
Recent progress on the Fermi gas                     
from auxiliary-field QMC                                      

• Auxiliary-field QMC (AFQMC) 
– Connection with lattice methods 
– Technical advances in FG (e.g. low-rank decomp - scaling N^3 -> N )
– Conceptual difference for general interactions:                                   

controlling sign problem     (any realistic materials)
• Precision computation in the 2D Fermi gas

– Ground state: EOS, gaps, n(k), … 
– BKT Tc, contact, response 
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Towards the solution of the many-electron problem in real materials:
equation of state of the hydrogen chain with state-of-the-art many-body methods
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We present numerical results for the equation of state of an infinite chain of hydrogen atoms. A
variety of modern many-body methods are employed, with exhaustive cross-checks and validation.
Approaches for reaching the continuous space limit and the thermodynamic limit are investigated,
proposed, and tested. The detailed comparisons provide a benchmark for assessing the current state
of the art in many-body computation, and for the development of new methods. The ground-state
energy per atom in the linear chain is accurately determined versus bondlength, with a confidence
bound given on all uncertainties.

I. INTRODUCTION

One of the grand challenges in modern science is the
accurate treatment of interacting many-electron systems.
In condensed phase materials, the challenge is increased
by the need to account for the interplay between the
electrons and the chemical and structural environment.
Progress in addressing this challenge will be fundamental
to the realization of “materials genome” or materials by
design initiatives.
Often the physical properties of materials and

molecules are determined by a delicate quantitative bal-
ance between competing tendencies, so that accurate
computations are required to predict the outcome. The
theoretical framework for these calculations, the many-
particle Schrödinger equation, is known [1]. However, the
solution of the Schrödinger equation in a many-electron
system presents fundamental difficulties originating from
combinatorial growth of the dimension of the Hilbert
space involved, along with the high degree of entangle-
ment produced by the combination of Fermi statistics

∗ shiwei@wm.edu

and electron-electron interactions. Computational meth-
ods need to reach beyond the incredible success afforded
by density functional theory (DFT), and capture electron
correlation effects with sufficient accuracy across differ-
ent physical parameter regimes.
No general, numerically exact method presently exists

that can treat many-electron systems with low computa-
tional cost. Except for special cases, known methods ei-
ther have systematic errors which cannot be easily quan-
tified, or the computational burden scales exponentially
or as a very high power of the system size.
Recent years have witnessed remarkable progress in

the development of new theories, concepts, methodolo-
gies, software and algorithms that have pushed the con-
ceptual horizons and technical boundaries of computa-
tional many-body methods, and considerably improved
our understanding of interacting electrons in solids and
molecules. A vast suite of methods exist which have dif-
ferent strengths and weaknesses and different domains of
applicability, and ever more are being developed.
It is imperative, under these circumstances, to de-

velop systematic knowledge by detailed benchmark stud-
ies. Comparison of different methods allows character-
ization of relative accuracy and capabilities, which pro-
vides a survey of the state-of-the-art to guide applica-

PRX (2017)
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We present numerical results for the equation of state of an infinite chain of hydrogen atoms. A
variety of modern many-body methods are employed, with exhaustive cross-checks and validation.
Approaches for reaching the continuous space limit and the thermodynamic limit are investigated,
proposed, and tested. The detailed comparisons provide a benchmark for assessing the current state
of the art in many-body computation, and for the development of new methods. The ground-state
energy per atom in the linear chain is accurately determined versus bondlength, with a confidence
bound given on all uncertainties.

I. INTRODUCTION

One of the grand challenges in modern science is the
accurate treatment of interacting many-electron systems.
In condensed phase materials, the challenge is increased
by the need to account for the interplay between the
electrons and the chemical and structural environment.
Progress in addressing this challenge will be fundamental
to the realization of “materials genome” or materials by
design initiatives.
Often the physical properties of materials and

molecules are determined by a delicate quantitative bal-
ance between competing tendencies, so that accurate
computations are required to predict the outcome. The
theoretical framework for these calculations, the many-
particle Schrödinger equation, is known [1]. However, the
solution of the Schrödinger equation in a many-electron
system presents fundamental difficulties originating from
combinatorial growth of the dimension of the Hilbert
space involved, along with the high degree of entangle-
ment produced by the combination of Fermi statistics
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and electron-electron interactions. Computational meth-
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applicability, and ever more are being developed.
It is imperative, under these circumstances, to de-

velop systematic knowledge by detailed benchmark stud-
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EOS

can be reached to minimize the uncertainty in the extra-
polation to the TDL and CBS limits. We can further
quantify the residual systematic errors of the constraint
in AFQMC from cross-checks with DMRG, by estimating
their difference, ETDL;DMRGðRÞ − ETDL;AFQMCðRÞ, at the
cc-pVDZ basis level. This “correction” can be applied to
the AFQMC equation of state at the CBS limit,
ETDL;AFQMCðRÞ. The result is shown by the empty circles
and dashed lines in Fig. 6, while original AFQMC data are
shown with solid circles and lines.
Agreement is seen between these results and that

from RCCSD(T), which provides another consistency
check. We find an equilibrium bond length of Req ¼
1.859ð3Þ aB with an energy of E0 ¼ −0.5659ð3Þ EHa at

Req in the thermodynamic limit. The computed correlation
energy, defined with respect to the RHF energy, is shown in
the inset of Fig. 6.
At the smallest bond lengths (R ≤ 1.2), there is signifi-

cant linear dependence in the basis sets. This causes an
effective reduction in the size of the basis, which can render
the usual Ansatz for basis-set extrapolations unreliable. We
thus avoid performing CBS extrapolations. (All finite-basis
data are listed in the Appendix B and repository [11]. It will
be valuable to develop specifically designed basis-set
sequences or correction methods in this regime.) LR-
DMC results are shown, which provide an upper bound
for the energy. Based on the results in Sec. IV B, the fixed-
node error is estimated to be < 1 mEHa per atom, which is
indicated by the pink error bands on these two points.
LR-DMC results are obtained directly in real space and

provide an independent validation. At large bond lengths,
the fixed-node error in LR-DMC is minimal, as we have
seen in the finite-chain benchmarks. Furthermore, we
perform PBC calculations using LR-DMC to provide a
separate extrapolation to the TDL. The excellent agreement
between LR-DMC and AFQMC at large R is thus a further
indication of the robustness of our procedures for reaching
the infinite basis set and thermodynamic limits. Note that
the VMC results exhibit a different trend from the corre-
sponding LR-DMC, suggesting that the variational many-
body wave function is best at intermediate bond lengths.
This is likely a reflection of the balance between the two
parts that form the VMC Ansatz, namely, the LDA Slater
determinant and the optimized Jastrow factor. The former
becomes more accurate in describing the nodal surface as R
increases, where the latter is evidently more effective at
weaker correlation. Only the determinant part, via the
nodes that it defines, impacts the DMC results.
The DMET[2] results provide an example of an

embedding calculation at the thermodynamic and complete
basis-set limits, with a modest impurity size. The limitation
on the impurity size is from the use of a DMRG impurity
solver, which becomes expensive in the large basis-set
limit.
We comment that various correction schemes can be

applied to our finite-basis and/or finite-size data to provide
additional estimates from methods not included in Fig. 6.
For example, a residual basis-set correction could be
obtained either from a different method or using a
lower-order theory (if available) of the same method,
and applied to DZ or TZ basis results to estimate the
CBS limit. These can be readily retrieved for assessment
from the detailed data provided in the Appendix B and
repository [11].

C. Reaching the complete basis-set and
thermodynamic limits

A key challenge in the ab initio computation of bulk
materials is to remove finite-size and finite-basis effects so

FIG. 6. Top: Computed equation of state of the hydrogen chain
in the thermodynamic limit. The inset shows the corresponding
correlation energy per particle. Bottom: Detailed comparison
using AFQMC results as reference (LR-DMC for the shortest two
bond lengths). The empty circles indicate AFQMC results after a
correction is applied from the difference with DMRG at the
cc-pVDZ level. The pink error bands indicate all statistical
uncertainties.

MARIO MOTTA et al. PHYS. REV. X 7, 031059 (2017)
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FIG. 13: Historical results for the Bertsch parameter determined experimentally, by analytic cal-

culation, and by numerical simulation. Numerical values and citations are tabulated in Table VI;

our value is indicated as the latest simulation data point.

gives us confidence that these techniques may prove useful in other situations where im-

portance sampling is di⇤cult. Conventional importance sampling schemes for Fermi gas

calculations often use the N -body correlator itself as an importance measure and so the en-

semble generated is only of use for estimating a single observable for which it was designed.

Our approach o�ers an advantage over such importance sampling schemes in that one may

use the ensemble generated to reliably estimate all desired observables. Thus our approach

avoids the multiplicative enhancement in computational cost by the number of measured

observables which is inherent in calculations based on importance sampling.

Our main findings for this study are summarized as follows:

1. The exact diagonalization of the transfer matrix for two, three, and four fermions en-

ables us to verify our simulation results, and to study systematic errors from spatial and

temporal discretization. Our results for the spectrum of three and four fermions are

in good agreement with benchmark calculations from other groups. While few-body

systems were used in this paper as a way to test our methodology, they are interesting

in their own right, and it looks feasible to use our methods in the future to measure

the fascinating anomalous scaling behavior expected of three-body interactions.
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Ultracold atomic Fermi gas -- 2D

Exact EOS obtained        

- BCS trial wf;
   Variance control;
   sampling tricks;

DMC: prev. best (var) 
Bertaina & Giorgini, PRL ’11

2

given by [24]

U

t
= − 4π

ln(kF a)− ln(C
√
n)

