internal electric fields.
 - Easy to electically polarize, need only $E_{lab} \sim 1 \text{ V/cm}$.
 - Can be laser cooled
- 3. Rejection of systematic errors.
 - Electron spins triple/L=1 (J=0) μ small
 - E_{eff} *independent* of E_{lab} .

CeNTREX experiment (Yale/Umass). 205Tl has an unpaired proton has an EDM, it will lead to a deformation in the shape of atomic nuclei known as a Schiff moment. CeNTREX will search for the Schiff moment of the ²⁰⁵Tl nucleus inside a TIF (thallium fluoride) molecule. The observable signature of a Schiff moment will be a shift in the NMR frequency of ²⁰⁵Tl nuclei when the molecules are polarized by a strong electric field. The size of the NMR shift is 3-4 orders of magnitude larger than in similar experiments that use atoms instead of molecules, for the same size of the Schiff moment.

The first generation of CeNTREX, now under construction, will use a cryogenic molecular beam of TIF (similar to that used in our ACME electron EDM search) and will perform state preparation and detection using optical cycling (similar to methods developed for our experiments to laser cool and trap SrF molecules). Later generations of CeNTREX aim to laser cool and trap the TIF molecules for increased sensitivity.

Octupole Enhancements of Schiff Moments ²²⁵Ra ^{221/223}Rn

Octupole Enhancements Intrinsic (body-frame) moment Polarizabitliy

Nuclei with Octupole Deformation/Vibration

(Haxton & Henley; Auerbach, Flambaum, Spevak; Engel et al., Hayes & Friar, etc.)

	223 Rn	²²³ Ra	225 Ra	²²³ Fr	¹²⁹ Xe	199 Hg
$t_{1/2}$	$23.2 \mathrm{~m}$	$11.4 { m d}$	$14.9 \mathrm{~d}$	$22 \mathrm{m}$		
Ι	7/2	3/2	1/2	3/2	1/2	1/2
ΔE th (keV)	37*	170	47	75		
$\Delta E \exp (\text{keV})$	(-)	50.2	55.2	160.5		
$10^{11}S$ (e-fm ³)	375	150	115	185	0.6	-0.75
$10^{28} d_A \ (e-cm)$	1250	1250	940	1050	0.3	2.1
$\eta_{qq} = 3.75 \times 10^{-4}$					86 Rn 218	226 220

88Ra

32

Ref: Dzuba PRA66, 012111 (2002) - Uncertainties of 50% as *Based on Woods-Saxon Potential

† Nilsson Potential Prediction is 137 keV

NOTES:

Ocutpole Enhancements Engel et al. agree with Flambaum et al. Even octupole vibrations enhance S (Engel, Flambaum& Zelevinsky)

-0.5

Estimate of ²²¹Rn Enhancement

²²³Rn: TBD

Estimate intrinsic Schiff moments from Q₃'s

Search for EDM of ²²⁵Ra at Argonne (Thanks Matt Dietrich)

Search for EDM of ²²⁵Ra at Argonne (Thanks Matt Dietrich)

Search for EDM of ²²⁵Ra at Argonne (Thanks Matt Dietrich)

First Ra-225 EDM Measurements

 $|d(\text{Ra-225})| < 5 \times 10^{-22} e \text{ cm} (95\%)$

- all systematic effects estimated to be $<10^{-25} e$ cm
- first EDM measurement made in a laser trap
- first EDM measurement of an octupole-deformed species

12/6/18

Second Ra-225 EDM Measurements

EDM Signal: out-of-plane oscillation out of phase with ω_a

 $E821: d_{\mu} = (0.9 \pm 1.9) \times 10^{-19} \text{ e-cm}$

Improve by 100x (potential Marge effort for p,d,³He - Cosy, BNL, FNAL)

