LIBERATION ON THE WALLS IN GAUGE THEORIES AND ANTI-FERROMAGNETS

Tin Sulejmanpasic North Carolina State University

Erich Poppitz, Mohamed Anber, TS Phys. Rev. D92 (2015) 2, 021701

and with Anders Sandvik, Hui Shao and M. Unsal — In progress

Recent Developments in Semiclassical Probes of Quantum Field Theories — UMass Amherst 2016

INTRODUCTION: The vacuum structure of gauge theories

INTRODUCTION: The vacuum structure of gauge theories

The vacuum structure of gauge theories

- In pure gauge theorie one global symmetry is center symmetry and is unbroaken
- No other global symmetries, no other order parameters
- Vacuum is unique

The vacuum structure of gauge theories

The vacuum structure 1st pass

- In pure gauge theorie one global symmetry is center symmetry and is unbroaken
- No other global symmetries, no other order parameters
- Vacuum is unique

However in large N limit, on general grounds (Witten 1998)

The vacuum structure of gauge theories

The vacuum structure 1st pass

- In pure gauge theorie one global symmetry is center symmetry and is unbroaken
- No other global symmetries, no other order parameters
- Vacuum is unique

However in large N limit, on general grounds (Witten 1998)

$$\mathcal{L} = N\left(\frac{1}{4g^2N}F^2 + i\frac{\theta}{16\pi^2N}F\tilde{F}\right)$$

The vacuum structure of gauge theories

The vacuum structure 1st pass

- In pure gauge theorie one global symmetry is center symmetry and is unbroaken
- No other global symmetries, no other order parameters
- Vacuum is unique

However in large N limit, on general grounds (Witten 1998)

$$\mathcal{L} = N \left(\frac{1}{4g^2 N} F^2 + i \frac{\theta}{16\pi^2 N} F \tilde{F} \right)$$

'Hooft coupling

The vacuum structure of gauge theories

- In pure gauge theorie one global symmetry is center symmetry and is unbroaken
- No other global symmetries, no other order parameters
- Vacuum is unique
 - However in large N limit, on general grounds (Witten 1998)

$$\mathcal{L} = N \left(\frac{1}{4g^2 N} F^2 + i \frac{\theta}{16\pi^2 N} F \tilde{F} \right)$$

t'Hooft coupling Keep fixed

The vacuum structure of gauge theories

- In pure gauge theorie one global symmetry is center symmetry and is unbroaken
- No other global symmetries, no other order parameters
- Vacuum is unique
 - However in large N limit, on general grounds (Witten 1998)

$$\mathcal{L} = N \begin{pmatrix} \frac{1}{4g^2N} F^2 + i \frac{\theta}{16\pi^2N} F\tilde{F} \end{pmatrix}$$

t'Hooft coupling Keep fixed
And vacuum energy

The vacuum structure of gauge theories

- In pure gauge theorie one global symmetry is center symmetry and is unbroaken
- No other global symmetries, no other order parameters
- Vacuum is unique
 - However in large N limit, on general grounds (Witten 1998)

$$\mathcal{L} = N \begin{pmatrix} \frac{1}{4g^2 N} F^2 + i \frac{\theta}{16\pi^2 N} F\tilde{F} \end{pmatrix}$$

t'Hooft coupling Keep fixed
And vacuum energy $E(\theta) = E(\theta + 2\pi)$

The vacuum structure of gauge theories

The vacuum structure 1st pass

- In pure gauge theorie one global symmetry is center symmetry and is unbroaken
- No other global symmetries, no other order parameters
- Vacuum is unique
 - However in large N limit, on general grounds (Witten 1998)

 $\mathcal{L} = N \left(\frac{1}{4g^2 N} F^2 + i \frac{\theta}{16\pi^2 N} F \tilde{F} \right)$ **t'Hooft coupling** Keep fixed And vacuum energy $E(\theta) = E(\theta + 2\pi)$

The vacuum structure of gauge theories

The vacuum structure 1st pass

- In pure gauge theorie one global symmetry is center symmetry and is unbroaken
- No other global symmetries, no other order parameters
- Vacuum is unique

However in large N limit, on general grounds (Witten 1998)

