Recent progress on the Fermi gas from auxiliary-field QMC

Shiwei Zhang

- Auxiliary-field QMC (AFQMC)
- Connection with lattice methods
- Technical advances in FG (e.g. low-rank decomp - scaling N^3 -> N)
- Conceptual difference for general interactions: controlling sign problem (any realistic materials)
- Precision computation in the 2D Fermi gas
- Ground state: EOS, gaps, n(k), ...
- BKT Tc, contact, response

Collaborators:

Yuanyao He
(Northwest U, China)

Ettore Vitali
(Cal State Fresno)

The many electron problem

- We know the electronic Hamiltonian well!

The many electron problem

- We know the electronic Hamiltonian well!

The many electron problem

- We know the electronic Hamiltonian well!

$$
H=H_{1-\text { body }}+H_{2-\text { body }}=-\frac{\hbar^{2}}{2 m} \sum_{i=1}^{N} \nabla_{i}^{2}+\sum_{i=1}^{N} V_{\text {ext }}\left(\mathbf{r}_{i}\right)+\sum_{i<j}^{N} V_{\text {int }}\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|\right)
$$

The many electron problem

- We know the electronic Hamiltonian well!

$$
H=H_{1-\mathrm{body}}+H_{2-\mathrm{body}}=-\frac{\hbar^{2}}{2 m} \sum_{i=1}^{N} \nabla_{i}^{2}+\sum_{i=1}^{N} V_{\mathrm{ext}}\left(\mathbf{r}_{i}\right)+\sum_{i<j}^{N} V_{\mathrm{int}}\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|\right)
$$

- In any 1-electron basis - a generic lattice:

The many electron problem

- We know the electronic Hamiltonian well!

$$
H=H_{1-\mathrm{body}}+H_{2-\mathrm{body}}=-\frac{\hbar^{2}}{2 m} \sum_{i=1}^{N} \nabla_{i}^{2}+\sum_{i=1}^{N} V_{\text {ext }}\left(\mathbf{r}_{i}\right)+\sum_{i<j}^{N} V_{\text {int }}\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|\right)
$$

- In any 1-electron basis - a generic lattice:

$$
\hat{H}=\sum_{i, j}^{M} T_{i j} c_{i}^{\dagger} c_{j}+\sum_{i, j, k, l}^{M} V_{i j k l} c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l}
$$

The many electron problem

- We know the electronic Hamiltonian well!

$$
H=H_{1-\mathrm{body}}+H_{2-\mathrm{body}}=-\frac{\hbar^{2}}{2 m} \sum_{i=1}^{N} \nabla_{i}^{2}+\sum_{i=1}^{N} V_{\text {ext }}\left(\mathbf{r}_{i}\right)+\sum_{i<j}^{N} V_{\text {int }}\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|\right)
$$

- In any 1-electron basis - a generic lattice:
- 1-body: matrix - diagonalize to solve

$$
\hat{H}=\sum_{i, j}^{M} T_{i j} c_{i}^{\dagger} c_{j}+\sum_{i, j, k, l}^{M} V_{i j k l} c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l}
$$

The many electron problem

- We know the electronic Hamiltonian well!

$$
H=H_{1-\mathrm{body}}+H_{2-\mathrm{body}}=-\frac{\hbar^{2}}{2 m} \sum_{i=1}^{N} \nabla_{i}^{2}+\sum_{i=1}^{N} V_{\text {ext }}\left(\mathbf{r}_{i}\right)+\sum_{i<j}^{N} V_{\text {int }}\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|\right)
$$

- In any 1-electron basis - a generic lattice:
- 1-body: matrix - diagonalize to solve
- 2-body: 4-index tensor

$$
\hat{H}=\sum_{i, j}^{M} T_{i j} c_{i}^{\dagger} c_{j}+\sum_{i, j, k, l}^{M} V_{i j k l} c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l}
$$

The many electron problem

- We know the electronic Hamiltonian well!

$$
H=H_{1-\mathrm{body}}+H_{2-\mathrm{body}}=-\frac{\hbar^{2}}{2 m} \sum_{i=1}^{N} \nabla_{i}^{2}+\sum_{i=1}^{N} V_{\text {ext }}\left(\mathbf{r}_{i}\right)+\sum_{i<j}^{N} V_{\text {int }}\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|\right)
$$