The industry of storage ring EDM efforts

particle	J	a	$ ec{p} $	γ	$ \vec{B} $	$ ec{E} $	$ ec{E'} /\gamma$	R	$\sigma_d^{ m goal}$	Ref.
(units)			(GeV/c)		(T)	(kV/cm)	(kV/cm)	(m)	(e cm)	
μ^{\pm}	1/2	+0.00117	3.094	29.3	1.45	0	4300	7.11	10^{-21}	E989
			0.3	3.0	3.0	0	8500	0.333	10^{-21}	E34
			0.5	5.0	0.25	22	760	7	10^{-24}	srEDM
			0.125	1.57	1	6.7	2300	0.42	10^{-24}	\mathbf{PSI}
p^+	1/2	+1.79285	0.7007	1.248	0	80	80	52.3	10^{-29}	srEDM
			0.7007	1.248	0	140	140	30	10^{-29}	JEDI
d^+	1	-0.14299	1.0	1.13	0.5	120	580	8.4	10^{-29}	srEDM
			1.000	1.13	0.135	33	160	30	10^{-29}	JEDI
$^{3}\mathrm{He}^{++}$	1/2	-4.18415	1.211	1.09	0.042	140	89	30	10^{-29}	JEDI

Summary

New Results

ThO – But 7x improvement improves 2-parameter limits by 2x Need other experiments (HfF+) to "keep pace"

²²⁵Ra – Octupole deformed
 100-1000x more sensitive to N-N CPV than Hg
 10⁶x less sensitive experiment (for now)

¹²⁹Xe – HeXe WILL get 10x in coming ~year

¹⁹⁹Hg will incrementally improve

Any experiment has discovery potential!

12/6/18

Backup Slides

$$d_{n} = \bar{d}_{n}^{\mathrm{sr}} - \frac{eg_{A}\bar{g}_{\pi}^{(0)}}{8\pi^{2}F_{\pi}} \left\{ \ln \frac{m_{\pi}^{2}}{m_{N}^{2}} - \frac{\pi m_{\pi}}{2m_{N}} + \frac{\bar{g}_{\pi}^{(1)}}{4\bar{g}_{\pi}^{(0)}} (\kappa_{1} - \kappa_{0}) \frac{m_{\pi}^{2}}{m_{N}^{2}} \ln \frac{m_{\pi}^{2}}{m_{N}^{2}} \right\}$$
$$d_{A} = \alpha_{C_{T}}C_{T} + \kappa_{S} (a_{0}\bar{g}_{\pi}^{0} + a_{1}\bar{g}_{\pi}^{1} + a_{2}\bar{g}_{\pi}^{2})$$

DNP 2018 Fundamental Symmetries

46

$$d_{n} = \bar{d}_{n}^{\mathrm{sr}} - \frac{eg_{A}\bar{g}_{\pi}^{(0)}}{8\pi^{2}F_{\pi}} \left\{ \ln \frac{m_{\pi}^{2}}{m_{N}^{2}} - \frac{\pi m_{\pi}}{2m_{N}} + \frac{\bar{g}_{\pi}^{(1)}}{4\bar{g}_{\pi}^{(0)}} \left(\kappa_{1} - \kappa_{0}\right) \frac{m_{\pi}^{2}}{m_{N}^{2}} \ln \frac{m_{\pi}^{2}}{m_{N}^{2}} \right\}$$
$$d_{A} = \alpha_{C_{T}}C_{T} + \kappa_{S} \left(a_{0}\bar{g}_{\pi}^{0} + a_{1}\bar{g}_{\pi}^{1} + a_{2}\bar{g}_{\pi}^{2}\right)$$

System	$\kappa_S = \frac{d}{S} \; (\mathrm{cm}/\mathrm{fm}^3)$	$a_0 = \frac{S}{13.5\bar{g}_{\pi}^{(0)}} \ (e\text{-fm}^3)$	$a_1 = \frac{S}{13.5\bar{g}_{\pi}^{(1)}} \ (e\text{-fm}^3)$	$a_2 = \frac{S}{13.5\bar{g}_{\pi}^{(2)}} \ (e\text{-fm}^3)$	$s_N ~({\rm fm}^2)$
¹²⁹ Xe	$0.27 \times 10^{-17} \ (0.27 \text{-} 0.38)$	$-0.008(-0.005 \cdot (-0.05))$	$-0.006(-0.003 \cdot (-0.05))$		0.63
¹⁹⁹ Hg	$-2.8 \times 10^{-17} (-4.0 - (-2.8))$	$0.01 \ (0.005 - 0.05)$	$\pm 0.02 \; (-0.03 \text{-} 0.09)$] Talk 00004 –	1.895 ± 0.035
225 Ra	$-8.5 \times 10^{-17} \ (-8.5 \cdot (-6.8))$	-1.5 (-6-(-1))	+6.0(4-24)	-4.0(-15-(-3))	
TlF	-7.4×10^{-14}	-0.0124	0.1612	-0.0248	0.62