 $\mathcal{L} = N \left(\frac{1}{4g^2 N} F^2 + i \frac{\theta}{16\pi^2 N} F \tilde{F} \right)$ t'Hooft coupling Keep fixed And vacuum energy $E(\theta) = E(\theta + 2\pi)$ $\Longrightarrow E(\theta) = N^2 f \left(\frac{\theta + 2\pi k}{N} \right)$

So pure Yang-Mills has multiple vacua labeled by k, but they are non-degenerate except at $\theta = (2k+1)\pi$

$$\mathcal{L} = \frac{1}{2g^2} \left(\operatorname{tr} F^2 + \sum_{I=1}^{n_f} \bar{\lambda}_I \sigma^{\mu} D_{\mu} \lambda_I \right) \begin{array}{l} \lambda_I \text{-Weyl fermion} \\ & \text{in adjoint rep.} \end{array}$$

$$\mathcal{L} = \frac{1}{2g^2} \left(\operatorname{tr} F^2 + \sum_{I=1}^{n_f} \bar{\lambda}_I \sigma^{\mu} D_{\mu} \lambda_I \right) \begin{array}{l} \lambda_I \text{-Weyl fermion} \\ \text{in adjoint rep.} \end{array}$$
$$\lambda_I \to \lambda_I e^{i\alpha} \quad \text{-Classical U(I) axial symmetry} \\ \lambda_I \to U_I^J \lambda_J \ , U \in SU(N_f) \end{array}$$

$$\mathcal{L} = \frac{1}{2g^2} \begin{pmatrix} \operatorname{tr} F^2 + \sum_{I=1}^{n_f} \bar{\lambda}_I \sigma^{\mu} D_{\mu} \lambda_I \end{pmatrix} \begin{array}{l} \lambda_I \text{-Weyl fermion} \\ \text{in adjoint rep.} \\ \lambda_I \to \lambda_I e^{i\alpha} & \text{-Classical U(I) axial symmetry} \\ \lambda_I \to U_I^J \lambda_J , U \in SU(N_f) \\ I \sim \lambda^{2Nn_f} & \text{anomaly}\text{--instantons breaks U(I) to } \mathbb{Z}_{2Nnf} \\ \end{array}$$

$$\begin{split} \mathcal{L} &= \frac{1}{2g^2} \left(\mathrm{tr} F^2 + \sum_{I=1}^{n_f} \bar{\lambda}_I \sigma^\mu D_\mu \lambda_I \right) \begin{array}{l} \lambda_I \text{-Weyl fermion} \\ &\text{in adjoint rep.} \end{array} \\ \lambda_I &\to \lambda_I e^{i\alpha} \quad \text{-Classical U(I) axial symmetry} \\ \lambda_I &\to U_I{}^J \lambda_J \ , U \in SU(N_f) \\ &I \sim \lambda^{2Nn_f} \quad \text{anomaly}\text{---instantons breaks U(I) to Z_{2Nnf}} \\ \partial_\mu j_5^\mu &= \frac{n_f}{16\pi^2} \mathrm{tr}_{\mathrm{adj}} F^{\mu\nu} \tilde{F}_{\mu\nu} \Rightarrow \Delta Q_5 = 2n_f N Q_{top} \end{split}$$

 $\mathcal{L} = \frac{1}{2g^2} \left(\operatorname{tr} F^2 + \sum_{I=1}^{n_f} \bar{\lambda}_I \sigma^{\mu} D_{\mu} \lambda_I \right) \begin{array}{l} \lambda_I \text{-Weyl fermion} \\ \text{in adjoint rep.} \end{array}$ $\lambda_I \rightarrow \lambda_I e^{i\alpha}$ -Classical U(1) axial symmetry $\lambda_I \to U_I{}^J \lambda_J, U \in SU(N_f)$ $I \sim \lambda^{2Nn_f}$ anomaly—instantons breaks U(1) to Z_{2Nnf} $\partial_{\mu} j_5^{\mu} = \frac{n_f}{16\pi^2} \operatorname{tr}_{\mathrm{adj}} F^{\mu\nu} \tilde{F}_{\mu\nu} \Rightarrow \Delta Q_5 = 2n_f N Q_{top}$ $Q \mod 2Nn_f$ conserved $\Rightarrow Z_{2Nnf}$ remains