- In any 1-electron basis - a generic lattice:
- 1-body: matrix - diagonalize to solve
- 2-body: 4-index tensor

$$
\hat{H}=\sum_{i, j}^{M} T_{i j} c_{i}^{\dagger} c_{j}+\sum_{i, j, k, l}^{M} V_{i j k l} c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l}
$$

The many electron problem

- We know the electronic Hamiltonian well!

$$
H=H_{1-\text { body }}+H_{2-\text { body }}=-\frac{\hbar^{2}}{2 m} \sum_{i=1}^{N} \nabla_{i}^{2}+\sum_{i=1}^{N} V_{\mathrm{ext}}\left(\mathbf{r}_{i}\right)+\sum_{i<j}^{N} V_{\mathrm{int}}\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|\right)
$$

- In any 1-electron basis - a generic lattice:
- 1-body: matrix - diagonalize to solve
- 2-body: 4-index tensor

$$
\hat{H}=\sum_{i, j}^{M} T_{i j} c_{i}^{\dagger} c_{j}+\sum_{i, j, k, l}^{M} V_{i j k l} c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l}
$$

DFT

- "standard model"

The many electron problem

- We know the electronic Hamiltonian well!

$$
H=H_{1-\text { body }}+H_{2-\text { body }}=-\frac{\hbar^{2}}{2 m} \sum_{i=1}^{N} \nabla_{i}^{2}+\sum_{i=1}^{N} V_{\mathrm{ext}}\left(\mathbf{r}_{i}\right)+\sum_{i<j}^{N} V_{\mathrm{int}}\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|\right)
$$

- In any 1-electron basis - a generic lattice:
- 1-body: matrix - diagonalize to solve
- 2-body: 4-index tensor

$$
\begin{gathered}
\hat{H}=\sum_{i, j}^{M} T_{i j} c_{i}^{\dagger} c_{j}+\frac{\sum_{i, j, k, l}^{M} V_{i j k l} c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l}}{/ \text { LDA }} \\
\mathbf{T}
\end{gathered}
$$

- "standard model"
- mean-field-like

The many electron problem

- We know the electronic Hamiltonian well!

$$
H=H_{1-\mathrm{body}}+H_{2-\mathrm{body}}=-\frac{\hbar^{2}}{2 m} \sum_{i=1}^{N} \nabla_{i}^{2}+\sum_{i=1}^{N} V_{\text {ext }}\left(\mathbf{r}_{i}\right)+\sum_{i<j}^{N} V_{\text {int }}\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|\right)
$$

- In any 1-electron basis - a generic lattice:
- 1-body: matrix - diagonalize to solve
- 2-body: 4-index tensor

$$
\begin{array}{lc}
\hat{H}=\sum_{i, j}^{M} T_{i j} c_{i}^{\dagger} c_{j}+\sum_{i, j, k, l}^{M} V_{i j k l} c_{i}^{\dagger} c_{j}^{\dagger} c_{k} c_{l} \\
\text { T } \\
\text { tandard model" } & \sum_{i} f_{c}\left(n_{i}\right) \hat{n}_{i} \\
\text { nean-field-like } &
\end{array}
$$

Benchmark and multi-messenger

Benchmark and multi-messenger

Towards the solution of the many-electron problem in real materials: equation of state of the hydrogen chain with state-of-the-art many-body methods

Mario Motta, ${ }^{1}$ David M. Ceperley, ${ }^{2}$ Garnet Kin-Lic Chan, ${ }^{3}$ John A. Gomez, ${ }^{4}$ Emanuel Gull, ${ }^{5}$ Sheng Guo, ${ }^{3}$
Carlos Jimenez-Hoyos, ${ }^{3}$ Tran Nguyen Lan, ${ }^{6,5,7}$ Jia Li, ${ }^{5}$ Fengjie Ma, ${ }^{8}$ Andrew J. Millis, ${ }^{9}$ Nikolay V. Prokof'ev, ${ }^{10,11}$ Ushnish Ray, ${ }^{3}$ Gustavo E. Scuseria, ${ }^{4,12}$ Sandro Sorella, ${ }^{13,14}$ Edwin M. Stoudenmire, ${ }^{15}$

Qiming Sun, ${ }^{3}$ Igor S. Tupitsyn, ${ }^{10,11}$ Steven R. White, ${ }^{15}$ Dominika Zgid, ${ }^{6}$ and Shiwei Zhang ${ }^{1, *}$
(The Simons Collaboration on the Many-Electron Problem)