, (2)

which is tuned, for each lattice density n ≡ N/Ns and
Fermi momentum kF =

√
2πn/∆, to produce the desired

2D scattering length a, defined as the position of the node
of the zero-energy s-wave solution of the two-body prob-
lem. The constant C in Eq. (2) depends on the dispersion
relation: CH = 0.49758 and Cq = 0.80261.
We employ two AFQMC methods to study this model:

the branching random walk approach, and an acceler-
ated Metropolis approach with a force bias. In the
first [8], we project the ground-state wave function by
importance-sampled random walks in Slater determinant
space [25, 26]. A BCS wave function, taken from the solu-
tion of the gap equation for the same discretized Hamilto-
nian, is chosen as the trial wave function, and the mixed
estimator [8, 27] is used to calculate the ground-state en-
ergy. The BCS trial wave function shortens the conver-
gence time in the imaginary-time projection, and greatly
reduces the Monte Carlo statistical fluctuations, as illus-
trated in the 3D case [8].
Our second approach is based on the ground-state

path integral form of AFQMC, but introduces several
advances, including accelerated sampling by a dynamic
force bias [27], which enables global moves of fields on a
time slice with acceptance ratio of over 90%, and large
reductions of the Monte Carlo variance [28]. Its main ad-
vantage over the the open-ended branching random walk
approach is the ease with which any observables can be
computed, and we use it to compute the momentum dis-
tribution and correlation functions. (Since there is no
sign problem here, no constraint is needed, which is the
primary motivation for using the open-ended branching
random walk form.) With this approach, our calcula-
tions typically have β ∼ 320 or larger (in units of t−1),
discretized with over 12,800 time-slices.
These technical advances result in orders of magnitude

improvement in sampling efficiency, which makes it pos-
sible to achieve the high numerical accuracy presented in
this work. In both approaches, the computational cost
scales as ∼ NsN2β. The linear scaling with Ns is im-
portant, as it enables calculations on large lattice sizes.
To approach the TL, we first extrapolate calculations to
the continuum limit by taking Ns → ∞ while holding N
fixed. The number of particles, N , is then increased until
convergence is reached within our statistical accuracy, as
illustrated next.
Figure 1 displays the calculated equation of state

(EOS), in units of the Fermi gas energy EFG = πnt, as
a function of the interacting strength, x ≡ ln(kF a). The
top panel illustrates the convergence to the TL, where
AFQMC energies are shown for fixed N . At each x, the
energy has been extrapolated to the continuum limit, us-
ing a 4th-order polynomial in 1/L. In the more strongly
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FIG. 1: (Color online) Calculated equation of state. The top
panel shows the energy, relative to the final AFQMC results,
for finite number of particles, N . Also shown are the DMC
results of Ref. [18], which are variational. Note the small scale
of the vertical axis. The bottom panel shows the AFQMC
(and DMC) results at the TL, relative to the BCS result. A
fit has been performed on the AFQMC results for the EOS.
The result is given in Eqs. (4-5) and shown as the solid line.
The inset in panel (b) compares the calculated pressure from
AFQMC (solid line) and DMC (dashed, taken from Ref. [29])
with experiment [29] (points) in the crossover region.

interacting cases, we take advantage of the fact that εq
k

and εH
k

produce energies which converge to a common
limit from opposite directions and perform both sets of
calculations to reduce the uncertainty in the extrapola-
tion. In the opposite regime, energies from the quadratic
dispersion shows little to no dependence on 1/L and they
are used alone. The error bar of each symbol, barely no-
ticeable in the graph, combines the QMC statistical er-
ror (negligible) at each L and a conservative estimate of
the uncertainty from the extrapolation, which typically
involves half a dozen or more data points from each dis-
persion relation, with L ranging from ∼ 15 to 45 (and
larger if necessary).

The results for different values of N show that con-
vergence is reached to within our statistical accuracy by
N ∼ 100 [30]. This is consistent with DMC results [18]
which observed no significant change between N of 26
and 98. The DMC results provide the current best esti-
mate of the EOS and are included in Fig. 1. We see that
the error from the fixed-node approximation is largest
in the crossover region, at intermediate values of x. The
maximum error is about 10% of the “correlation energy”,
the difference between the BCS and exact energies.

In addition to serving as a benchmark for theory, the
new EOS can provide validation for experiments. Exper-
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given by [24]

U

t
= − 4π

ln(kF a)− ln(C
√
n)

, (2)

which is tuned, for each lattice density n ≡ N/Ns and
Fermi momentum kF =

√
2πn/∆, to produce the desired

2D scattering length a, defined as the position of the node
of the zero-energy s-wave solution of the two-body prob-
lem. The constant C in Eq. (2) depends on the dispersion
relation: CH = 0.49758 and Cq = 0.80261.
We employ two AFQMC methods to study this model:

the branching random walk approach, and an acceler-
ated Metropolis approach with a force bias. In the
first [8], we project the ground-state wave function by
importance-sampled random walks in Slater determinant
space [25, 26]. A BCS wave function, taken from the solu-
tion of the gap equation for the same discretized Hamilto-
nian, is chosen as the trial wave function, and the mixed
estimator [8, 27] is used to calculate the ground-state en-
ergy. The BCS trial wave function shortens the conver-
gence time in the imaginary-time projection, and greatly
reduces the Monte Carlo statistical fluctuations, as illus-
trated in the 3D case [8].
Our second approach is based on the ground-state

path integral form of AFQMC, but introduces several
advances, including accelerated sampling by a dynamic
force bias [27], which enables global moves of fields on a
time slice with acceptance ratio of over 90%, and large
reductions of the Monte Carlo variance [28]. Its main ad-
vantage over the the open-ended branching random walk
approach is the ease with which any observables can be
computed, and we use it to compute the momentum dis-
tribution and correlation functions. (Since there is no
sign problem here, no constraint is needed, which is the
primary motivation for using the open-ended branching
random walk form.) With this approach, our calcula-
tions typically have β ∼ 320 or larger (in units of t−1),
discretized with over 12,800 time-slices.
These technical advances result in orders of magnitude

improvement in sampling efficiency, which makes it pos-
sible to achieve the high numerical accuracy presented in
this work. In both approaches, the computational cost
scales as ∼ NsN2β. The linear scaling with Ns is im-
portant, as it enables calculations on large lattice sizes.
To approach the TL, we first extrapolate calculations to
the continuum limit by taking Ns → ∞ while holding N
fixed. The number of particles, N , is then increased until
convergence is reached within our statistical accuracy, as
illustrated next.
Figure 1 displays the calculated equation of state

(EOS), in units of the Fermi gas energy EFG = πnt, as
a function of the interacting strength, x ≡ ln(kF a). The
top panel illustrates the convergence to the TL, where
AFQMC energies are shown for fixed N . At each x, the
energy has been extrapolated to the continuum limit, us-
ing a 4th-order polynomial in 1/L. In the more strongly
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FIG. 1: (Color online) Calculated equation of state. The top
panel shows the energy, relative to the final AFQMC results,
for finite number of particles, N . Also shown are the DMC
results of Ref. [18], which are variational. Note the small scale
of the vertical axis. The bottom panel shows the AFQMC
(and DMC) results at the TL, relative to the BCS result. A
fit has been performed on the AFQMC results for the EOS.
The result is given in Eqs. (4-5) and shown as the solid line.
The inset in panel (b) compares the calculated pressure from
AFQMC (solid line) and DMC (dashed, taken from Ref. [29])
with experiment [29] (points) in the crossover region.

interacting cases, we take advantage of the fact that εq
k

and εH
k

produce energies which converge to a common
limit from opposite directions and perform both sets of
calculations to reduce the uncertainty in the extrapola-
tion. In the opposite regime, energies from the quadratic
dispersion shows little to no dependence on 1/L and they
are used alone. The error bar of each symbol, barely no-
ticeable in the graph, combines the QMC statistical er-
ror (negligible) at each L and a conservative estimate of
the uncertainty from the extrapolation, which typically
involves half a dozen or more data points from each dis-
persion relation, with L ranging from ∼ 15 to 45 (and
larger if necessary).

The results for different values of N show that con-
vergence is reached to within our statistical accuracy by
N ∼ 100 [30]. This is consistent with DMC results [18]
which observed no significant change between N of 26
and 98. The DMC results provide the current best esti-
mate of the EOS and are included in Fig. 1. We see that
the error from the fixed-node approximation is largest
in the crossover region, at intermediate values of x. The
maximum error is about 10% of the “correlation energy”,
the difference between the BCS and exact energies.

In addition to serving as a benchmark for theory, the
new EOS can provide validation for experiments. Exper-
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given by [24]

U

t
= − 4π

ln(kF a)− ln(C
√
n)

, (2)

which is tuned, for each lattice density n ≡ N/Ns and
Fermi momentum kF =

√
2πn/∆, to produce the desired

2D scattering length a, defined as the position of the node
of the zero-energy s-wave solution of the two-body prob-
lem. The constant C in Eq. (2) depends on the dispersion
relation: CH = 0.49758 and Cq = 0.80261.
We employ two AFQMC methods to study this model:

the branching random walk approach, and an acceler-
ated Metropolis approach with a force bias. In the
first [8], we project the ground-state wave function by
importance-sampled random walks in Slater determinant
space [25, 26]. A BCS wave function, taken from the solu-
tion of the gap equation for the same discretized Hamilto-
nian, is chosen as the trial wave function, and the mixed
estimator [8, 27] is used to calculate the ground-state en-
ergy. The BCS trial wave function shortens the conver-
gence time in the imaginary-time projection, and greatly
reduces the Monte Carlo statistical fluctuations, as illus-
trated in the 3D case [8].
Our second approach is based on the ground-state

path integral form of AFQMC, but introduces several
advances, including accelerated sampling by a dynamic
force bias [27], which enables global moves of fields on a
time slice with acceptance ratio of over 90%, and large
reductions of the Monte Carlo variance [28]. Its main ad-
vantage over the the open-ended branching random walk
approach is the ease with which any observables can be
computed, and we use it to compute the momentum dis-
tribution and correlation functions. (Since there is no
sign problem here, no constraint is needed, which is the
primary motivation for using the open-ended branching
random walk form.) With this approach, our calcula-
tions typically have β ∼ 320 or larger (in units of t−1),
discretized with over 12,800 time-slices.
These technical advances result in orders of magnitude

improvement in sampling efficiency, which makes it pos-
sible to achieve the high numerical accuracy presented in
this work. In both approaches, the computational cost
scales as ∼ NsN2β. The linear scaling with Ns is im-
portant, as it enables calculations on large lattice sizes.
To approach the TL, we first extrapolate calculations to
the continuum limit by taking Ns → ∞ while holding N
fixed. The number of particles, N , is then increased until
convergence is reached within our statistical accuracy, as
illustrated next.
Figure 1 displays the calculated equation of state

(EOS), in units of the Fermi gas energy EFG = πnt, as
a function of the interacting strength, x ≡ ln(kF a). The
top panel illustrates the convergence to the TL, where
AFQMC energies are shown for fixed N . At each x, the
energy has been extrapolated to the continuum limit, us-
ing a 4th-order polynomial in 1/L. In the more strongly
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FIG. 1: (Color online) Calculated equation of state. The top
panel shows the energy, relative to the final AFQMC results,
for finite number of particles, N . Also shown are the DMC
results of Ref. [18], which are variational. Note the small scale
of the vertical axis. The bottom panel shows the AFQMC
(and DMC) results at the TL, relative to the BCS result. A
fit has been performed on the AFQMC results for the EOS.
The result is given in Eqs. (4-5) and shown as the solid line.
The inset in panel (b) compares the calculated pressure from
AFQMC (solid line) and DMC (dashed, taken from Ref. [29])
with experiment [29] (points) in the crossover region.

interacting cases, we take advantage of the fact that εq
k

and εH
k

produce energies which converge to a common
limit from opposite directions and perform both sets of
calculations to reduce the uncertainty in the extrapola-
tion. In the opposite regime, energies from the quadratic
dispersion shows little to no dependence on 1/L and they
are used alone. The error bar of each symbol, barely no-
ticeable in the graph, combines the QMC statistical er-
ror (negligible) at each L and a conservative estimate of
the uncertainty from the extrapolation, which typically
involves half a dozen or more data points from each dis-
persion relation, with L ranging from ∼ 15 to 45 (and
larger if necessary).