 $\mathcal{L} = \frac{1}{2g^2} \left(\operatorname{tr} F^2 + \sum_{I=1}^{n_f} \bar{\lambda}_I \sigma^{\mu} D_{\mu} \lambda_I \right) \begin{array}{l} \lambda_I \text{-Weyl fermion} \\ \text{in adjoint rep.} \end{array}$ $\lambda_I \rightarrow \lambda_I e^{i\alpha}$ -Classical U(1) axial symmetry $\lambda_I \to U_I{}^J \lambda_J, U \in SU(N_f)$ $I \sim \lambda^{2Nn_f}$ anomaly—instantons breaks U(1) to Z_{2Nnf} $\partial_{\mu} j_5^{\mu} = \frac{n_f}{16\pi^2} \operatorname{tr}_{\mathrm{adj}} F^{\mu\nu} \tilde{F}_{\mu\nu} \Rightarrow \Delta Q_5 = 2n_f N Q_{top}$ $Q \mod 2Nn_f$ conserved $\Rightarrow Z_{2Nnf}$ remains Z_{nf} parti belongs to SU(n_f) so the symmetry is SU(n_f)xZ_{2N}

$\langle \lambda_I \lambda^I \rangle \neq 0 \Rightarrow SU(n_f) \times Z_{2N} \to SO(n_f) \times Z_2$

Spontanous continuous chiral symmetry breaking

$\langle \lambda_I \lambda^I \rangle \neq 0 \Rightarrow SU(n_f) \times Z_{2N} \to SO(n_f) \times Z_2$

Spontanous continuous chiral symmetry breaking

 $Z_{2N} \rightarrow Z_2$

$\langle \lambda_I \lambda^I \rangle \neq 0 \Rightarrow SU(n_f) \times Z_{2N} \to SO(n_f) \times Z_2$

Spontanous continuous chiral symmetry breaking

 $Z_{2N} \rightarrow Z_2$

Therefore since the coset $Z_{2N}/Z_2 = Z_N$ the theory has N isolated degenerate vacua

$$\langle \lambda \lambda \rangle \neq 0 \Rightarrow Z_{2N} \to Z_2$$

Spontanous (discrete) chiral symmetry breaking

 $\langle \lambda \lambda \rangle \neq 0 \Rightarrow Z_{2N} \to Z_2$

Spontanous (discrete) chiral symmetry breaking

In both QCD(adj) and its supersymmetric limit there is a spontanously broken Z_N symmetry leading to N isolated, discrete vacua, labeled by k=0,..., N-I

$$\langle \lambda \lambda \rangle \neq 0 \Rightarrow Z_{2N} \to Z_2$$

Spontanous (discrete) chiral symmetry breaking

In both QCD(adj) and its supersymmetric limit there is a spontanously broken Z_N symmetry leading to N isolated, discrete vacua, labeled by k=0,..., N-I

vacuum k

$$\langle \lambda \lambda \rangle \neq 0 \Rightarrow Z_{2N} \to Z_2$$

Spontanous (discrete) chiral symmetry breaking

In both QCD(adj) and its supersymmetric limit there is a spontanously broken Z_N symmetry leading to N isolated, discrete vacua, labeled by k=0,..., N-I

vacuum k

vacuum k+l

$$\langle \lambda \lambda \rangle \neq 0 \Rightarrow Z_{2N} \to Z_2$$

Spontanous (discrete) chiral symmetry breaking

In both QCD(adj) and its supersymmetric limit there is a spontanously broken Z_N symmetry leading to N isolated, discrete vacua, labeled by k=0,..., N-I

Monopoles condense

(e,m)=(0,1)

Dyons condense

(e,m)=(1,-1)

Monopoles condense

Dyons condense

So although there are no objects with unit fundamental charge, there is an excitation on the wall supporting unit fundamental charges

confining string can terminate

Due to S.-J. Rey 1998 Explored by Witten in M-theory construction of N=1 SYM

- For N < 2 no such statements can be made rigorous
- The problem comes from the fact that monopoles while a feature of 4D $\mathcal{N}=2$ theory, are very elusive in $\mathcal{N}=1$ theories and theories with no supersymmetries (they require gauge fixing, assumptions of abelian dominance, etc.)
- The potential implications in non-supersymmetric theories were mostly ignored.

SO HOW TO STUDY THESE THEORIES?