Benchmark and multi-messenger

Towards the solution of the many-electron problem in real materials: equation of state of the hydrogen chain with state-of-the-art many-body methods

Mario Motta, ${ }^{1}$ David M. Ceperley, ${ }^{2}$ Garnet Kin-Lic Chan, ${ }^{3}$ John A. Gomez, ${ }^{4}$ Emanuel Gull, ${ }^{5}$ Sheng Guo, ${ }^{3}$
Carlos Jimenez-Hoyos, ${ }^{3}$ Tran Nguyen Lan, ${ }^{6,5,7}$ Jia Li, ${ }^{5}$ Fengjie Ma, ${ }^{8}$ Andrew J. Millis, ${ }^{9}$ Nikolay V. Prokof'ev, ${ }^{10,11}$ Ushnish Ray, ${ }^{3}$ Gustavo E. Scuseria, ${ }^{4,12}$ Sandro Sorella, ${ }^{13,14}$ Edwin M. Stoudenmire, ${ }^{15}$

Qiming Sun, ${ }^{3}$ Igor S. Tupitsyn, ${ }^{10,11}$ Steven R. White, ${ }^{15}$ Dominika Zgid, ${ }^{6}$ and Shiwei Zhang ${ }^{1, *}$
(The Simons Collaboration on the Many-Electron Problem)

Benchmark and multi-messenger

Towards the solution of the many-electron problem in real materials: equation of state of the hydrogen chain with state-of-the-art many-body methods

Mario Motta, ${ }^{1}$ David M. Ceperley, ${ }^{2}$ Garnet Kin-Lic Chan, ${ }^{3}$ John A. Gomez, ${ }^{4}$ Emanuel Gull, ${ }^{5}$ Sheng Guo, ${ }^{3}$ Carlos Jimenez-Hoyos, ${ }^{3}$ Tran Nguyen Lan, ${ }^{6,5,7}$ Jia Li, ${ }^{5}$ Fengjie Ma, ${ }^{8}$ Andrew J. Millis, ${ }^{9}$ Nikolay V. Prokof'ev, ${ }^{10,11}$ Ushnish Ray, ${ }^{3}$ Gustavo E. Scuseria, ${ }^{4,12}$ Sandro Sorella, ${ }^{13,14}$ Edwin M. Stoudenmire, ${ }^{15}$ Qiming Sun, ${ }^{3}$ Igor S. Tupitsyn, ${ }^{10,11}$ Steven R. White, ${ }^{15}$ Dominika Zgid, ${ }^{6}$ and Shiwei Zhang ${ }^{1, *}$
(The Simons Collaboration on the Many-Electron Problem)

Ground-state properties of the hydrogen chain: dimerization, insulator-to-metal transition, and magnetic phases

Mario Motta, ${ }^{1,2, *}$ Claudio Genovese,, ${ }^{3, *}$ Fengjie Ma, ${ }^{4, *}$ Zhi-Hao Cui, ${ }^{2, *}$ Randy Sawaya, ${ }^{5, *}$ Garnet Kin-Lic Chan, ${ }^{2}$ Natalia Chepiga, ${ }^{6}$ Phillip Helms, ${ }^{2}$ Carlos Jiménez-Hoyos, ${ }^{7}$ Andrew J. Millis, ${ }^{8,9}$ Ushnish Ray, ${ }^{2}$ Enrico Ronca, ${ }^{10,11}$ Hao Shi, ${ }^{8}$ Sandro Sorella, ${ }^{3,12}$ Edwin M. Stoudenmire, ${ }^{8}$ Steven R. White, ${ }^{5}$ and Shiwei Zhang ${ }^{8,13, ~} \dagger$ (Simons collaboration on the many-electron problem)

Benchmark and multi-messenger

- Mobilized most methods from physics and chemistry - unusual in CM

Towards the solution of the many-electron problem in real materials: equation of state of the hydrogen chain with state-of-the-art many-body methods