The results for different values of N show that con-
vergence is reached to within our statistical accuracy by
N ∼ 100 [30]. This is consistent with DMC results [18]
which observed no significant change between N of 26
and 98. The DMC results provide the current best esti-
mate of the EOS and are included in Fig. 1. We see that
the error from the fixed-node approximation is largest
in the crossover region, at intermediate values of x. The
maximum error is about 10% of the “correlation energy”,
the difference between the BCS and exact energies.

In addition to serving as a benchmark for theory, the
new EOS can provide validation for experiments. Exper-
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given by [24]

U

t
= − 4π

ln(kF a)− ln(C
√
n)

, (2)

which is tuned, for each lattice density n ≡ N/Ns and
Fermi momentum kF =

√
2πn/∆, to produce the desired

2D scattering length a, defined as the position of the node
of the zero-energy s-wave solution of the two-body prob-
lem. The constant C in Eq. (2) depends on the dispersion
relation: CH = 0.49758 and Cq = 0.80261.
We employ two AFQMC methods to study this model:

the branching random walk approach, and an acceler-
ated Metropolis approach with a force bias. In the
first [8], we project the ground-state wave function by
importance-sampled random walks in Slater determinant
space [25, 26]. A BCS wave function, taken from the solu-
tion of the gap equation for the same discretized Hamilto-
nian, is chosen as the trial wave function, and the mixed
estimator [8, 27] is used to calculate the ground-state en-
ergy. The BCS trial wave function shortens the conver-
gence time in the imaginary-time projection, and greatly
reduces the Monte Carlo statistical fluctuations, as illus-
trated in the 3D case [8].
Our second approach is based on the ground-state

path integral form of AFQMC, but introduces several
advances, including accelerated sampling by a dynamic
force bias [27], which enables global moves of fields on a
time slice with acceptance ratio of over 90%, and large
reductions of the Monte Carlo variance [28]. Its main ad-
vantage over the the open-ended branching random walk
approach is the ease with which any observables can be
computed, and we use it to compute the momentum dis-
tribution and correlation functions. (Since there is no
sign problem here, no constraint is needed, which is the
primary motivation for using the open-ended branching
random walk form.) With this approach, our calcula-
tions typically have β ∼ 320 or larger (in units of t−1),
discretized with over 12,800 time-slices.
These technical advances result in orders of magnitude

improvement in sampling efficiency, which makes it pos-
sible to achieve the high numerical accuracy presented in
this work. In both approaches, the computational cost
scales as ∼ NsN2β. The linear scaling with Ns is im-
portant, as it enables calculations on large lattice sizes.
To approach the TL, we first extrapolate calculations to
the continuum limit by taking Ns → ∞ while holding N
fixed. The number of particles, N , is then increased until
convergence is reached within our statistical accuracy, as
illustrated next.
Figure 1 displays the calculated equation of state

(EOS), in units of the Fermi gas energy EFG = πnt, as
a function of the interacting strength, x ≡ ln(kF a). The
top panel illustrates the convergence to the TL, where
AFQMC energies are shown for fixed N . At each x, the
energy has been extrapolated to the continuum limit, us-
ing a 4th-order polynomial in 1/L. In the more strongly
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FIG. 1: (Color online) Calculated equation of state. The top
panel shows the energy, relative to the final AFQMC results,
for finite number of particles, N . Also shown are the DMC
results of Ref. [18], which are variational. Note the small scale
of the vertical axis. The bottom panel shows the AFQMC
(and DMC) results at the TL, relative to the BCS result. A
fit has been performed on the AFQMC results for the EOS.
The result is given in Eqs. (4-5) and shown as the solid line.
The inset in panel (b) compares the calculated pressure from
AFQMC (solid line) and DMC (dashed, taken from Ref. [29])
with experiment [29] (points) in the crossover region.

interacting cases, we take advantage of the fact that εq
k

and εH
k

produce energies which converge to a common
limit from opposite directions and perform both sets of
calculations to reduce the uncertainty in the extrapola-
tion. In the opposite regime, energies from the quadratic
dispersion shows little to no dependence on 1/L and they
are used alone. The error bar of each symbol, barely no-
ticeable in the graph, combines the QMC statistical er-
ror (negligible) at each L and a conservative estimate of
the uncertainty from the extrapolation, which typically
involves half a dozen or more data points from each dis-
persion relation, with L ranging from ∼ 15 to 45 (and
larger if necessary).

The results for different values of N show that con-
vergence is reached to within our statistical accuracy by
N ∼ 100 [30]. This is consistent with DMC results [18]
which observed no significant change between N of 26
and 98. The DMC results provide the current best esti-
mate of the EOS and are included in Fig. 1. We see that
the error from the fixed-node approximation is largest
in the crossover region, at intermediate values of x. The
maximum error is about 10% of the “correlation energy”,
the difference between the BCS and exact energies.

In addition to serving as a benchmark for theory, the
new EOS can provide validation for experiments. Exper-
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FIG. 4: (Color online) Condensate fraction and pairing cor-
relation functions. In the main graph, the uncertainty in the
QMC data (from extrapolation to the TL) is estimated by
multiple runs with different sizes and is indicated by the thick-
ness of the line. Also shown are BCS results and, in the BEC
limit, Bogoliubov results for Bose gas for reference. In the
inset, the pairing correlation function C(r) is plotted vs. r
for three interaction strengths (from top to bottom, the same
parameters as in (a), (b), and (c) of Fig. 3). The dashed lines
are from BCS and solid lines are QMC results (error bars
smaller than symbol size).
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FIG. 4: (Color online) Condensate fraction and pairing cor-
relation functions. In the main graph, the uncertainty in the
QMC data (from extrapolation to the TL) is estimated by
multiple runs with different sizes and is indicated by the thick-
ness of the line. Also shown are BCS results and, in the BEC
limit, Bogoliubov results for Bose gas for reference. In the
inset, the pairing correlation function C(r) is plotted vs. r
for three interaction strengths (from top to bottom, the same
parameters as in (a), (b), and (c) of Fig. 3). The dashed lines
are from BCS and solid lines are QMC results (error bars
smaller than symbol size).
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[2] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
[3] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod.

Phys. 80, 1215 (2008), URL http://link.aps.org/doi/
10.1103/RevModPhys.80.1215.

[4] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys.
80, 885 (2008).

[5] See, e.g., W. Ketterle and M. W. Zwierlein, Making, prob-
ing and understanding ultracold Fermi gases, in Ultracold
Fermi Gases, Proceedings of the International School of
Physics “Enrico Fermi”, Course CLXIV, Varenna, 20 -
30 June (2006), arXiv:0801.2500.

[6] L. Luo and J. Thomas, Journal of Low Temperature
Physics 154, 1 (2009), ISSN 0022-2291.

[7] M. J. H. Ku, A. T. Sommer, L. W. Cheuk,

and M. W. Zwierlein, Science 335, 563 (2012),
http://www.sciencemag.org/content/335/6068/563.full.pdf,
URL http://www.sciencemag.org/content/335/6068/
563.abstract.

[8] J. Carlson, S. Gandolfi, K. E. Schmidt, and S. Zhang,
Phys. Rev. A 84, 061602 (2011), URL http://link.aps.
org/doi/10.1103/PhysRevA.84.061602.

[9] Y. Nishida, Phys. Rev. A 79, 013627 (2009), URL http:
//link.aps.org/doi/10.1103/PhysRevA.79.013627.

[10] M. G. Endres, D. B. Kaplan, J.-W. Lee, and A. N.
Nicholson, Phys. Rev. A 87, 023615 (2013), URL http:
//link.aps.org/doi/10.1103/PhysRevA.87.023615.

[11] D. S. Petrov, M. A. Baranov, and G. V. Shlyapnikov,
Phys. Rev. A 67, 031601 (2003), URL http://link.aps.
org/doi/10.1103/PhysRevA.67.031601.

[12] S. S. Botelho and C. A. R. Sá de Melo, Phys. Rev. Lett.
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Shi, Chiesa, SZ, PRA ’15                 



��†
k�k��condensate fraction     (diagonalize               )

real-space ‘pair wave function’

Ultracold atomic Fermi gas -- 2D

5

0.00

0.20

0.40

0.60

0.80

1.00

-1  0  1  2  3  4  5  6  7

Co
nd

en
sa

tio
n 

Fr
ac

tio
n

ln(a kF)

Pairing Correlation

QMC
BCS

Bogoliubov

0.008
0.009
0.010
0.011

Pairing Correlation

0.001
0.002
0.003
0.004

Pairing Correlation

0.0000

0.0002

0.0004

 0  5  10  15  20  25  30
r

Pairing Correlation
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relation functions. In the main graph, the uncertainty in the
QMC data (from extrapolation to the TL) is estimated by
multiple runs with different sizes and is indicated by the thick-
ness of the line. Also shown are BCS results and, in the BEC
limit, Bogoliubov results for Bose gas for reference. In the
inset, the pairing correlation function C(r) is plotted vs. r
for three interaction strengths (from top to bottom, the same
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[2] U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
[3] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Rev. Mod.

Phys. 80, 1215 (2008), URL http://link.aps.org/doi/
10.1103/RevModPhys.80.1215.

[4] I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys.
80, 885 (2008).

[5] See, e.g., W. Ketterle and M. W. Zwierlein, Making, prob-
ing and understanding ultracold Fermi gases, in Ultracold
Fermi Gases, Proceedings of the International School of
Physics “Enrico Fermi”, Course CLXIV, Varenna, 20 -
30 June (2006), arXiv:0801.2500.

[6] L. Luo and J. Thomas, Journal of Low Temperature
Physics 154, 1 (2009), ISSN 0022-2291.

