
 
LIBERATION ON THE WALLS IN GAUGE 
THEORIES AND ANTI-FERROMAGNETS
Tin Sulejmanpasic
North Carolina State University

Erich Poppitz, Mohamed Anber, TS Phys.Rev. D92 (2015) 2, 021701 

and with Anders Sandvik, Hui Shao and M. Unsal — In progress

Recent Developments in Semiclassical Probes of Quantum Field Theories — UMass Amherst  2016



INTRODUCTION: 
The vacuum structure of gauge theories



INTRODUCTION: 
The vacuum structure of gauge theories

The vacuum structure 1st pass



INTRODUCTION: 
The vacuum structure of gauge theories

The vacuum structure 1st pass
- In pure gauge theorie one global symmetry is center symmetry 

and is unbroaken
- No other global symmetries, no other order parameters
- Vacuum is unique



INTRODUCTION: 
The vacuum structure of gauge theories

The vacuum structure 1st pass
- In pure gauge theorie one global symmetry is center symmetry 

and is unbroaken
- No other global symmetries, no other order parameters
- Vacuum is unique

However in large N limit, on general grounds (Witten 1998)



INTRODUCTION: 
The vacuum structure of gauge theories

The vacuum structure 1st pass
- In pure gauge theorie one global symmetry is center symmetry 

and is unbroaken
- No other global symmetries, no other order parameters
- Vacuum is unique

However in large N limit, on general grounds (Witten 1998)

L = N

✓
1

4g2N
F 2 + i

✓

16⇡2N
FF̃

◆



INTRODUCTION: 
The vacuum structure of gauge theories

The vacuum structure 1st pass
- In pure gauge theorie one global symmetry is center symmetry 

and is unbroaken
- No other global symmetries, no other order parameters
- Vacuum is unique

However in large N limit, on general grounds (Witten 1998)

L = N

✓
1

4g2N
F 2 + i

✓

16⇡2N
FF̃

◆

t’Hooft coupling



INTRODUCTION: 
The vacuum structure of gauge theories

The vacuum structure 1st pass
- In pure gauge theorie one global symmetry is center symmetry 

and is unbroaken
- No other global symmetries, no other order parameters
- Vacuum is unique

However in large N limit, on general grounds (Witten 1998)

L = N

✓
1

4g2N
F 2 + i

✓

16⇡2N
FF̃

◆

t’Hooft coupling Keep fixed



INTRODUCTION: 
The vacuum structure of gauge theories

The vacuum structure 1st pass
- In pure gauge theorie one global symmetry is center symmetry 

and is unbroaken
- No other global symmetries, no other order parameters
- Vacuum is unique

However in large N limit, on general grounds (Witten 1998)

L = N

✓
1

4g2N
F 2 + i

✓

16⇡2N
FF̃

◆

t’Hooft coupling Keep fixed
And vacuum energy



INTRODUCTION: 
The vacuum structure of gauge theories

The vacuum structure 1st pass
- In pure gauge theorie one global symmetry is center symmetry 

and is unbroaken
- No other global symmetries, no other order parameters
- Vacuum is unique

However in large N limit, on general grounds (Witten 1998)

L = N

✓
1

4g2N
F 2 + i

✓

16⇡2N
FF̃

◆

t’Hooft coupling Keep fixed

E(✓) = E(✓ + 2⇡)And vacuum energy



INTRODUCTION: 
The vacuum structure of gauge theories

The vacuum structure 1st pass
- In pure gauge theorie one global symmetry is center symmetry 

and is unbroaken
- No other global symmetries, no other order parameters
- Vacuum is unique

However in large N limit, on general grounds (Witten 1998)

L = N

✓
1

4g2N
F 2 + i

✓

16⇡2N
FF̃

◆

t’Hooft coupling Keep fixed

)
)

E(✓) = E(✓ + 2⇡)And vacuum energy



INTRODUCTION: 
The vacuum structure of gauge theories

The vacuum structure 1st pass
- In pure gauge theorie one global symmetry is center symmetry 

and is unbroaken
- No other global symmetries, no other order parameters
- Vacuum is unique

However in large N limit, on general grounds (Witten 1998)

L = N

✓
1

4g2N
F 2 + i

✓

16⇡2N
FF̃

◆

t’Hooft coupling Keep fixed

)
)

E(✓) = E(✓ + 2⇡)And vacuum energy

E(✓) = N2f

✓
✓ + 2⇡k

N

◆



k=0 k=2k=1

N=3 ✓

E(✓)

π 2π 3π 4π0



So pure Yang-Mills has multiple vacua labeled by k, but they are 
non-degenerate except at θ=(2k+1)π
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Znf parti belongs to SU(nf) so the symmetry is SU(nf)xZ2N 
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In N=2 Super-Yang mills softly broken to N=1 
an entire microscopic picture is known 

For SU(2) the picture is: there are two degenerate vacua

Due to S.-J. Rey 1998
Explored by Witten in M-theory construction of N=1 SYM

confining string can terminate



- For N<2 no such statements can be made rigorous 

- The problem comes from the fact that monopoles 
while a feature of 4D N=2 theory, are very elusive in 

N=1 theories and theories with no supersymmetries 
(they require gauge fixing, assumptions of abelian 
dominance, etc.)