Mario Motta, ${ }^{1}$ David M. Ceperley, ${ }^{2}$ Garnet Kin-Lic Chan, ${ }^{3}$ John A. Gomez, ${ }^{4}$ Emanuel Gull, ${ }^{5}$ Sheng Guo, ${ }^{3}$ Carlos Jimenez-Hoyos, ${ }^{3}$ Tran Nguyen Lan, ${ }^{6,5,7}$ Jia Li, ${ }^{5}$ Fengjie Ma, ${ }^{8}$ Andrew J. Millis, ${ }^{9}$ Nikolay V. Prokof'ev, ${ }^{10,11}$ Ushnish Ray, ${ }^{3}$ Gustavo E. Scuseria, ${ }^{4,12}$ Sandro Sorella, ${ }^{13,14}$ Edwin M. Stoudenmire, ${ }^{15}$ Qiming Sun, ${ }^{3}$ Igor S. Tupitsyn, ${ }^{10,11}$ Steven R. White, ${ }^{15}$ Dominika Zgid, ${ }^{6}$ and Shiwei Zhang ${ }^{1, *}$
(The Simons Collaboration on the Many-Electron Problem)

Ground-state properties of the hydrogen chain: dimerization, insulator-to-metal transition, and magnetic phases

Mario Motta, ${ }^{1,2, *}$ Claudio Genovese, ${ }^{3, *}$ Fengjie Ma, ${ }^{4, *}$ Zhi-Hao Cui, ${ }^{2, *}$ Randy Sawaya, ${ }^{5, *}$ Garnet Kin-Lic Chan, ${ }^{2}$ Natalia Chepiga, ${ }^{6}$ Phillip Helms, ${ }^{2}$ Carlos Jiménez-Hoyos, ${ }^{7}$ Andrew J. Millis, ${ }^{8,9}$ Ushnish Ray, ${ }^{2}$ Enrico Ronca, ${ }^{10,11}$ Hao Shi, ${ }^{8}$ Sandro Sorella, ${ }^{3,12}$ Edwin M. Stoudenmire, ${ }^{8}$ Steven R. White, ${ }^{5}$ and Shiwei Zhang ${ }^{8,13, ~} \dagger$ (Simons collaboration on the many-electron problem)

The H benchmark project

- The 10 -atom chain (molecule)
- minimal basis
- -> complete basis set (CBS) limit
- Infinite chain (TDL)
- minimal basis (extended Hubbard)
- results at joint CBS+TDL: THE curve

The H benchmark project

- The 10 -atom chain (molecule)
- minimal basis
- -> complete basis set (CBS) limit
- Infinite chain (TDL)
- minimal basis (extended Hubbard)
- results at joint CBS+TDL: THE curve

3 -fold challenge

The \mathbf{H} benchmark project

- The 10-atom chain (molecule)
- minimal basis
- -> complete basis set (CBS) limit
- Infinite chain (TDL)
- minimal basis (extended Hubbard)
- results at joint CBS+TDL: THE curve
- Highlights
- Create handshake points: meticulous comparisons and cross-checks
- large reference data - chem accuracy
- insights about technical needs; spurred many developments

What does AFQMC do?

Interaction can be decoupled:

What does AFQMC do?

Interaction can be decoupled:

What does AFQMC do?

Interaction can be decoupled:

\longrightarrow

What does AFQMC do?

Interaction can be decoupled:

$e^{-\tau V}$

What does AFQMC do?

Interaction can be decoupled:

$$
e^{-\tau V} \longrightarrow e^{v^{2}}=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\sigma^{2}} e^{2 \sigma v} d \sigma
$$

Hubbard-Strotonovich

What does AFQMC do?

Interaction can be decoupled:

\longrightarrow

$$
e^{-\tau V} \longrightarrow e^{v^{2}}=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\sigma^{2}} e^{2 \sigma v} d \sigma
$$

Hubbard-Strotonovich

Many-body propagator $\rightarrow>$ linear combination of independent-particle propagators in auxiliary-fields

Connection to lattice QCD methods

Auxiliary-field methods

models
(attractive, sym,
+U 1/2-filling, ...)

models
(Doped, multi-orbital, SOC, spin-imbalance, ...)
Molecules/solids
(Quantum chemistry,
ab initio materials, ...)
ground Projector MC
-state