[7] M. J. H. Ku, A. T. Sommer, L. W. Cheuk,

and M. W. Zwierlein, Science 335, 563 (2012),
http://www.sciencemag.org/content/335/6068/563.full.pdf,
URL http://www.sciencemag.org/content/335/6068/
563.abstract.

[8] J. Carlson, S. Gandolfi, K. E. Schmidt, and S. Zhang,
Phys. Rev. A 84, 061602 (2011), URL http://link.aps.
org/doi/10.1103/PhysRevA.84.061602.

[9] Y. Nishida, Phys. Rev. A 79, 013627 (2009), URL http:
//link.aps.org/doi/10.1103/PhysRevA.79.013627.

[10] M. G. Endres, D. B. Kaplan, J.-W. Lee, and A. N.
Nicholson, Phys. Rev. A 87, 023615 (2013), URL http:
//link.aps.org/doi/10.1103/PhysRevA.87.023615.

[11] D. S. Petrov, M. A. Baranov, and G. V. Shlyapnikov,
Phys. Rev. A 67, 031601 (2003), URL http://link.aps.
org/doi/10.1103/PhysRevA.67.031601.

[12] S. S. Botelho and C. A. R. Sá de Melo, Phys. Rev. Lett.
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The gap values have been shifted by the binding energy, εb. DMC
results are from Refs. [30] (circles) and [31] (triangles). BCS mean-
field result is also shown for reference.

approximation which gives an upper bound on the computed
energy. It is reasonable to expect that the trial wave function
used for FN is of higher quality for the spin-balanced system
compared to that for the (Np ± 1) systems, which would lead
to an overestimation of the pairing gap. Our results on the
BCS side are consistent with the rescaled BCS results "BCS/e
from the theory by Gorkov and Melik-Barkhudarov, which is
expected to be exact in the BCS limit ln(kF a) ! 1 [63,64].

Figure 2 plots the computed quasiparticle peaks as a
function of k ≡ |#k|, together with the spectral function, for
four values of the interaction parameter. The zero of the
energy is set equal to the chemical potential, which we can
compute exactly [29]. We will refer to the function A(#k,ω) as
the particle and hole spectral function respectively for ω > µ
and ω < µ. The particle spectral function originates from
the first term on the right in Eq. (6), physically representing
states available for additional particles injected into the system,
while the hole spectral function, originating from the second
term, contains information about states occupied by the
particles in the system, which are thus accessible by the
creation of holes. In each panel, we show also the mean-
field prediction for the quasiparticle energies [65]: E±(#k) =
±

√
(h̄2k2/2m − µBCS)

2 + "2
BCS, where "BCS is the gap and

µBCS the chemical potential in BCS theory. The noninteracting
spectral function, A0(#k,ω) = δ(ω − (h̄2k2/2m − εF )), is also
shown for reference. In the AFQMC spectral functions
obtained from the GIFT analysis, shown in the color plot,
quasiparticle peaks are still visible, which are broadened from
many-body correlations, resulting in a nonzero imaginary
part of the self-energy, and are renormalized with respect
to the BCS dispersion relations. The quasiparticle peaks
computed directly from AFQMC are shown by symbols.
These were obtained following the procedure described above.
Results from different system sizes are shown, which indicate
convergence to the bulk limit within numerical resolution.
(Separate calculations were also carried out to verify that these
densities are indistinguishable from the dilute limit [29].)
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FIG. 2. Computed quasiparticle peaks and spectral functions. The
four panels are for different values of the interaction parameter:
ln(kF a) = 0 (top left), ln(kF a) = 0.5 (top right), ln(kF a) = 1 (bottom
left), ln(kF a) = 1.5 (bottom right). Energies are measured in units of
the Fermi energy εF = h̄2k2

F /2m and momenta in units of the Fermi
momentum kF . The zero of the energy is set to the chemical potential.
The BCS-theory predictions for the quasiparticle energies E±(#k) are
shown by solid lines, while the noninteracting spectral function is
given by the dotted line. The symbols are the quasiparticle peaks
directly computed by AFQMC at the given momentum, for systems
of 18 particles on a 25×25 lattice (orange filled squares), 26 particles
on a 35×35 lattice (pink empty circles), 42 particles on a 39×39
lattice (gold filled circles), and 50 particles on a 41×41 lattice (empty
triangles). Error bars are shown but some are smaller than symbol size.
The light dashed lines are interpolations in the neighborhood of the
minimum. The color plots give the computed spectral functions, in
arbitrary units.

The behavior of the spectral function provides a clear
visualization of the BEC-BCS crossover. In the BEC regime
at ln(kF a) = 0, a large gap, of the order of the energy
needed to break a molecule, separates the two branches,
which are roughly momentum-independent for k ! kF . A
smooth evolution of the spectral function is observed. In
the BCS regime at ln(kF a) = 1.5, it starts to resemble the
noninteracting behavior, where a gap is still present at the
Fermi momentum, as in conventional superconductors. The
intermediate values of the interaction show a smooth crossover
between the two regimes. Viewed in the reverse direction,
gradual and significant departures from the BCS results are
seen as the interaction strength is increased.

We also compute two-body dynamical correlations in imag-
inary time, which can again be obtained using our method with
computational cost linear in Ns [49]. From these, we apply
analytic continuation to obtain the density and spin dynamical
structure factors, Sρ(#k,ω) and SS(#k,ω), which can be measured
experimentally using two-photon Bragg spectroscopy [45]. In
particular, the high-momentum behavior is very interesting as
it provides a highly sensitive probe of the BEC-BCS crossover.
We focus our attention on k = 4kF , close to the value recently
investigated experimentally in three dimensions [45].

061601-3

BEC

BCS

Vitali et al PRA ’17                 



Pairing gap 

quasi-particle dispersion

RAPID COMMUNICATIONS

VISUALIZING THE BEC-BCS CROSSOVER IN A TWO- . . . PHYSICAL REVIEW A 96, 061601(R) (2017)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.5  1  1.5  2

(∆
 +

 ε
b/

2)
 / 

ε F

ln(kF a)

this work
Galea et al. (Ref. [30])

Bertaina and Giorgini (Ref. [31])
mean field

Gorkov Melik−Barkhudarov

FIG. 1. Pairing gap as a function of interacting strength, ln(kF a).
The gap values have been shifted by the binding energy, εb. DMC
results are from Refs. [30] (circles) and [31] (triangles). BCS mean-
field result is also shown for reference.

approximation which gives an upper bound on the computed
energy. It is reasonable to expect that the trial wave function
used for FN is of higher quality for the spin-balanced system
compared to that for the (Np ± 1) systems, which would lead
to an overestimation of the pairing gap. Our results on the
BCS side are consistent with the rescaled BCS results "BCS/e
from the theory by Gorkov and Melik-Barkhudarov, which is
expected to be exact in the BCS limit ln(kF a) ! 1 [63,64].

Figure 2 plots the computed quasiparticle peaks as a
function of k ≡ |#k|, together with the spectral function, for
four values of the interaction parameter. The zero of the
energy is set equal to the chemical potential, which we can
compute exactly [29]. We will refer to the function A(#k,ω) as
the particle and hole spectral function respectively for ω > µ
and ω < µ. The particle spectral function originates from
the first term on the right in Eq. (6), physically representing
states available for additional particles injected into the system,
while the hole spectral function, originating from the second
term, contains information about states occupied by the
particles in the system, which are thus accessible by the
creation of holes. In each panel, we show also the mean-
field prediction for the quasiparticle energies [65]: E±(#k) =
±

√
(h̄2k2/2m − µBCS)

2 + "2
BCS, where "BCS is the gap and

µBCS the chemical potential in BCS theory. The noninteracting
spectral function, A0(#k,ω) = δ(ω − (h̄2k2/2m − εF )), is also
shown for reference. In the AFQMC spectral functions
obtained from the GIFT analysis, shown in the color plot,
quasiparticle peaks are still visible, which are broadened from
many-body correlations, resulting in a nonzero imaginary
part of the self-energy, and are renormalized with respect
to the BCS dispersion relations. The quasiparticle peaks
computed directly from AFQMC are shown by symbols.
These were obtained following the procedure described above.
Results from different system sizes are shown, which indicate
convergence to the bulk limit within numerical resolution.
(Separate calculations were also carried out to verify that these
densities are indistinguishable from the dilute limit [29].)
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FIG. 2. Computed quasiparticle peaks and spectral functions. The
four panels are for different values of the interaction parameter:
ln(kF a) = 0 (top left), ln(kF a) = 0.5 (top right), ln(kF a) = 1 (bottom
left), ln(kF a) = 1.5 (bottom right). Energies are measured in units of
the Fermi energy εF = h̄2k2

F /2m and momenta in units of the Fermi
momentum kF . The zero of the energy is set to the chemical potential.
The BCS-theory predictions for the quasiparticle energies E±(#k) are
shown by solid lines, while the noninteracting spectral function is
given by the dotted line. The symbols are the quasiparticle peaks
directly computed by AFQMC at the given momentum, for systems
of 18 particles on a 25×25 lattice (orange filled squares), 26 particles
on a 35×35 lattice (pink empty circles), 42 particles on a 39×39
lattice (gold filled circles), and 50 particles on a 41×41 lattice (empty
triangles). Error bars are shown but some are smaller than symbol size.
The light dashed lines are interpolations in the neighborhood of the
minimum. The color plots give the computed spectral functions, in
arbitrary units.

The behavior of the spectral function provides a clear
visualization of the BEC-BCS crossover. In the BEC regime
at ln(kF a) = 0, a large gap, of the order of the energy
needed to break a molecule, separates the two branches,
which are roughly momentum-independent for k ! kF . A
smooth evolution of the spectral function is observed. In
the BCS regime at ln(kF a) = 1.5, it starts to resemble the
noninteracting behavior, where a gap is still present at the
Fermi momentum, as in conventional superconductors. The
intermediate values of the interaction show a smooth crossover
between the two regimes. Viewed in the reverse direction,
gradual and significant departures from the BCS results are
seen as the interaction strength is increased.