- Non-abelian gauge theories in 4D do not have a small, tunable dimensionless parameter
- There is a prescription by M. Unsal on how to analytically study confining phenomena in 4D
- The prescription involves compacifying one direction in a way that prevents confinement/deconfinement transition
- The theory obtains a dimensionless parameter LA which can be made arbitrarily small
- It turns out that the theory is completely analytically calculable with semi-classical methods for $L\Lambda <<1$
- Note that this is NOT thermal compactification. In fact the thermal theory is not analytically tractable.
- Also note that this is not a 3DYM theory.
$$\mathcal{S} = \frac{1}{2g^2} \int d^4 x \operatorname{tr} F_{\mu\nu}^2 \to \frac{L}{g^2} \int d^3 \operatorname{tr} \left(F_{ij}^2 + (D_i A_0)^2 \right)$$

$$\mathcal{S} = \frac{1}{2g^2} \int d^4 x \operatorname{tr} F_{\mu\nu}^2 \to \frac{L}{g^2} \int d^3 \operatorname{tr} \left(F_{ij}^2 + (D_i A_0)^2 \right)$$

If confinement is preserved, roughly $\langle A_0 \rangle \neq 0$

$$\mathcal{S} = \frac{1}{2g^2} \int d^4 x \operatorname{tr} F_{\mu\nu}^2 \to \frac{L}{g^2} \int d^3 \operatorname{tr} \left(F_{ij}^2 + (D_i A_0)^2 \right)$$

If confinement is preserved, roughly $\langle A_0 \rangle \neq 0$ A_0 —(compact) Higgs field in adjoint rep.

$$\mathcal{S} = \frac{1}{2g^2} \int d^4 x \operatorname{tr} F_{\mu\nu}^2 \to \frac{L}{g^2} \int d^3 \operatorname{tr} \left(F_{ij}^2 + (D_i A_0)^2 \right)$$

If confinement is preserved, roughly $\langle A_0 \rangle \neq 0$ A_0 —(compact) Higgs field in adjoint rep. A_i which do not commute with the Higgs are heavy and decouple from the low energy dynamics

 $SU(N) \to U(1)^{N-1}$

$$\mathcal{S} = \frac{1}{2g^2} \int d^4 x \operatorname{tr} F_{\mu\nu}^2 \to \frac{L}{g^2} \int d^3 \operatorname{tr} \left(F_{ij}^2 + (D_i A_0)^2 \right)$$

If confinement is preserved, roughly $\langle A_0 \rangle \neq 0$ A_0 —(compact) Higgs field in adjoint rep. A_i which do not commute with the Higgs are heavy and decouple from the low energy dynamics

 $SU(N) \to U(1)^{N-1}$

I will focus on SU(2) here for simplicity

But is not a free non-abelian gauge theory.

But is not a free non-abelian gauge theory.

But is not a free non-abelian gauge theory.

- Is in the confined phase regardless of the radius of compactification

- Is in the confined phase regardless of the radius of compactification
- Is confining even upon introduction of quarks due to the interplay with the U(I) anomaly (not true in a genuinely 3D Affleck, Harvey, Witten 1992)

- Is in the confined phase regardless of the radius of compactification
- Is confining even upon introduction of quarks due to the interplay with the U(I) anomaly (not true in a genuinely 3D Affleck, Harvey, Witten 1992)
- Allow for a study of confining dynamics microscopically at $L\Lambda <<1$

- Is in the confined phase regardless of the radius of compactification
- Is confining even upon introduction of quarks due to the interplay with the U(I) anomaly (not true in a genuinely 3D Affleck, Harvey, Witten 1992)
- Allow for a study of confining dynamics microscopically at $L\Lambda <<1$
- No phase transition implies that the microscopic structure does not change in the regime LA>1 implying that systematic semiclassical expansion valid at LA <<1 can be used to reconstruct all observables in this regime

- Is in the confined phase regardless of the radius of compactification
- Is confining even upon introduction of quarks due to the interplay with the U(I) anomaly (not true in a genuinely 3D Affleck, Harvey, Witten 1992)
- Allow for a study of confining dynamics microscopically at $L\Lambda <<1$
- No phase transition implies that the microscopic structure does not change in the regime LA>1 implying that systematic semiclassical expansion valid at LA <<1 can be used to reconstruct all observables in this regime
- This is the idea of resurgent trans-series construction (Unsal/ Dunne et. al.)