DQMC/BSS

finite-T
AFMC
LMC

Auxiliary-field methods

Sign/phase problem

Auxiliary-field methods

Sign/phase problem

Sugiyama \& Kooning, Ann Phys '86
Blankenbecler, Scalapino, Sugar, PRD '81

SZ, Carlson, Gubernatis, PRL '95; PRB ‘97
SZ, PRL '99; He et al, PRB '19

SZ \& Krakauer, PRL '03;
Shi \& SZ, JCP '21

Auxiliary-field methods

Sign/phase problem

Sugiyama \& Kooning, Ann Phys '86
Blankenbecler, Scalapino, Sugar, PRD '81

SZ, Carlson, Gubernatis, PRL '95; PRB ‘97
SZ, PRL '99; He et al, PRB '19

SZ \& Krakauer, PRL '03;
Shi \& SZ, JCP '21

Auxiliary-field methods

Sign/phase problem

Sugiyama \& Kooning, Ann Phys '86
Blankenbecler, Scalapino, Sugar, PRD '81

SZ, Carlson, Gubernatis, PRL '95; PRB ‘97
SZ, PRL '99; He et al, PRB '19

SZ \& Krakauer, PRL '03;
Shi \& SZ, JCP '21

Ultracold atomic Fermi gas

$$
H=-\frac{\hbar^{2}}{2 m}\left(\sum_{i}^{N / 2} \nabla_{i}^{2}+\sum_{j}^{N / 2} \nabla_{j}^{2}\right)+\sum_{i, j} V\left(r_{i j}\right)
$$

inter-particle spacing $d \gg$ range of V

Ultracold atomic Fermi gas

$$
H=-\frac{\hbar^{2}}{2 m}\left(\sum_{i}^{N / 2} \nabla_{i}^{2}+\sum_{j}^{N / 2} \nabla_{j}^{2}\right)+\sum_{i, j} V\left(r_{i j}\right)
$$

inter-particle spacing $d \gg$ range of V

In 3D, can tune V to modify 2-body s-wave scattering length:

Ultracold atomic Fermi gas

$$
H=-\frac{\hbar^{2}}{2 m}\left(\sum_{i}^{N / 2} \nabla_{i}^{2}+\sum_{j}^{N / 2} \nabla_{j}^{2}\right)+\sum_{i, j} V\left(r_{i j}\right)
$$

inter-particle spacing $d \gg$ range of V

In 3D, can tune V to modify 2-body s-wave scattering length:

V depth	large	unitarity	small
2-body scattering length	>0	infinity	<0
physics	molecule		unbound

PRECISION MANY BODY PHYSICS IN 3D

- Bertsch parameter M. Endres et al PRA 87 (2012) 023615

PRECISION MANY BODY PHYSICS IN BD

- Bertsch parameter M. Endres et al PRA 87 (2012) 023615

Ultracold atomic Fermi gas - 2D

$H=-\frac{\hbar^{2}}{2 m}\left(\sum_{i}^{N / 2} \nabla_{i}^{2}+\sum_{j}^{N / 2} \nabla_{j}^{2}\right)+\sum_{i, j} V\left(r_{i j}\right)$
inter-particle spacing $d \gg$ range of V

Ultracold atomic Fermi gas - 2D

$H=-\frac{\hbar^{2}}{2 m}\left(\sum_{i}^{N / 2} \nabla_{i}^{2}+\sum_{j}^{N / 2} \nabla_{j}^{2}\right)+\sum_{i, j} V\left(r_{i j}\right)$
inter-particle spacing $\mathrm{d} \gg$ range of V
In 2D, always bound state -- no unitarity
 Pair size vs. d:

diatomic molecules

strongly interacting pairs

Cooper pairs

Image from D. Jin group

Ultracold atomic Fermi gas - 2D

$$
H=-\frac{\hbar^{2}}{2 m}\left(\sum_{i}^{N / 2} \nabla_{i}^{2}+\sum_{j}^{N / 2} \nabla_{j}^{2}\right)+\sum_{i, j} V\left(r_{i j}\right)
$$

inter-particle spacing $\mathrm{d} \gg$ range of V
In 2D, always bound state -- no unitarity
 Pair size vs. d:

diatomic molecules

strongly interacting pairs

Cooper pairs

Expt realized (recall tremendous precision in 3D)
-- 2D important in condensed matter: cuprates,

Ultracold atomic Fermi gas - 2D

$$
H=-\frac{\hbar^{2}}{2 m}\left(\sum_{i}^{N / 2} \nabla_{i}^{2}+\sum_{j}^{N / 2} \nabla_{j}^{2}\right)+\sum_{i, j} V\left(r_{i j}\right)
$$

inter-particle spacing $\mathrm{d} \gg$ range of V
In 2D, always bound state -- no unitarity
 Pair size vs. d:

"Metric": $x \equiv \ln \left(k_{F} a\right)$, scattering length/d

Ultracold atomic Fermi gas -- 2D

Exact EOS obtained

- BCS trial wf;