We also compute two-body dynamical correlations in imag-
inary time, which can again be obtained using our method with
computational cost linear in Ns [49]. From these, we apply
analytic continuation to obtain the density and spin dynamical
structure factors, Sρ(#k,ω) and SS(#k,ω), which can be measured
experimentally using two-photon Bragg spectroscopy [45]. In
particular, the high-momentum behavior is very interesting as
it provides a highly sensitive probe of the BEC-BCS crossover.
We focus our attention on k = 4kF , close to the value recently
investigated experimentally in three dimensions [45].
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��0|n̂i,�e��Ĥ n̂j,�� |�0�

Analytic cont. *

• main: density     
inset: spin

�R =
�2�k2

2m
•               :   atom recoil

BEC

• k=4*k_F

Vitali et al PRA ’17                 



H = � �2

2m

�N/2�

i

�2
i +

N/2�

j

�2
j

�
+

�

i,j

V (rij)

Spin-orbit coupling 

Image from D. Jin group

inter-particle spacing d >> range of V

In 2D, always bound state. Size vs. d:



H = � �2

2m

�N/2�

i

�2
i +

N/2�

j

�2
j

�
+

�

i,j

V (rij)

Expt: synthetic spin-orbit coupling realized, e.g. Rashba    

Spin-orbit coupling 

Image from D. Jin group

inter-particle spacing d >> range of V

In 2D, always bound state. Size vs. d:

2D#Fermi#gas#with#spin1orbit#coupling

H =
X

k�

k
2
c
†
k�ck� + U

X

i

ni"ni# +
X

k

�(ky � ikx)c
†
k#ck" + h.c.



0.0 1.0 2.0 3.0 4.0
log(kFa)

0.0

0.2

0.4

0.6

0.8

1.0

nc

QMC total

MF total

QMC triplet

MF triplet

↵ = 1.0

↵ = 7.0

• Triplet pairing is maximized in 
the crossover regime

• MF theory tends to over-
estimate, especially singlet 
component  

Singlet and triplet pairing --- cond frac

Shi, Rosenberg, Chiesa, SZ, PRL ’16                



0.0 1.0 2.0 3.0 4.0
log(kFa)

0.0

0.2

0.4

0.6

0.8

1.0

nc

QMC total

MF total

QMC triplet

MF triplet

0.0 1.0 2.0 3.0 4.0
log(kFa)

0.0

0.2

0.4

0.6

0.8

1.0

nc

QMC total

MF total

QMC triplet

MF triplet

↵ = 1.0

↵ = 7.0
• Triplet pairing increases with 

SOC strength

• Triplet pairing is maximized in 
the crossover regime

• Total condensate fraction 
increases with SOC

• MF theory tends to over-
estimate, especially singlet 
component  

Singlet and triplet pairing --- cond frac

Shi, Rosenberg, Chiesa, SZ, PRL ’16                



Recent progress on the Fermi gas                     
from auxiliary-field QMC                                      

• Auxiliary-field QMC (AFQMC) 
– Connection with lattice methods 
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(repulsive models, real materials)
• Precision computation in the 2D Fermi gas
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Transition Tc in 2D Fermi gas 
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simulations or determine properties with much higher
precision. We obtain the phase diagram of the BKT tran-
sition, and characterize the evolution of the pairing wave
functions and the fermion and pair momentum distributions.
An accurate measure of the contact is provided.
We model the uniform 2D Fermi gas with contact

attraction by the following lattice Hamiltonian,

Ĥ ¼
X

kσ

εkc
þ
kσckσ þ U

X

i

n̂i↑n̂i↓ − μ
X

i;σ

n̂iσ; ð1Þ

where σ (¼↑ or ↓) denotes spin, and n̂iσ ¼ cþiσciσ is the
density operator. We have tested both the Hubbard εk ¼
4 − 2ðcos kx þ cos kyÞ and the quadratic dispersions εk ¼
k2x þ k2y (corresponding to fermion mass m ¼ 1=2 compar-
ing to εk ¼ ℏ2k2=2m), where the momentum kx (and ky)
are defined in units of 2π=L with the system size Ns ¼ L2.
These dispersions, which both have finite effective ranges
[49] that vanish as L → ∞, lead to consistent results in the
large L limit. The Hubbard dispersion tends to have larger
finite-size effects, which are more prominent in the contact.
We use it for cross-checks, but all our final results are
obtained with the quadratic dispersion. In practical simu-
lations, the chemical potential μ is tuned to reach a fixed
number of fermions Ne, resulting in a fermion density
n ¼ Ne=Ns. The on-site interaction strength U can be
determined from logðkFaÞ [45,48,50] (with the Fermi
vector kF ¼

ffiffiffiffiffiffiffiffi
2πn

p
and the 2D scattering length a). We

measure temperatures in units of TF ≡ EF=kB (setting
kB ¼ 1) with the Fermi energy EF ¼ k2F ¼ 2πn. To reach
the continuum limit reliably, especially given the delicate
nature of the BKT transition, we have simulated lattice
sizes up to 75 × 75. To span the temperature range and
make connection with the ground state, we access temper-
atures as low as T=TF ¼ 0.0125.
Perhaps the most intriguing property of 2D Fermi gas is

the BKT phase transition [5,6]. We compute the transition
temperatures TBKT=TF numerically from the condensate
fraction in finite systems. The condensate fraction nc is
obtained as the leading eigenvalue of the zero-momentum
spin-singlet pairing matrix [45,48]

Mkk0 ¼ hΔþ
kΔk0 i − δkk0 hcþk↑ck↑ihc

þ
−k↓c−k↓i; ð2Þ

divided by Ne=2, with Δþ
k ¼ cþk↑c

þ
−k↓ as the pairing

operator. The corresponding eigenvector gives the pairing
wave function in reciprocal space ϕ↑↓ðkÞ. In a finite-size
system the first-order derivative dnc=dðT=TFÞ shows a
sharp peak [48], whose location identifies the BKT
transition. We fit ncðTÞ in each system using a fourth-
order polynomial around the transition point, and then
compute the peak location of its first-order derivative. We
then perform a finite-size extrapolation to obtain TBKT in
the thermodynamic limit [51]. (We have also tested using

the first-order correlation function and studying its
decay exponent, and find the finite-size effects are much
larger [52–56].) Systematic errors from finite-size effects are
removed or estimated from the extrapolation process [51].
Other systematic errors (Trotter errors, truncation errors)
are controlled and smaller than our statistical uncertainties.
The latter are estimated from the Monte Carlo process as
one standard deviation errors.
Our main results are summarized in Fig. 1, which

presents the phase diagram of the 2D Fermi gas. The BKT
transition temperatures TBKT=TF are obtained from an
extensive set of individual AFQMC calculations, yielding
numerically exact solutions for the Hamiltonian ĤðNs; NeÞ
on finite lattices. As mentioned, the most accurate finite-
temperature results from previous QMC calculations [47]
were limited to high temperatures, mostly in the normal
phase. Our AFQMC calculations, employing several meth-
odological advances including a low-rank factorization
technique, are able to study both normal and superfluid
phases by reaching much lower temperatures, and compute
properties accurately at the continuum limit by reaching
much larger lattice sizes (Ns ∼ 5000 vs Ns < 400). This
allows reliable finite-size extrapolation to Ns → ∞ [57–
59]. Results of TBKT=TF are shown for a gas of L ¼ 45,
Ne ¼ 58 for ten interaction strengths spanning the
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FIG. 1. BKT transition temperatures and phase diagram of the
2D interacting Fermi gas. Empty red circles show our exact
results for a finite system of L ¼ 45, Ne ¼ 58 with quadratic
dispersion. Filled red circles show finite-size scaling results to the
continuum and thermodynamic limits (L ¼ ∞, Ne ¼ ∞) for a
subset of the interaction strengths. The solid red line connecting
these are the results of interpolation, with the shaded band
indicating statistical error bars based on both sets of results.
For comparison, results are also shown from BCS mean-field
theory and its improvement on the BCS side (Petrov et al. [36]),
the weakly interacting Bose gas on the BEC side (Petrov et al.
[36]), one-loop Gaussian fluctuation theory (Bighin et al. [36]),
Luttinger-Ward theory (Bauer et al. [40]), Gaussian pair fluc-
tuation theory (Mulkerin et al. [60]), and experimental measure-
ments (Ries et al. [24] and Sobirey et al. [34]).
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simulations or determine properties with much higher
precision. We obtain the phase diagram of the BKT tran-
sition, and characterize the evolution of the pairing wave
functions and the fermion and pair momentum distributions.
An accurate measure of the contact is provided.
We model the uniform 2D Fermi gas with contact

attraction by the following lattice Hamiltonian,

Ĥ ¼
X

kσ

εkc
þ
kσckσ þ U

X

i

n̂i↑n̂i↓ − μ
X

i;σ

n̂iσ; ð1Þ

where σ (¼↑ or ↓) denotes spin, and n̂iσ ¼ cþiσciσ is the
density operator. We have tested both the Hubbard εk ¼
4 − 2ðcos kx þ cos kyÞ and the quadratic dispersions εk ¼
k2x þ k2y (corresponding to fermion mass m ¼ 1=2 compar-
ing to εk ¼ ℏ2k2=2m), where the momentum kx (and ky)
are defined in units of 2π=L with the system size Ns ¼ L2.
These dispersions, which both have finite effective ranges
[49] that vanish as L → ∞, lead to consistent results in the
large L limit. The Hubbard dispersion tends to have larger
finite-size effects, which are more prominent in the contact.
We use it for cross-checks, but all our final results are
obtained with the quadratic dispersion. In practical simu-
lations, the chemical potential μ is tuned to reach a fixed
number of fermions Ne, resulting in a fermion density
n ¼ Ne=Ns. The on-site interaction strength U can be
determined from logðkFaÞ [45,48,50] (with the Fermi
vector kF ¼

ffiffiffiffiffiffiffiffi
2πn

p
and the 2D scattering length a). We

measure temperatures in units of TF ≡ EF=kB (setting
kB ¼ 1) with the Fermi energy EF ¼ k2F ¼ 2πn. To reach
the continuum limit reliably, especially given the delicate
nature of the BKT transition, we have simulated lattice
sizes up to 75 × 75. To span the temperature range and
make connection with the ground state, we access temper-
atures as low as T=TF ¼ 0.0125.
Perhaps the most intriguing property of 2D Fermi gas is

the BKT phase transition [5,6]. We compute the transition
temperatures TBKT=TF numerically from the condensate
fraction in finite systems. The condensate fraction nc is
obtained as the leading eigenvalue of the zero-momentum
spin-singlet pairing matrix [45,48]