Octupole enhanced Schiff moments: Talk IWDA:00001/2

47

DNP 2018 Fundamental Symmetries

12/6/18

$\begin{array}{l} \textbf{Global Analysis} \\ \textbf{Find } \chi^2 \text{ contours for 4-parameters} \\ d = \alpha_{d_e} d_e + \alpha_{C_S} C_S + \alpha_{C_T} C_T + \alpha_{\bar{d}_n^{\mathrm{sr}}} \bar{d}_n^{\mathrm{sr}} + \alpha_{\bar{d}_p^{\mathrm{sr}}} \bar{d}_p^{\mathrm{sr}} + \alpha_{g_\pi^0} \bar{g}_\pi^0 + \alpha_{g_\pi^1} \bar{g}_\pi^1 \\ d_i = \sum_i \alpha_{ij} C_j \end{array}$

System	$\partial d^{exp}/\partial d_e$	$\partial d^{exp}/\partial C_S$	$\partial d^{exp} / \partial C_T^{(0)}$	$\partial d^{exp}/\partial g^0_{\pi}$	$\partial d^{exp}/\partial g^1_{\pi}$	$\partial d^{exp}/\partial ar d^{sr}_n$
neutron	0	0	0	1.5×10^{-14}	1.4×10^{-16}	1
¹²⁹ Xe	-0.0008	-4.4×10^{-23}	-6.1×10^{-21}	-0.4×10^{-19}	-2.2×10^{-19}	1.7×10^{-5}
		-4.4- (-5.6)	-6.1- (-9.1)	-23.4-(1.8)	-19- (-1.1)	1.7 - 2.4
199 Hg	-0.014	-5.9×10^{-22}	3.0×10^{-20}	-11.8×10^{-18}	0	-5.3×10^{-4}
	-0.014- 0.012		3.0-9.0	-38- (-9.9)	$(-4.9-1.6) \times 10^{-17}$	-7.7- (-5.2)
²²⁵ Ra			5.3×10^{-20}	1.7×10^{-15}	-6.9×10^{-15}	
				6.9-0.9	-27.5- (-3.8)	$(-1.6-0) \times 10^{-3}$
TlF	81	2.9×10^{-18}	2.7×10^{-16}	1.9×10^{-14}	-1.6×10^{-13}	0.46
				0.5-2		-0.5- 0.5

$$\chi^2(\mathbf{C_j}) = \sum_i \frac{(d_i^{\exp} - d_i)^2}{\sigma_{d_i^{\exp}}^2}$$

TC, Fierlinger, Ramsey-Musolf, Singh

DNP 2018 Fundamental Symmetries

	$ar{d}_n^{ m sr}~(m ecm)$	$ar{g}^{(0)}_{\pi}$	$ar{g}^{(1)}_{\pi}$	$C_T^{(0)}$
Range from best values				
with $\alpha_{g_{\pi}^{1}}(\text{Hg}) = +1.6 \times 10^{-17}$	$(-4.8-9.8) \times 10^{-23}$	$(-6.6-3.2) \times 10^{-9}$	$(-1.0-0.5) \times 10^{-9}$	$(-3.5-1.6) \times 10^{-7}$
Range from best values				
with $\alpha_{g_{\pi}^{1}}(\mathrm{Hg}) = 0$	$(-4.3-3.4) \times 10^{-23}$	$(-2.3-2.9) \times 10^{-9}$	$(-0.6-1.3) \times 10^{-9}$	$(-3.2-4.0) \times 10^{-7}$
Range from best values				
with $\alpha_{g_{\pi}^1}(\text{Hg}) = -4.9 \times 10^{-17}$	$(-9.3-2.6) \times 10^{-23}$	$(-1.8-6.3) \times 10^{-9}$	$(-1.2-0.4) \times 10^{-9}$	$(-11-3.8) \times 10^{-7}$
Range from full variation of α_{ij}	$(-12-12) \times 10^{-23}$	$(-7.9-7.8) \times 10^{-9}$	$(-1.3-1.1) \times 10^{-9}$	$(-6.6-4.6) \times 10^{-7}$
Upper limits (95% c.l.)	2.4×10^{-22}	1.5×10^{-8}	2.4×10^{-9}	1.1×10^{-6}