Variance control;
sampling tricks;

DMC: prev. best (var)
Bertaina \& Giorgini, PRL '11

Ultracold atomic Fermi gas -- 2D

Exact EOS obtained

- BCS trial wf;

Variance control;
sampling tricks;

- careful extrap to TDL

DMC: prev. best (var)
Bertaina \& Giorgini, PRL '11

Ultracold atomic Fermi gas -- 2D

Exact EOS obtained

- BCS trial wf;

Variance control; sampling tricks;

- careful extrap to TDL

DMC: prev. best (var)
Bertaina \& Giorgini, PRL '11

Ultracold atomic Fermi gas -- 2D

Exact EOS obtained

- BCS trial wf;

Variance control; sampling tricks;

- careful extrap to TDL

DMC: prev. best (var)
Bertaina \& Giorgini, PRL '11

New expt and comparison

Ultracold atomic Fermi gas -- 2D

condensate fraction (diagonalize $\left\langle\Delta_{k}^{\dagger} \Delta_{k^{\prime}}\right\rangle$)

Ultracold atomic Fermi gas -- 2D

condensate fraction (diagonalize $\left\langle\Delta_{k}^{\dagger} \Delta_{k^{\prime}}\right\rangle$)

real-space 'pair wave function'

Ultracold atomic Fermi gas -- 2D

condensate fraction (diagonalize $\left\langle\Delta_{k}^{\dagger} \Delta_{k^{\prime}}\right\rangle$)

real-space 'pair wave function'

Ultracold atomic Fermi gas -- 2D

condensate fraction
 (diagonalize $\left\langle\Delta_{k}^{\dagger} \Delta_{k^{\prime}}\right\rangle$)

real-space 'pair wave function'

Ultracold atomic Fermi gas -- 2D

condensate fraction (diagonalize $\left\langle\Delta_{k}^{\dagger} \Delta_{k^{\prime}}\right\rangle$)

real-space 'pair wave function'

Pairing gap

$$
G^{p}(\mathbf{k}, \tau)=\left\langle\hat{c}_{\mathbf{k}} e^{-\tau(\hat{H}-\mu \hat{N})} \hat{c}_{\mathbf{k}}^{\dagger}\right\rangle \longrightarrow \omega^{+}(\mathbf{k})=-\lim _{\tau \rightarrow+\infty} \frac{\log \left(G^{p}(\mathbf{k}, \tau)\right)}{\tau}
$$

quasi-particle dispersion

Pairing gap

$$
G^{p}(\mathbf{k}, \tau)=\left\langle\hat{c}_{\mathbf{k}} e^{-\tau(\hat{H}-\mu \hat{N})} \hat{c}_{\mathbf{k}}^{\dagger}\right\rangle \longrightarrow \omega^{+}(\mathbf{k})=-\lim _{\tau \rightarrow+\infty} \frac{\log \left(G^{p}(\mathbf{k}, \tau)\right)}{\tau}
$$

quasi-particle dispersion

Pairing gap

$$
G^{p}(\mathbf{k}, \tau)=\left\langle\hat{c}_{\mathbf{k}} e^{-\tau(\hat{H}-\mu \hat{N})} \hat{c}_{\mathbf{k}}^{\dagger}\right\rangle \longrightarrow \omega^{+}(\mathbf{k})=-\lim _{\tau \rightarrow+\infty} \frac{\log \left(G^{p}(\mathbf{k}, \tau)\right)}{\tau}
$$

quasi-particle dispersion

Response functions

Dynamical structure factors $\quad S^{\hat{O}}(\vec{k}, \omega)=\left\langle\hat{O}_{\vec{k}} \delta(\omega-\hat{H}) \hat{O}_{-\vec{k}}\right\rangle$
scattering experiment

Response functions

Dynamical structure factors $\quad S^{\hat{O}}(\vec{k}, \omega)=\left\langle\hat{O}_{\vec{k}} \delta(\omega-\hat{H}) \hat{O}_{-\vec{k}}\right\rangle$
scattering experiment

$$
\left\langle\Psi_{0}\right| \hat{n}_{i, \sigma} e^{-\tau \hat{H}} \hat{n}_{j, \sigma^{\prime}}\left|\Psi_{0}\right\rangle
$$

Response functions

Dynamical structure factors $\quad S^{\hat{o}}(\vec{k}, \omega)=\left\langle\hat{O}_{\vec{k}} \delta(\omega-\hat{H}) \hat{O}_{-\vec{k}}\right\rangle$
scattering experiment

Response functions

Dynamical structure factors $\quad S^{\hat{o}}(\vec{k}, \omega)=\left\langle\hat{O}_{\vec{k}} \delta(\omega-\hat{H}) \hat{O}_{-\vec{k}}\right\rangle$
scattering experiment
Analytic cont.