Mkk0 ¼ hΔþ
kΔk0 i − δkk0 hcþk↑ck↑ihc

þ
−k↓c−k↓i; ð2Þ

divided by Ne=2, with Δþ
k ¼ cþk↑c

þ
−k↓ as the pairing

operator. The corresponding eigenvector gives the pairing
wave function in reciprocal space ϕ↑↓ðkÞ. In a finite-size
system the first-order derivative dnc=dðT=TFÞ shows a
sharp peak [48], whose location identifies the BKT
transition. We fit ncðTÞ in each system using a fourth-
order polynomial around the transition point, and then
compute the peak location of its first-order derivative. We
then perform a finite-size extrapolation to obtain TBKT in
the thermodynamic limit [51]. (We have also tested using

the first-order correlation function and studying its
decay exponent, and find the finite-size effects are much
larger [52–56].) Systematic errors from finite-size effects are
removed or estimated from the extrapolation process [51].
Other systematic errors (Trotter errors, truncation errors)
are controlled and smaller than our statistical uncertainties.
The latter are estimated from the Monte Carlo process as
one standard deviation errors.
Our main results are summarized in Fig. 1, which

presents the phase diagram of the 2D Fermi gas. The BKT
transition temperatures TBKT=TF are obtained from an
extensive set of individual AFQMC calculations, yielding
numerically exact solutions for the Hamiltonian ĤðNs; NeÞ
on finite lattices. As mentioned, the most accurate finite-
temperature results from previous QMC calculations [47]
were limited to high temperatures, mostly in the normal
phase. Our AFQMC calculations, employing several meth-
odological advances including a low-rank factorization
technique, are able to study both normal and superfluid
phases by reaching much lower temperatures, and compute
properties accurately at the continuum limit by reaching
much larger lattice sizes (Ns ∼ 5000 vs Ns < 400). This
allows reliable finite-size extrapolation to Ns → ∞ [57–
59]. Results of TBKT=TF are shown for a gas of L ¼ 45,
Ne ¼ 58 for ten interaction strengths spanning the
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FIG. 1. BKT transition temperatures and phase diagram of the
2D interacting Fermi gas. Empty red circles show our exact
results for a finite system of L ¼ 45, Ne ¼ 58 with quadratic
dispersion. Filled red circles show finite-size scaling results to the
continuum and thermodynamic limits (L ¼ ∞, Ne ¼ ∞) for a
subset of the interaction strengths. The solid red line connecting
these are the results of interpolation, with the shaded band
indicating statistical error bars based on both sets of results.
For comparison, results are also shown from BCS mean-field
theory and its improvement on the BCS side (Petrov et al. [36]),
the weakly interacting Bose gas on the BEC side (Petrov et al.
[36]), one-loop Gaussian fluctuation theory (Bighin et al. [36]),
Luttinger-Ward theory (Bauer et al. [40]), Gaussian pair fluc-
tuation theory (Mulkerin et al. [60]), and experimental measure-
ments (Ries et al. [24] and Sobirey et al. [34]).
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simulations or determine properties with much higher
precision. We obtain the phase diagram of the BKT tran-
sition, and characterize the evolution of the pairing wave
functions and the fermion and pair momentum distributions.
An accurate measure of the contact is provided.
We model the uniform 2D Fermi gas with contact

attraction by the following lattice Hamiltonian,

Ĥ ¼
X

kσ

εkc
þ
kσckσ þ U

X

i

n̂i↑n̂i↓ − μ
X

i;σ

n̂iσ; ð1Þ

where σ (¼↑ or ↓) denotes spin, and n̂iσ ¼ cþiσciσ is the
density operator. We have tested both the Hubbard εk ¼
4 − 2ðcos kx þ cos kyÞ and the quadratic dispersions εk ¼
k2x þ k2y (corresponding to fermion mass m ¼ 1=2 compar-
ing to εk ¼ ℏ2k2=2m), where the momentum kx (and ky)
are defined in units of 2π=L with the system size Ns ¼ L2.
These dispersions, which both have finite effective ranges
[49] that vanish as L → ∞, lead to consistent results in the
large L limit. The Hubbard dispersion tends to have larger
finite-size effects, which are more prominent in the contact.
We use it for cross-checks, but all our final results are
obtained with the quadratic dispersion. In practical simu-
lations, the chemical potential μ is tuned to reach a fixed
number of fermions Ne, resulting in a fermion density
n ¼ Ne=Ns. The on-site interaction strength U can be
determined from logðkFaÞ [45,48,50] (with the Fermi
vector kF ¼

ffiffiffiffiffiffiffiffi
2πn

p
and the 2D scattering length a). We

measure temperatures in units of TF ≡ EF=kB (setting
kB ¼ 1) with the Fermi energy EF ¼ k2F ¼ 2πn. To reach
the continuum limit reliably, especially given the delicate
nature of the BKT transition, we have simulated lattice
sizes up to 75 × 75. To span the temperature range and
make connection with the ground state, we access temper-
atures as low as T=TF ¼ 0.0125.
Perhaps the most intriguing property of 2D Fermi gas is

the BKT phase transition [5,6]. We compute the transition
temperatures TBKT=TF numerically from the condensate
fraction in finite systems. The condensate fraction nc is
obtained as the leading eigenvalue of the zero-momentum
spin-singlet pairing matrix [45,48]

Mkk0 ¼ hΔþ
kΔk0 i − δkk0 hcþk↑ck↑ihc

þ
−k↓c−k↓i; ð2Þ

divided by Ne=2, with Δþ
k ¼ cþk↑c

þ
−k↓ as the pairing

operator. The corresponding eigenvector gives the pairing
wave function in reciprocal space ϕ↑↓ðkÞ. In a finite-size
system the first-order derivative dnc=dðT=TFÞ shows a
sharp peak [48], whose location identifies the BKT
transition. We fit ncðTÞ in each system using a fourth-
order polynomial around the transition point, and then
compute the peak location of its first-order derivative. We
then perform a finite-size extrapolation to obtain TBKT in
the thermodynamic limit [51]. (We have also tested using

the first-order correlation function and studying its
decay exponent, and find the finite-size effects are much
larger [52–56].) Systematic errors from finite-size effects are
removed or estimated from the extrapolation process [51].
Other systematic errors (Trotter errors, truncation errors)
are controlled and smaller than our statistical uncertainties.
The latter are estimated from the Monte Carlo process as
one standard deviation errors.
Our main results are summarized in Fig. 1, which

presents the phase diagram of the 2D Fermi gas. The BKT
transition temperatures TBKT=TF are obtained from an
extensive set of individual AFQMC calculations, yielding
numerically exact solutions for the Hamiltonian ĤðNs; NeÞ
on finite lattices. As mentioned, the most accurate finite-
temperature results from previous QMC calculations [47]
were limited to high temperatures, mostly in the normal
phase. Our AFQMC calculations, employing several meth-
odological advances including a low-rank factorization
technique, are able to study both normal and superfluid
phases by reaching much lower temperatures, and compute
properties accurately at the continuum limit by reaching
much larger lattice sizes (Ns ∼ 5000 vs Ns < 400). This
allows reliable finite-size extrapolation to Ns → ∞ [57–
59]. Results of TBKT=TF are shown for a gas of L ¼ 45,
Ne ¼ 58 for ten interaction strengths spanning the
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FIG. 1. BKT transition temperatures and phase diagram of the
2D interacting Fermi gas. Empty red circles show our exact
results for a finite system of L ¼ 45, Ne ¼ 58 with quadratic
dispersion. Filled red circles show finite-size scaling results to the
continuum and thermodynamic limits (L ¼ ∞, Ne ¼ ∞) for a
subset of the interaction strengths. The solid red line connecting
these are the results of interpolation, with the shaded band
indicating statistical error bars based on both sets of results.
For comparison, results are also shown from BCS mean-field
theory and its improvement on the BCS side (Petrov et al. [36]),
the weakly interacting Bose gas on the BEC side (Petrov et al.
[36]), one-loop Gaussian fluctuation theory (Bighin et al. [36]),
Luttinger-Ward theory (Bauer et al. [40]), Gaussian pair fluc-
tuation theory (Mulkerin et al. [60]), and experimental measure-
ments (Ries et al. [24] and Sobirey et al. [34]).
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simulations or determine properties with much higher
precision. We obtain the phase diagram of the BKT tran-
sition, and characterize the evolution of the pairing wave
functions and the fermion and pair momentum distributions.
An accurate measure of the contact is provided.
We model the uniform 2D Fermi gas with contact

attraction by the following lattice Hamiltonian,

Ĥ ¼
X

kσ

εkc
þ
kσckσ þ U

X
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n̂i↑n̂i↓ − μ
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i;σ

n̂iσ; ð1Þ

where σ (¼↑ or ↓) denotes spin, and n̂iσ ¼ cþiσciσ is the
density operator. We have tested both the Hubbard εk ¼
4 − 2ðcos kx þ cos kyÞ and the quadratic dispersions εk ¼
k2x þ k2y (corresponding to fermion mass m ¼ 1=2 compar-
ing to εk ¼ ℏ2k2=2m), where the momentum kx (and ky)
are defined in units of 2π=L with the system size Ns ¼ L2.
These dispersions, which both have finite effective ranges
[49] that vanish as L → ∞, lead to consistent results in the
large L limit. The Hubbard dispersion tends to have larger
finite-size effects, which are more prominent in the contact.
We use it for cross-checks, but all our final results are
obtained with the quadratic dispersion. In practical simu-
lations, the chemical potential μ is tuned to reach a fixed
number of fermions Ne, resulting in a fermion density
n ¼ Ne=Ns. The on-site interaction strength U can be
determined from logðkFaÞ [45,48,50] (with the Fermi
vector kF ¼

ffiffiffiffiffiffiffiffi
2πn

p
and the 2D scattering length a). We

measure temperatures in units of TF ≡ EF=kB (setting
kB ¼ 1) with the Fermi energy EF ¼ k2F ¼ 2πn. To reach
the continuum limit reliably, especially given the delicate
nature of the BKT transition, we have simulated lattice
sizes up to 75 × 75. To span the temperature range and
make connection with the ground state, we access temper-
atures as low as T=TF ¼ 0.0125.
Perhaps the most intriguing property of 2D Fermi gas is

the BKT phase transition [5,6]. We compute the transition
temperatures TBKT=TF numerically from the condensate
fraction in finite systems. The condensate fraction nc is
obtained as the leading eigenvalue of the zero-momentum
spin-singlet pairing matrix [45,48]