Deciding which experiment to work on

$$d_i = \sum_i \alpha_{ij} C_j$$

$$\bar{d}_n^{sr} = 5.2d_n + 4.7 \times 10^4 d_{\rm Xe} + 9.5 \times 10^3 d_{\rm Hg} + 21d_{\rm Ra}$$

TC, Fierlinger, Ramsey-Musolf, Singh

DNP 2018 Fundamental Symmetries

Hadronic Systems Currently: data from 5 experiments: Upcoming experiments

	d_0^{sr}	d_1^{sr}	C _T	g_{π}^{0}	g_{π}^{-1}	
proton	1	+1				
d, ³ H, ³ He				X	X	Talk 00002
TIF, ¹⁷³ YbOH						Talk 00007

particle	J	a	$ ec{p} $	γ	$ \vec{B} $	$ ec{E} $	$ \vec{E'} /\gamma$	R	$\sigma_d^{ m goal}$	Ref.
(units)			(GeV/c)		(T)	(kV/cm)	(kV/cm)	(m)	(e cm)	
μ^{\pm}	1/2	+0.00117	3.094	29.3	1.45	0	4300	7.11	10^{-21}	E989
			0.3	3.0	3.0	0	8500	0.333	10^{-21}	E34
			0.5	5.0	0.25	22	760	7	10^{-24}	srEDM
			0.125	1.57	1	6.7	2300	0.42	10^{-24}	PSI
p^+	1/2	+1.79285	0.7007	1.248	0	80	80	52.3	10^{-29}	srEDM
			0.7007	1.248	0	140	140	30	10^{-29}	JEDI
d^+	1	-0.14299	1.0	1.13	0.5	120	580	8.4	10^{-29}	srEDM
			1.000	1.13	0.135	33	160	30	10^{-29}	JEDI
$^{3}\mathrm{He}^{++}$	1/2	-4.18415	1.211	1.09	0.042	140	89	30	10^{-29}	JEDI

12/6/18

	$ar{d}_n^{ m sr}~(m ecm)$	$ar{g}^{(0)}_{\pi}$	$ar{g}^{(1)}_{\pi}$	$C_T^{(0)}$
Range from best values				
with $\alpha_{g_{\pi}^{1}}(\text{Hg}) = +1.6 \times 10^{-17}$	$(-4.8-9.8) \times 10^{-23}$	$(-6.6-3.2) \times 10^{-9}$	$(-1.0-0.5) \times 10^{-9}$	$(-3.5-1.6) \times 10^{-7}$
Range from best values				
with $\alpha_{g_{\pi}^{1}}(\mathrm{Hg}) = 0$	$(-4.3-3.4) \times 10^{-23}$	$(-2.3-2.9) \times 10^{-9}$	$(-0.6-1.3) \times 10^{-9}$	$(-3.2-4.0) \times 10^{-7}$
Range from best values				
with $\alpha_{g_{\pi}^{1}}(\text{Hg}) = -4.9 \times 10^{-17}$	$(-9.3-2.6) \times 10^{-23}$	$(-1.8-6.3) \times 10^{-9}$	$(-1.2-0.4) \times 10^{-9}$	$(-11-3.8) \times 10^{-7}$
Range from full variation of α_{ij}	$(-12-12) \times 10^{-23}$	$(-7.9-7.8) \times 10^{-9}$	$(-1.3-1.1) \times 10^{-9}$	$(-6.6-4.6) \times 10^{-7}$
Upper limits (95% c.l.)	2.4×10^{-22}	1.5×10^{-8}	2.4×10^{-9}	1.1×10^{-6}

Prospects

			d_e (e-cm)	C_S	C_T	$\bar{g}_{\pi}^{(0)}$	$\bar{g}_{\pi}^{(1)}$	\bar{d}_n (e-cm)
Current Limits (95%)			4.8×10^{-27}	3.4×10^{-4}	2×10^{-6}	8×10^{-9}	1.2×10^{-9}	12×10^{-23}
System	Current (e-cm)	Projected	Projected sensitivity					
ThO	5×10^{-29}	$5 imes 10^{-30}$	4.7×10^{-27}	$3.3 imes 10^{-7}$				
Fr		10^{-27}	2.3×10^{-28}	$1.7 imes 10^{-7}$				
22		10^{-28}	$0.3 imes 10^{-28}$	$0.2 imes 10^{-7}$				
¹²⁹ Xe	$3 imes 10^{-27}$	3×10^{-29}			3×10^{-7}	3×10^{-9}	1×10^{-9}	5×10^{-23}
Neutron/Xe	2×10^{-26}	$10^{-28}/3 \times 10^{-29}$			1×10^{-7}	1×10^{-9}	4×10^{-10}	2×10^{-23}
Ra - Rn		10^{-26}			5×10^{-8}	4×10^{-9}	1×10^{-9}	6×10^{-23}
22		10^{-27}			1×10^{-8}	1×10^{-9}	3×10^{-10}	2×10^{-24}
Neutron/Ra/Xe		$10^{-28}/3 \times 10^{-29}/10^{-27}$			6×10^{-9}	9×11^{-10}	3×10^{-10}	1×10^{-24}