$\left\langle\Psi_{0}\right| \hat{n}_{i, \sigma} e^{-\tau \hat{H}} \hat{n}_{j, \sigma^{\prime}}\left|\Psi_{0}\right\rangle$

- $k=4 *$ _k_F
- main: density inset: spin

Response functions

Dynamical structure factors $\quad S^{\hat{o}}(\vec{k}, \omega)=\left\langle\hat{O}_{\vec{k}} \delta(\omega-\hat{H}) \hat{O}_{-\vec{k}}\right\rangle$
scattering experiment
Analytic cont.

$\left\langle\Psi_{0}\right| \hat{n}_{i, \sigma} e^{-\tau \hat{H}} \hat{n}_{j, \sigma^{\prime}}\left|\Psi_{0}\right\rangle$

- $k=4^{*}$ __F
- main: density inset: spin
- $\omega_{R}=\frac{\hbar^{2} \vec{k}^{2}}{2 m}$: atom recoil

Response functions

Dynamical structure factors $\quad S^{\hat{O}}(\vec{k}, \omega)=\left\langle\hat{O}_{\vec{k}} \delta(\omega-\hat{H}) \hat{O}_{-\vec{k}}\right\rangle$
scattering experiment
Analytic cont.

$\left\langle\Psi_{0}\right| \hat{n}_{i, \sigma} e^{-\tau \hat{H}} \hat{n}_{j, \sigma^{\prime}}\left|\Psi_{0}\right\rangle$

- $k=4^{*} k _F$
- main: density inset: spin
- $\omega_{R}=\frac{\hbar^{2} \vec{k}^{2}}{2 m}$: atom recoil

BCS

Response functions

Dynamical structure factors $\quad S^{\hat{o}}(\vec{k}, \omega)=\left\langle\hat{O}_{\vec{k}} \delta(\omega-\hat{H}) \hat{O}_{-\vec{k}}\right\rangle$
scattering experiment
Analytic cont.

$\left\langle\Psi_{0}\right| \hat{n}_{i, \sigma} e^{-\tau \hat{H}} \hat{n}_{j, \sigma^{\prime}}\left|\Psi_{0}\right\rangle$

- $k=4^{*}$ __F
- main: density inset: spin
- $\omega_{R}=\frac{\hbar^{2} \vec{k}^{2}}{2 m}$: atom recoil

Response functions

Dynamical structure factors $\quad S^{\hat{o}}(\vec{k}, \omega)=\left\langle\hat{O}_{\vec{k}} \delta(\omega-\hat{H}) \hat{O}_{-\vec{k}}\right\rangle$
scattering experiment

$$
S^{\hat{O}}(\vec{k}, \omega)=\left\langle\hat{O}_{\vec{k}} \delta(\omega-\hat{H}) \hat{O}_{-\vec{k}}\right\rangle
$$

Analytic cont.

Spin-orbit coupling

$H=-\frac{\hbar^{2}}{2 m}\left(\sum_{i}^{N / 2} \nabla_{i}^{2}+\sum_{j}^{N / 2} \nabla_{j}^{2}\right)+\sum_{i, j} V\left(r_{i j}\right)$
inter-particle spacing $\mathrm{d} \gg$ range of V

In 2D, always bound state. Size vs. d:
 BEC

diatomic molecules

strongly interacting pairs

Cooper pairs

Spin-orbit coupling

$$
H=-\frac{\hbar^{2}}{2 m}\left(\sum_{i}^{N / 2} \nabla_{i}^{2}+\sum_{j}^{N / 2} \nabla_{j}^{2}\right)+\sum_{i, j} V\left(r_{i j}\right)
$$

inter-particle spacing $\mathrm{d} \gg$ range of V

In 2D, always bound state. Size vs. d:
 BEC

strongly interacting pairs

Cooper pairs

Expt: synthetic spin-orbit coupling realized, e.g. Rashba

$$
H=\sum_{\mathbf{k} \sigma} k^{2} c_{\mathbf{k} \sigma}^{\dagger} c_{\mathbf{k} \sigma}+U \sum_{\mathbf{i}} n_{\mathbf{i} \uparrow} n_{\mathbf{i} \downarrow}+\sum_{\mathbf{k}} \lambda\left(k_{y}-i k_{x}\right) c_{\mathbf{k} \downarrow}^{\dagger} c_{\mathbf{k} \uparrow}+h . c .
$$