- The potential implications in non-supersymmetric 
theories were mostly ignored. 



SO HOW TO STUDY THESE 
THEORIES?
- Non-abelian gauge theories in 4D do not have a small, tunable 

dimensionless parameter
- There is a prescription by M. Unsal on how to analytically study 

confining phenomena in 4D
- The prescription involves compacifying one direction in a way that 

prevents confinement/deconfinement transition 
- The theory obtains a dimensionless parameter LΛ which can be 

made arbitrarily small
- It turns out that the theory is completely analytically calculable with 

semi-classical methods for LΛ<<1
- Note that this is NOT thermal compactification. In fact the thermal 

theory is not analytically tractable.
- Also note that this is not a 3D YM theory.
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hA0i 6= 0If confinement is preserved, roughly

A0 —(compact) Higgs field in adjoint rep.

Ai     which do not commute with the Higgs are heavy 
and decouple from the low energy dynamics

SU(N) ! U(1)N�1

I will focus on SU(2) here for simplicity
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~B ⇠ r̂
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U(1) magnetic 
monopoles
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In fact due to the presence of the monopoles the theory (Unsal et. 
al. 2007 to present)

- Is in the confined phase regardless of the radius of 
compactification

- Is confining even upon introduction of quarks due to the 
interplay with the U(1) anomaly (not true in a genuinely 3D — 
Affleck, Harvey, Witten 1992)

- Allow for a study of confining dynamics microscopically at  
LΛ<<1

- No phase transition implies that the microscopic structure does 
not change in the regime LΛ>1 implying that systematic semi-
classical expansion valid at LΛ <<1 can be used to reconstruct all 
observables in this regime

- This is the idea of resurgent trans-series construction (Unsal/
Dunne et. al.)
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Fij — U(1) gauge theory

L =
L
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ij + monopoles i = 0, 1, 2

time space

L =
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2L(2⇡)2
⇥
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2 �m2
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⇤

Due to monopole(-instantons)Massgap

@i� ⇠ ✏ijkFjk —Abelian duality (Polyakov 1977)
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SPECULATION ABOUT 4D

vacuum 1 vacuum 2



SPIN ANTI-FERROMAGNETS AND 
VALENCE BOND SOLIDS 
(in progress: Anders Sandvik, Hui Shao and Mithat Unsal)

Neel state
— ferromagnetic order

pictures from 
Kaul, Melko, Sandvik Annu.Rev.Cond.Matt.Phys.4(1)179 (2013)

Valence Bond Solid
singlets—dimer have long range 

crystaline order
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Q-terms introduce singlet attractions

If Qx=Qy: 4 vacua, otherwise only 2
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quark anti- 
quark

Different vacua

Different vacua

Domain walls carying 
1/2 electric flux

A deconfined quark 
on a domain wall

A deconfined spin 
on a domain wallVALENCE BOND SOLID

GAUGE THEORY



J-Q model with a domain wall along y-direction
with J=0, Qy=1
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ANTI-FERROMAGNET IN 
CONTINUUM

H = J
X

hiji

Si · Sj + . . .

—staggered phaseSi = ⌘iS ni , ⌘i = ±1

In continuum 

Valid for large S where finite differences can be approximated
well by derivatives
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HEDGEHOGS AS MONOPOLES

time

space

space-time hedgehog 
- singular in continuum
- possible because of the  

underlying lattice

The hedgehogs have different Berry phases 
depending on the the sub-lattice they belong to 
(Haldane 1988)
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ui — SU(2) doublet at each site with u†
iui = 1

ui ! ei�iui — Local symmetry, i.e. gauge symmetry

n-field

SU(2)

~1/L

~B ⇠ r̂

r2

U(1) magnetic 
monopoles
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Berry phases cancel each other and the first allowed term is 
cos(4σ)

Under the Q-deformation only π rotations are a symmetry, so 
cos(2σ) is allowed.

⇥e±i(��⇡/2)



Phases:
- Neel

- u-field condenses breaking SU(2) symmetry
- u-condensate acts like a Higgs field and the effective 

theory is that of goldstones
- VBS

- u-field is massive and can be integrated out
- Effective theory is the 3D U(1) gauge theory with 

monopoles
- Confining phase
- Monopoles (hedgehogs) couple to Berry phases which 

interfere allowing only multiple monopole events to 
contribute. 

- The different Qx and Qy terms allow for cos(2σ) but not 
for cos(σ) term.

- Effective action is the same as in gauge theories



CONCLUSION

Gauge theories with multiple vacua have an incredibly curious confining string structure
They generically exhibit features that suggest strings are made out of domain walls
Immediate consequences are: liberation of charges on the domain walls, strings ending on 
domain walls, charges are intersections of domain walls. 
Not a supersymmetric phenomena, as is folklore. 

QCD(adj) — confining with N vacua (discrete chiral symmetry breaking). 
θ=π — confining with 2 vacua (CP symmetry breaking)

In non-degenerate vacua, there may be residual effects from this considerations (i.e. strings 
are composed out of Witten k-vacua)
Spin-antiferromagnets in the VBS phase exhibit the same phenomenon
Domain walls as spin-guides? 
So far deconfined spinons were only proposed in at a critical point between the Neel and 
the VBS state, but it may be possible to achieve this on the domain wall without being at the 
critical point.