Mkk0 ¼ hΔþ
kΔk0 i − δkk0 hcþk↑ck↑ihc

þ
−k↓c−k↓i; ð2Þ

divided by Ne=2, with Δþ
k ¼ cþk↑c

þ
−k↓ as the pairing

operator. The corresponding eigenvector gives the pairing
wave function in reciprocal space ϕ↑↓ðkÞ. In a finite-size
system the first-order derivative dnc=dðT=TFÞ shows a
sharp peak [48], whose location identifies the BKT
transition. We fit ncðTÞ in each system using a fourth-
order polynomial around the transition point, and then
compute the peak location of its first-order derivative. We
then perform a finite-size extrapolation to obtain TBKT in
the thermodynamic limit [51]. (We have also tested using

the first-order correlation function and studying its
decay exponent, and find the finite-size effects are much
larger [52–56].) Systematic errors from finite-size effects are
removed or estimated from the extrapolation process [51].
Other systematic errors (Trotter errors, truncation errors)
are controlled and smaller than our statistical uncertainties.
The latter are estimated from the Monte Carlo process as
one standard deviation errors.
Our main results are summarized in Fig. 1, which

presents the phase diagram of the 2D Fermi gas. The BKT
transition temperatures TBKT=TF are obtained from an
extensive set of individual AFQMC calculations, yielding
numerically exact solutions for the Hamiltonian ĤðNs; NeÞ
on finite lattices. As mentioned, the most accurate finite-
temperature results from previous QMC calculations [47]
were limited to high temperatures, mostly in the normal
phase. Our AFQMC calculations, employing several meth-
odological advances including a low-rank factorization
technique, are able to study both normal and superfluid
phases by reaching much lower temperatures, and compute
properties accurately at the continuum limit by reaching
much larger lattice sizes (Ns ∼ 5000 vs Ns < 400). This
allows reliable finite-size extrapolation to Ns → ∞ [57–
59]. Results of TBKT=TF are shown for a gas of L ¼ 45,
Ne ¼ 58 for ten interaction strengths spanning the
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FIG. 1. BKT transition temperatures and phase diagram of the
2D interacting Fermi gas. Empty red circles show our exact
results for a finite system of L ¼ 45, Ne ¼ 58 with quadratic
dispersion. Filled red circles show finite-size scaling results to the
continuum and thermodynamic limits (L ¼ ∞, Ne ¼ ∞) for a
subset of the interaction strengths. The solid red line connecting
these are the results of interpolation, with the shaded band
indicating statistical error bars based on both sets of results.
For comparison, results are also shown from BCS mean-field
theory and its improvement on the BCS side (Petrov et al. [36]),
the weakly interacting Bose gas on the BEC side (Petrov et al.
[36]), one-loop Gaussian fluctuation theory (Bighin et al. [36]),
Luttinger-Ward theory (Bauer et al. [40]), Gaussian pair fluc-
tuation theory (Mulkerin et al. [60]), and experimental measure-
ments (Ries et al. [24] and Sobirey et al. [34]).
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simulations or determine properties with much higher
precision. We obtain the phase diagram of the BKT tran-
sition, and characterize the evolution of the pairing wave
functions and the fermion and pair momentum distributions.
An accurate measure of the contact is provided.
We model the uniform 2D Fermi gas with contact

attraction by the following lattice Hamiltonian,

Ĥ ¼
X

kσ

εkc
þ
kσckσ þ U

X

i

n̂i↑n̂i↓ − μ
X

i;σ

n̂iσ; ð1Þ

where σ (¼↑ or ↓) denotes spin, and n̂iσ ¼ cþiσciσ is the
density operator. We have tested both the Hubbard εk ¼
4 − 2ðcos kx þ cos kyÞ and the quadratic dispersions εk ¼
k2x þ k2y (corresponding to fermion mass m ¼ 1=2 compar-
ing to εk ¼ ℏ2k2=2m), where the momentum kx (and ky)
are defined in units of 2π=L with the system size Ns ¼ L2.
These dispersions, which both have finite effective ranges
[49] that vanish as L → ∞, lead to consistent results in the
large L limit. The Hubbard dispersion tends to have larger
finite-size effects, which are more prominent in the contact.
We use it for cross-checks, but all our final results are
obtained with the quadratic dispersion. In practical simu-
lations, the chemical potential μ is tuned to reach a fixed
number of fermions Ne, resulting in a fermion density
n ¼ Ne=Ns. The on-site interaction strength U can be
determined from logðkFaÞ [45,48,50] (with the Fermi
vector kF ¼

ffiffiffiffiffiffiffiffi
2πn

p
and the 2D scattering length a). We

measure temperatures in units of TF ≡ EF=kB (setting
kB ¼ 1) with the Fermi energy EF ¼ k2F ¼ 2πn. To reach
the continuum limit reliably, especially given the delicate
nature of the BKT transition, we have simulated lattice
sizes up to 75 × 75. To span the temperature range and
make connection with the ground state, we access temper-
atures as low as T=TF ¼ 0.0125.
Perhaps the most intriguing property of 2D Fermi gas is

the BKT phase transition [5,6]. We compute the transition
temperatures TBKT=TF numerically from the condensate
fraction in finite systems. The condensate fraction nc is
obtained as the leading eigenvalue of the zero-momentum
spin-singlet pairing matrix [45,48]

Mkk0 ¼ hΔþ
kΔk0 i − δkk0 hcþk↑ck↑ihc

þ
−k↓c−k↓i; ð2Þ

divided by Ne=2, with Δþ
k ¼ cþk↑c

þ
−k↓ as the pairing

operator. The corresponding eigenvector gives the pairing
wave function in reciprocal space ϕ↑↓ðkÞ. In a finite-size
system the first-order derivative dnc=dðT=TFÞ shows a
sharp peak [48], whose location identifies the BKT
transition. We fit ncðTÞ in each system using a fourth-
order polynomial around the transition point, and then
compute the peak location of its first-order derivative. We
then perform a finite-size extrapolation to obtain TBKT in
the thermodynamic limit [51]. (We have also tested using

the first-order correlation function and studying its
decay exponent, and find the finite-size effects are much
larger [52–56].) Systematic errors from finite-size effects are
removed or estimated from the extrapolation process [51].
Other systematic errors (Trotter errors, truncation errors)
are controlled and smaller than our statistical uncertainties.
The latter are estimated from the Monte Carlo process as
one standard deviation errors.
Our main results are summarized in Fig. 1, which

presents the phase diagram of the 2D Fermi gas. The BKT
transition temperatures TBKT=TF are obtained from an
extensive set of individual AFQMC calculations, yielding
numerically exact solutions for the Hamiltonian ĤðNs; NeÞ
on finite lattices. As mentioned, the most accurate finite-
temperature results from previous QMC calculations [47]
were limited to high temperatures, mostly in the normal
phase. Our AFQMC calculations, employing several meth-
odological advances including a low-rank factorization
technique, are able to study both normal and superfluid
phases by reaching much lower temperatures, and compute
properties accurately at the continuum limit by reaching
much larger lattice sizes (Ns ∼ 5000 vs Ns < 400). This
allows reliable finite-size extrapolation to Ns → ∞ [57–
59]. Results of TBKT=TF are shown for a gas of L ¼ 45,
Ne ¼ 58 for ten interaction strengths spanning the
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FIG. 1. BKT transition temperatures and phase diagram of the
2D interacting Fermi gas. Empty red circles show our exact
results for a finite system of L ¼ 45, Ne ¼ 58 with quadratic
dispersion. Filled red circles show finite-size scaling results to the
continuum and thermodynamic limits (L ¼ ∞, Ne ¼ ∞) for a
subset of the interaction strengths. The solid red line connecting
these are the results of interpolation, with the shaded band
indicating statistical error bars based on both sets of results.
For comparison, results are also shown from BCS mean-field
theory and its improvement on the BCS side (Petrov et al. [36]),
the weakly interacting Bose gas on the BEC side (Petrov et al.
[36]), one-loop Gaussian fluctuation theory (Bighin et al. [36]),
Luttinger-Ward theory (Bauer et al. [40]), Gaussian pair fluc-
tuation theory (Mulkerin et al. [60]), and experimental measure-
ments (Ries et al. [24] and Sobirey et al. [34]).
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simulations or determine properties with much higher
precision. We obtain the phase diagram of the BKT tran-
sition, and characterize the evolution of the pairing wave
functions and the fermion and pair momentum distributions.
An accurate measure of the contact is provided.
We model the uniform 2D Fermi gas with contact

attraction by the following lattice Hamiltonian,

Ĥ ¼
X

kσ

εkc
þ
kσckσ þ U

X

i

n̂i↑n̂i↓ − μ
X

i;σ

n̂iσ; ð1Þ

where σ (¼↑ or ↓) denotes spin, and n̂iσ ¼ cþiσciσ is the
density operator. We have tested both the Hubbard εk ¼
4 − 2ðcos kx þ cos kyÞ and the quadratic dispersions εk ¼
k2x þ k2y (corresponding to fermion mass m ¼ 1=2 compar-
ing to εk ¼ ℏ2k2=2m), where the momentum kx (and ky)
are defined in units of 2π=L with the system size Ns ¼ L2.
These dispersions, which both have finite effective ranges
[49] that vanish as L → ∞, lead to consistent results in the
large L limit. The Hubbard dispersion tends to have larger
finite-size effects, which are more prominent in the contact.
We use it for cross-checks, but all our final results are
obtained with the quadratic dispersion. In practical simu-
lations, the chemical potential μ is tuned to reach a fixed
number of fermions Ne, resulting in a fermion density
n ¼ Ne=Ns. The on-site interaction strength U can be
determined from logðkFaÞ [45,48,50] (with the Fermi
vector kF ¼

ffiffiffiffiffiffiffiffi
2πn

p
and the 2D scattering length a). We

measure temperatures in units of TF ≡ EF=kB (setting
kB ¼ 1) with the Fermi energy EF ¼ k2F ¼ 2πn. To reach
the continuum limit reliably, especially given the delicate
nature of the BKT transition, we have simulated lattice
sizes up to 75 × 75. To span the temperature range and
make connection with the ground state, we access temper-
atures as low as T=TF ¼ 0.0125.
Perhaps the most intriguing property of 2D Fermi gas is

the BKT phase transition [5,6]. We compute the transition
temperatures TBKT=TF numerically from the condensate
fraction in finite systems. The condensate fraction nc is
obtained as the leading eigenvalue of the zero-momentum
spin-singlet pairing matrix [45,48]