Singlet and triplet pairing --- cond frac

- Triplet pairing is maximized in the crossover regime
- MF theory tends to overestimate, especially singlet component

Singlet and triplet pairing --- cond frac

- Triplet pairing is maximized in the crossover regime
- MF theory tends to overestimate, especially singlet component
- Triplet pairing increases with SOC strength
- Total condensate fraction increases with SOC

Recent progress on the Fermi gas from auxiliary-field QMC

Shiwei Zhang

- Auxiliary-field QMC (AFQMC)
- Connection with lattice methods
- Technical advances in FG (e.g. low-rank decomp - scaling N^3 -> N)
- Conceptual difference for general fermions: controlling the sign problem (repulsive models, real materials)
- Precision computation in the 2D Fermi gas
- Ground state: EOS, gaps, n(k), ...
- Finite-T: BKT Tc, contact, response

Transition Tc in 2D Fermi gas

BEC

Image from D. Jin group

He, Shi, SZ, PRL 129, 076203 (2022)

Transition Tc in 2D Fermi gas

BEC

Image from D. Jin group

- Tour de force <= new alg.

He, Shi, SZ, PRL 129, 076203 (2022)

Transition Tc in 2D Fermi gas

BEC

Image from D. Jin group

- Tour de force <= new alg.
- low-rank decomposition (PRL '19)
- 300 -> 5000 lattice sites;

T/TF~0.2 -> 0.02

He, Shi, SZ, PRL 129, 076203 (2022)

Transition Tc in 2D Fermi gas

BEC

Image from D. Jin group

- Tour de force <= new alg.
- low-rank decomposition (PRL '19)
- 300 -> 5000 lattice sites; $T / T_{F} \sim 0.2$-> 0.02
- Problems w/ expt. in crossover and BCS ?

He, Shi, SZ, PRL 129, 076203 (2022)

Transition Tc in 2D Fermi gas

- Tour de force <= new alg.
- low-rank decomposition (PRL '19)
- 300 -> 5000 lattice sites; $T / T_{F} \sim 0.2$-> 0.02
- Problems w/ expt. in crossover and BCS ?
- Gap (Vitali et al PRA '17)

He, Shi, SZ, PRL 129, 076203 (2022)

Transition Tc in 2D Fermi gas

He, Shi, SZ, PRL 129, 076203 (2022)

Fermion and pair momentum distributions

He, Shi, SZ, PRL 129, 076203 (2022)

Density response
 Preliminary

$\log \left(\mathrm{k}_{\mathrm{F}} \mathrm{a}\right)=+0.0$

- Recall Tc (~ 0.125)

He \& SZ, to be published

Spin response

$\log \left(\mathrm{k}_{\mathrm{F}} \mathrm{a}\right)=+0.0$

- Gap closing with increasing T

He \& SZ, to be published

Recent progress on the Fermi gas from auxiliary-field QMC

Shiwei Zhang

- Auxiliary-field QMC (AFQMC)
- Connection with lattice methods
- Technical advances in FG (e.g. low-rank decomp - scaling N^3 -> N)
- Conceptual difference for general interactions: controlling the sign problem (repulsive models; real materials)
- Precision computation in the 2D Fermi gas
- Ground state: EOS, gaps, n(k), ...
- BKT Tc, contact, response

Density and spin responses

$\mathrm{He} \& S Z$, to be published

Density and spin responses

$\log \left(\mathrm{k}_{\mathrm{F}} \mathrm{a}\right)=+0.0$

Preliminary

Density and spin responses

He \& SZ, to be published

Density and spin responses

$\log \left(\mathrm{k}_{\mathrm{F}} \mathrm{a}\right)=+0.0$

Preliminary

Exotic state in spin polarized systems

Vitali, Rosenberg, SZ, PRL '22

Exotic state in spin polarized systems

optical lattice

- pairing correlation change sign -Larkin-Ovchinnikov
- Density correlation has checkerboard pattern with modulation