The effective action at $L/\Lambda <<1$:

$$\mathcal{L} = \frac{L}{g^2(L)} \mathcal{F}_{ij}^2 + \text{monopoles}$$

$$\mathcal{F}_{ij} - U(I) \text{ gauge theory}$$

The effective action at $L/\Lambda <<1$:

$$\mathcal{L} = \frac{L}{g^2(L)} \mathcal{F}_{ij}^2 + \text{monopoles} \qquad i = 0, 1, 2$$

$$\mathcal{F}_{ij} - U(I) \text{ gauge theory} \qquad \text{time} \qquad \text{space}$$

$$\partial_i \sigma \sim \epsilon_{ijk} \mathcal{F}^{jk} - \text{Abelian duality (Polyakov 1977)}$$

$$\sigma \equiv \sigma + 2\pi \qquad -\text{compact scalar field}$$

The effective action at $L/\Lambda <<1$:

$$\mathcal{L} = \frac{L}{g^2(L)} \mathcal{F}_{ij}^2 + \text{monopoles} \qquad i = 0, 1, 2$$

$$\mathcal{F}_{ij} - U(I) \text{ gauge theory} \qquad \text{time space}$$

$$\partial_i \sigma \sim \epsilon_{ijk} \mathcal{F}^{jk} - \text{Abelian duality (Polyakov 1977)}$$

$$\sigma \equiv \sigma + 2\pi - \text{compact scalar field}$$

$$\mathcal{L} = \frac{g^2(L)}{2L(2\pi)^2} \left[(\partial_i \sigma)^2 - m^2 \cos \sigma \right]$$

$$\text{Massgap} \qquad \text{Due to monopole(-instantons)}$$

SOURCES:

SOURCES: duality: $\mathcal{F}_{ij} = \frac{1}{2} \epsilon_{ijk} \partial^k \sigma$

SOURCES:

duality: $\mathcal{F}_{ij} = \frac{1}{2} \epsilon_{ijk} \partial^k \sigma$

Stationary source:

Q

SOURCES:

duality: $\mathcal{F}_{ij} = \frac{1}{2} \epsilon_{ijk} \partial^k \sigma$

Stationary source:

SOURCES:

duality: $\mathcal{F}_{ij} = \frac{1}{2} \epsilon_{ijk} \partial^k \sigma$

Stationary source:

Gauss law: $\oint_{S} \mathcal{F}_{ij} \epsilon^{ijk} dS_k = 2\pi Q$

SOURCES:

duality: $\mathcal{F}_{ij} = \frac{1}{2} \epsilon_{ijk} \partial^k \sigma$

Stationary source:

SOURCES:

duality: $\mathcal{F}_{ij} = \frac{1}{2} \epsilon_{ijk} \partial^k \sigma$

Stationary source:

σ winds by 2π

CONFINING STRINGS

winding is localized on the string

Thickness of the string ~ scale of the density of monopoles

$4D Q_{top} = I$ instantons

monopole with $Q_{top}=1/2$

 $4D Q_{top} = 1$ instantons

anti-monopole with $Q_{top} = 1/2$

monopole with $Q_{top}=1/2$

 $4D Q_{top} = I$ instantons

anti-monopole with $Q_{top}=1/2$

instanton:
$$M_1 \sim e^{i\sigma + i\frac{\theta}{2}} + M_2 \sim e^{-i\sigma + i\frac{\theta}{2}}$$

monopole with $Q_{top} = 1/2$

 $4D Q_{top} = 1$ instantons

anti-monopole with $Q_{top}=1/2$

instanton: $M_1 \sim e^{i\sigma + i\frac{\theta}{2}} + M_2 \sim e^{-i\sigma + i\frac{\theta}{2}}$

anti-instanton: $\overline{M}_{I} \sim e^{-i\sigma - i\frac{\theta}{2}} + \overline{M}_{2} \sim e^{i\sigma - i\frac{\theta}{2}}$

monopole with $Q_{top} = 1/2$

 $4D Q_{top} = 1$ instantons

anti-monopole with $Q_{top}=1/2$

instanton: $M_1 \sim e^{i\sigma + i\frac{\theta}{2}} + M_2 \sim e^{-i\sigma + i\frac{\theta}{2}}$

anti-instanton: $\overline{M}_{I} \sim e^{-i\sigma - i\frac{\theta}{2}} + \overline{M}_{2} \sim e^{i\sigma - i\frac{\theta}{2}}$