Mkk0 ¼ hΔþ
kΔk0 i − δkk0 hcþk↑ck↑ihc

þ
−k↓c−k↓i; ð2Þ

divided by Ne=2, with Δþ
k ¼ cþk↑c

þ
−k↓ as the pairing

operator. The corresponding eigenvector gives the pairing
wave function in reciprocal space ϕ↑↓ðkÞ. In a finite-size
system the first-order derivative dnc=dðT=TFÞ shows a
sharp peak [48], whose location identifies the BKT
transition. We fit ncðTÞ in each system using a fourth-
order polynomial around the transition point, and then
compute the peak location of its first-order derivative. We
then perform a finite-size extrapolation to obtain TBKT in
the thermodynamic limit [51]. (We have also tested using

the first-order correlation function and studying its
decay exponent, and find the finite-size effects are much
larger [52–56].) Systematic errors from finite-size effects are
removed or estimated from the extrapolation process [51].
Other systematic errors (Trotter errors, truncation errors)
are controlled and smaller than our statistical uncertainties.
The latter are estimated from the Monte Carlo process as
one standard deviation errors.
Our main results are summarized in Fig. 1, which

presents the phase diagram of the 2D Fermi gas. The BKT
transition temperatures TBKT=TF are obtained from an
extensive set of individual AFQMC calculations, yielding
numerically exact solutions for the Hamiltonian ĤðNs; NeÞ
on finite lattices. As mentioned, the most accurate finite-
temperature results from previous QMC calculations [47]
were limited to high temperatures, mostly in the normal
phase. Our AFQMC calculations, employing several meth-
odological advances including a low-rank factorization
technique, are able to study both normal and superfluid
phases by reaching much lower temperatures, and compute
properties accurately at the continuum limit by reaching
much larger lattice sizes (Ns ∼ 5000 vs Ns < 400). This
allows reliable finite-size extrapolation to Ns → ∞ [57–
59]. Results of TBKT=TF are shown for a gas of L ¼ 45,
Ne ¼ 58 for ten interaction strengths spanning the
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FIG. 1. BKT transition temperatures and phase diagram of the
2D interacting Fermi gas. Empty red circles show our exact
results for a finite system of L ¼ 45, Ne ¼ 58 with quadratic
dispersion. Filled red circles show finite-size scaling results to the
continuum and thermodynamic limits (L ¼ ∞, Ne ¼ ∞) for a
subset of the interaction strengths. The solid red line connecting
these are the results of interpolation, with the shaded band
indicating statistical error bars based on both sets of results.
For comparison, results are also shown from BCS mean-field
theory and its improvement on the BCS side (Petrov et al. [36]),
the weakly interacting Bose gas on the BEC side (Petrov et al.
[36]), one-loop Gaussian fluctuation theory (Bighin et al. [36]),
Luttinger-Ward theory (Bauer et al. [40]), Gaussian pair fluc-
tuation theory (Mulkerin et al. [60]), and experimental measure-
ments (Ries et al. [24] and Sobirey et al. [34]).
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results for nQ are shown in Fig. 3, for three representative
interactions. In each case, the pair momentum distribution
becomes rapidly centered at Q ¼ 0 as the temperature is
decreased. This behavior is consistent with that of a system
of interacting bosonic Cooper pairs, in which only theQ ¼
0 component will survive in the ground state in the bulk
limit. At finite temperatures, some of the Cooper pairs can
either be broken into individual fermions or simply acquire
a velocity (momentum), turning into finite center-of-mass
momentum pairs [63]. Furthermore, we find that ln nQ
exhibits a linear dependence on ðjQj=kFÞ2 [51], consistent
with the observation in Ref. [24], which also applied it as a
temperature gauge for the experiment. It is particularly
interesting to note the behavior of the peak atQ ¼ 0 as T is
lowered through TBKT. In the “unitary” regime [panel (b)],
the two lowest temperatures are both below TBKT, while the
third, T=TF ¼ 0.1875, is above but close to it, as seen in
Fig. 1. In comparison, in the BEC regime [panel (a)] only
T=TF ¼ 0.0625 is below TBKT, while T=TF ¼ 0.125 is
above but close to it. We see that the behavior of the peaks
at Q ¼ 0 in these systems shows a direct relation to where
they are with respect to the transition temperature.
The fermion momentum distribution is shown for the

same systems in the insets of Fig. 3. In contrast with the
pair momentum distribution, nðkÞ shows significantly less
temperature dependence. In the weakly interacting BCS
regime, we see the steplike function around the Fermi
surface at low T, as expected. As T=TF is increased, more
fermions become thermally excited, with nðkÞ showing
substantial modification from the ground-state result at the
highest T shown, which is approximately 20 × TBKT. As
the interaction strength is increased to the other two values,
nðkÞ is increasingly broader due to interaction effects
reflecting the BCS-BEC crossover. However, its response
to temperature variation becomes much reduced, and is
barely noticeable in the BEC regime. The nðkÞ results at
the lowest temperature is in close agreement with the
ground-state results [45].

The contact C [64–66] is an important quantity in the
strongly interacting Fermi gas, and it governs the asymptotic
behaviors of several key properties in momentum space, for
example, nðkÞ. In the 3D unitary Fermi gas, experimental
measurements of the contact across the superfluid transition
[67–70] have allowed thorough comparisons with various
numerical results [71]. In the 2D Fermi gas, the contact was
experimentally measured [22] at T=TF ¼ 0.27 and numeri-
cally calculated via ground state QMCmethods [43,45]. The
contact as a function of temperature was also studied [47],
though this was limited to the normal phase and rather small
system size as mentioned earlier.
Here, we report exact numerical results of the contact in the

full range of temperatures crossing the BKT transition, in
large lattice sizes, for the strongly interacting 2D Fermi gas.
We compute the contact density C ¼ C=Ns in units of
k4F via the double occupancy D as C=k4F ¼ m2U2D=
ð4π2n2Þ. We have also confirmed the asymptotic behavior
of nðkÞk4 ∼ C at mediate to low temperatures and extracted
the contact by fitting the tail ofnðkÞ, which yielded consistent
results for C [51]. Our results of the contact are shown in
Fig. 4. While the BCS mean-field theory predicts a phase
transition at around T=TF ≃ 0.8 (CBCS=k4F is proportional to
the square of the mean-field order parameter), our QMC
results show an increase of the C=k4F as the temperature is
lowered, followed by a shallow maximum around the BKT
transition, and then a decreasewhich smoothly connects with
the ground state result [45]. This behavior is qualitatively
different from 3D, where the contact shows a dramatic
increase when entering the superfluid phase [69–71].
In summary, employing major advances in AFQMC

algorithms, we have studied the finite-temperature proper-
ties of 2D Fermi gas with zero-range attractive interaction.
Reaching large lattice sizes, we scan a wide range of
interaction strengths and temperatures, and determine the
phase diagram of the BKT transition. We systematically
characterize the BCS-BEC crossover by the pairing wave
functions in both reciprocal and real space. We compute
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Density response
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Spin response

He & SZ, to be published

• Gap closing with increasing T  
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Recent progress on the Fermi gas                     
from auxiliary-field QMC                                      

• Auxiliary-field QMC (AFQMC) 
– Connection with lattice methods 
– Technical advances in FG (e.g. low-rank decomp - scaling N^3 -> N )
– Conceptual difference for general interactions:                                 

controlling the sign problem     (repulsive models; real materials)
• Precision computation in the 2D Fermi gas

– Ground state: EOS, gaps, n(k), … 
– BKT Tc, contact, response 

     Shiwei Zhang 
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Exotic state in spin polarized systems
MonteCarlo techniques, the sign problem can be very severe
here. Many-body calculations have thus far been away from
this regime and mostly limited to fairly dilute systems.
Before proceeding to this regime,we perform a calculation at
lower density (n ¼ 0.47 andp ¼ 0.07).As shown inFig. 2, a
clear long-range spatial modulation characteristic of the LO
state is seen. This result is consistent with a recent dia-
grammatic quantumMonte Carlo study [19], which found a
FFLO instability in this region of the phase diagram. The
Fourier transform of the pairing correlation function CΔðkÞ
(red circles in the main panel in Fig. 2) shows a shallow
maximum at the pairing wave vectorQ ¼ ð0; 0.1πÞ, a value
in very good agreement with the result from Ref. [19]. This
consistency between two very different ab initiomethods of
high accuracy is a strong corroboration of the FFLO order in
this system. In Fig. 2 we also show the HFB results for the
same system. Although the mean-field solution gives the
correct wavelength for the FFLO modulation, it overesti-
mates the strength of the real-space correlation by nearly 2
orders of magnitude. (In other parameter regimes, the HFB
solution can give an incorrect wavelength as well, as
suggested by the progression of the HFB results vs Ueff in
Fig. 1.) The structure factor results indicate differences in the
pairing mechanism, with HFB showing one prominent
pairing wave vector while AFQMC shows a more complex
momentum dependence.
We next study more systematically the characteristics of

the ground-state phases in the high-density regime. In
Fig. 3 we present results for a system with n ¼ 0.82,

p ¼ 0.07, and U ¼ −4.0. We use a large supercell, con-
sisting of 484 sites, in order to detect long-range collective
modes and minimize finite-size effects. The pairing corre-
lation, shown in the upper panels, displays a clear node
separating the regions with positive values of CΔðrÞ from

FIG. 2. Structure factor of the pairing correlation for a 4 × 36
lattice with N↑ ¼ 39, N↓ ¼ 29, and U ¼ −4. The AFQMC
results (red circles) display a shallow maximum, while the
mean-field results (green dashed line) display a sharp peak.
The vertical line indicates the leading pairing wave vector from
[19]. Inset: pairing correlations in real space, as computed with
AFQMC and mean field. Note the factor of 10 difference in the y
axis scales (with tick labels corresponding to AFQMC results on
the left and mean-field on the right).

FIG. 1. Structure factor of the pairing correlation for a 4 × 32
lattice with N↑ ¼ 57, N↓ ¼ 33, and U ¼ −4. We compare the
AFQMC results (dashed lines) obtained from three different trial
wave functions, the free-particle wave function (black squares),
and two HFB wave functions with an effective interaction
strength Ueff ¼ −2.5 (blue open circles) and Ueff ¼ −3.5 re-
spectively (red filled circles). The wave function with Ueff ¼
−2.5 is obtained from the incommensurate HFB solution, and the
wave function with Ueff ¼ −3.5 from the commensurate solu-
tion. The solid lines show the corresponding variational results.
Inset: corresponding modulated long-range behavior of the
AFQMC results for the pairing correlation in real space.

FIG. 3. Pairing and density correlations for a 22 × 22 system
with N↑ ¼ 217, N↓ ¼ 181, and U ¼ −4. Upper left: color plot of
sign ½CΔðrÞ%, to highlight the nodal structure. Upper right: CΔðrÞ
plotted along the horizontal line cuts indicated in the left panel.
Lower left: color plot of sign ½CnðrÞ%. Lower right: CnðrÞ plotted
along the horizontal line cuts indicated in the left panel.
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Inset: corresponding modulated long-range behavior of the
AFQMC results for the pairing correlation in real space.
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with N↑ ¼ 217, N↓ ¼ 181, and U ¼ −4. Upper left: color plot of
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• pairing correlation 
change sign - 
Larkin-Ovchinnikov  

• Density correlation 
has checkerboard 
pattern with 
modulation
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