12/6/18

HeXeEDM

Tim Chupp - ACFI 2018 EDMs

Radon-EDM Experiment

TRIUMF E929 Spokesmen: Timothy Chupp & Carl Svensson

Funding: NSF-Focus Center, DOE, NRC (TRIUMF), NSERC

Rn

Rh

Rn

Nuclear Orientation of Radon Isotopes by Spin-Exchange Optical Pumping

Kitano, (a) F. P. Calaprice, M. L. Pitt, J. Clayhold, W. Happer, M. Kadar-Kallen, and M. Musolf

E_{γ} (keV)	Spin sequence	Anisotropy R	R-1 (%)
337	$(\frac{1}{2}^{-}) - (\frac{5}{2}^{-})$	0.903(14)	-9.7 ± 1.4
408	$(\frac{5}{2}^{-}) - \frac{9}{2}^{-}$	1.009(7)	$\pm 0.9 \pm 0.7$
689	$\frac{5}{2}$, $\frac{7}{2}$ - $\frac{5}{2}$ -	1.079(22)	$+7.9 \pm 2.2$
745	$(\frac{1}{2}) - \frac{9}{2}$	1.129(14)	$+12.9 \pm 1.4$

E. R. Tardiff,¹ J. A. Behr,³ T. E. Chupp,¹ K. Gulyuz,⁴ R. S. Lefferts,⁴ W. Lorenzon,² S. R. Nuss-Warren,¹ M. R. Pearson,³ N. Pietralla,⁴ G. Rainovski,⁴ J. F. Sell,⁴ and G. D. Sprouse⁴

¹FOCUS Center, University of Michigan Physics Department, 450 Church St., Ann Arbor 48109-1040, USA ²University of Michigan Physics Department, 450 Church St., Ann Arbor 48109-1040, USA ³TRIUMF, 4004 Westbrook Mall, Vancouver V6T 2A3, Canada ⁴SUNY Stony Brook Department of Physics and Astronomy, Stony Brook 11794-3800, USA (Dated: December 6, 2006)

Fit for Γ_2 (T_a=300°K)_: 0.05 Hz (uncoated); 0.03 Hz (coated)s Use 2.5x10⁻²¹ cm²

57

Genat-4 simulations by Evan Rand γ -ray energy-time matrix from the β decay of 1.2 billion 223 Rn nuclei from an initial 8×10^{10} nuclei located in the EDM cell surrounded by a ring of eight GRIFFIN detectors in the forward position.

Known Level Structure of ²²³Fr

- Nuclear Data Sheets (2001)

Two-photon magnetometry with $^{221/223}$ Rn (J=7/2) S. Degenkolb Two-photon allowed excited states $(\Delta m = 2)$

Radon-EDM Prospects

Compare to ¹⁹⁹Hg: d<3x10⁻²⁹ e-cm (90%)

Facility	TRIUMF-ISAC	FRIB(²²³ Th)
Rate	2.5x10 ⁷ s ⁻¹	1x10 ⁹ s ⁻¹
# atoms	3.5×10^{10}	1.4×10^{12}
$\sigma_{\rm EDM}$ (100 d)	2x10 ⁻²⁷ e-cm	3x10 ⁻²⁸ e-cm
¹⁹⁹ Hg equivalent	4x10 ^{-28/29} e-cm	6x10 ^{-29/30} e-cm

Assumptions: E=10 kV/cm, T_2 =15 s, A=0.2, 25% duty factor

$$\sigma_d \approx \frac{1}{2E} \frac{\hbar}{AT_2} \frac{1}{\sqrt{N_{\gamma}}}$$

12/6/18