 $\mathcal{V}_{eff} = (\dots) \cos(\sigma) \cos(\theta/2)$

 $\mathcal{V}_{eff} = (\dots) \cos(\sigma) \cos(\theta/2)$

$$\mathcal{V}_{eff} = (\dots) \cos(\sigma) \cos(\theta/2)$$

* But in the presence of fermions no θ dependence in the vacuum energy should exist.

$$\mathcal{V}_{eff} = (\dots) \cos(\sigma) \cos(\theta/2)$$

- * But in the presence of fermions no θ dependence in the vacuum energy should exist.
- * Technically this is because monopoles have fermion zero modes, and the first allowed term which couples to the σ-field is composed out of topologically trivial configurations composed out of 1-2 monopole— anti-monopole pair

$$\mathcal{V}_{eff} = (\dots) \cos(\sigma) \cos(\theta/2)$$

- * But in the presence of fermions no θ dependence in the vacuum energy should exist.
- * Technically this is because monopoles have fermion zero modes, and the first allowed term which couples to the σ-field is composed out of topologically trivial configurations composed out of 1-2 monopole—anti-monopole pair
- ^k Alternatively the same effect can be achieved by setting $\theta = \pi$

$$\mathcal{V}_{eff} = (\dots) \cos(\sigma) \cos(\theta/2)$$

- * But in the presence of fermions no θ dependence in the vacuum energy should exist.
- * Technically this is because monopoles have fermion zero modes, and the first allowed term which couples to the σ -field is composed out of topologically trivial configurations composed out of 1-2 monopole—anti-monopole pair
- * Alternatively the same effect can be achieved by setting $\theta = \pi$
- * Either way we have

$$\mathcal{V}_{eff} = (\dots) \cos(\sigma) \cos(\theta/2)$$

- * But in the presence of fermions no θ dependence in the vacuum energy should exist.
- * Technically this is because monopoles have fermion zero modes, and the first allowed term which couples to the σ-field is composed out of topologically trivial configurations composed out of 1-2 monopole— anti-monopole pair
- * Alternatively the same effect can be achieved by setting $\theta = \pi$
- * Either way we have

$$\mathcal{V}_{eff} = (\dots)\cos(2\sigma)$$

CONFINING STRINGS

CONFINING STRINGS

LIBERATION OF QUARKS ON THE WALL

σ=0

SPECULATION ABOUT 4D

SPIN ANTI-FERROMAGNETS AND VALENCE BOND SOLIDS

(in progress: Anders Sandvik, Hui Shao and Mithat Unsal)

Neel state — ferromagnetic order

Valence Bond Solid singlets—dimer have long range crystaline order

pictures from Kaul, Melko, Sandvik Annu.Rev.Cond.Matt.Phys.4(1)179 (2013)

VALENCE BOND SOLID VACUA

VALENCE BOND SOLID VACUA

UNPAIRED SPINS ARE CONFINED

UNPAIRED SPINS ARE CONFINED

 $H = J \sum_{\langle ij \rangle} S_i \cdot S_j$ — minimal quantum anti-ferromagnet

- Generically in the Neel state

 $H = J \sum_{\langle ij \rangle} S_i \cdot S_j$ — minimal quantum anti-ferromagnet

- Generically in the Neel state

$$H_{JQ} = J \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j - Q_x \sum_{\langle ij \rangle_x \langle kl \rangle_x} P_{ij} P_{kl} - Q_y \sum_{\langle ik \rangle_y \langle jl \rangle_y} P_{ij} P_{kl}$$

 $H = J \sum_{\langle ij \rangle} S_i \cdot S_j$ — minimal quantum anti-ferromagnet

— Generically in the Neel state

$$H_{JQ} = J \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j - Q_x \sum_{\langle ij \rangle_x \langle kl \rangle_x} P_{ij} P_{kl} - Q_y \sum_{\langle ik \rangle_y \langle jl \rangle_y} P_{ij} P_{kl}$$

 $P_{ij} = S_i \cdot S_j - 1/4 \quad \text{--Singlet} \\ \text{projector} \\ \text{Q-terms introduce singlet attractions} \\ \text{If Qx=Qy: 4 vacua, otherwise only 2} \end{cases}$

J-Q model with a domain wall along y-direction with J=0, Qy=1

ANTI-FERROMAGNET IN CONTINUUM

In continuum

$$S_E = \frac{S}{4} \int d^2 x \, dt \, \left[\frac{1}{v_s} (\partial_{\boldsymbol{x}} \boldsymbol{n})^2 + v_s (\partial_t \boldsymbol{n})^2 \right] + (\text{Berry phase})$$

Valid for large S where finite differences can be approximated well by derivatives
ANTI-FERROMAGNET IN CONTINUUM

$$H = J \sum_{\langle ij \rangle} S_i \cdot S_j + \dots$$

 $S_i = \eta_i S \ n_i \ , \qquad \eta_i = \pm 1$ —staggered phase

In continuum

$$S_E = \frac{S}{4} \int d^2 x \, dt \, \left[\frac{1}{v_s} (\partial_{\boldsymbol{x}} \boldsymbol{n})^2 + v_s (\partial_t \boldsymbol{n})^2 \right] + (\text{Berry phase})$$

Valid for large S where finite differences can be approximated well by derivatives

space-time hedgehog
singular in continuum
possible because of the underlying lattice

space-time hedgehog
singular in continuum
possible because of the underlying lattice

The hedgehogs have different Berry phases depending on the the sub-lattice they belong to (Haldane 1988)

ALTERNATIVE DESCRIPTION OF SPIN

$$oldsymbol{n}_i = u_i^{\dagger} oldsymbol{\sigma} u_i \;, \quad oldsymbol{\sigma} = (\sigma_1, \sigma_2, \sigma_3)$$

 $u_i = -$ SU(2) doublet at each site with $u_i^{\dagger} u_i = 1$
 $u_i
ightarrow e^{i\phi_i} u_i \;$ — Local symmetry, i.e. gauge symmetry

ALTERNATIVE DESCRIPTION OF SPIN

$$\frac{e^{\frac{i\pi}{2}}}{1} e^{i\pi} \times e^{+i(\sigma - \pi/2)} \times e^{-\frac{i\pi}{2}}$$

$$\frac{e^{\frac{i\pi}{2}}}{1} e^{i\pi} \times e^{+i(\sigma - \pi/2)} \times e^{-\frac{i\pi}{2}}$$

$$\frac{e^{\frac{i\pi}{2}}}{1} \frac{e^{i\pi}}{e^{-\frac{i\pi}{2}}} \times e^{+i(\sigma-\pi/2)}$$

Under the Q-deformation only π rotations are a symmetry, so $cos(2\sigma)$ is allowed.

Phases:

- Neel
 - u-field condenses breaking SU(2) symmetry
 - u-condensate acts like a Higgs field and the effective theory is that of goldstones
- VBS
 - u-field is massive and can be integrated out
 - Effective theory is the 3D U(I) gauge theory with monopoles
 - Confining phase
 - Monopoles (hedgehogs) couple to Berry phases which interfere allowing only multiple monopole events to contribute.
 - The different Qx and Qy terms allow for $cos(2\sigma)$ but not for $cos(\sigma)$ term.
 - Effective action is the same as in gauge theories

CONCLUSION

- Gauge theories with multiple vacua have an incredibly curious confining string structure
- They generically exhibit features that suggest strings are made out of domain walls
- Immediate consequences are: liberation of charges on the domain walls, strings ending on domain walls, charges are intersections of domain walls.
- Not a supersymmetric phenomena, as is folklore.
 - QCD(adj) confining with N vacua (discrete chiral symmetry breaking).
 - $\theta = \pi$ confining with 2 vacua (CP symmetry breaking)
- In non-degenerate vacua, there may be residual effects from this considerations (i.e. strings are composed out of Witten k-vacua)
- Spin-antiferromagnets in the VBS phase exhibit the same phenomenon
- Domain walls as spin-guides?
- So far deconfined spinons were only proposed in at a critical point between the Neel and the VBS state, but it may be possible to achieve this on the domain wall without being at the critical point.