
Lecture IV: Nuclear Structure Overview
I. Introduction

J. Engel

November 1, 2017



A Little on the Standard Mechanism

!"

n

n p

p

e

eW

W

x

Here mνM � me.



How Effective Mass Gets into Rate

[T0ν
1/2]

−1 =
∑
spins

∫
|Z0ν|

2δ(Ee1 + Ee2 − Q)
d3p1

2π3
d3p2

2π3

Z0ν contains lepton part∑
k

e(x)γµ(1 − γ5)Uekνk(x) νc
k(y)γν(1 + γ5)Uekec(y) ,

where ν’s are Majorana mass eigenstates.
Contraction gives neutrino propagator:∑

k

e(x)γµ(1 − γ5)
qργρ + mk

q2 − m2
k

γν(1 + γ5)ec(y) U2
ek ,

The qργρ part vanishes in trace, leaving a factor

meff ≡
∑

k

mkU2
ek .



What About Hadronic Part?

Integral over times produces a factor

∑
n

〈f|JµL (~x)|n〉〈n|J
ν
L (~y)|i〉

q0(En + q0 + Ee2 − Ei)
+ (~x, µ↔ ~y, ν) ,

with q0 the virtual-neutrino energy and the J the weak current.

In impulse approximation:

〈p|Jµ(x)|p′〉 = eiqxu(p)
(

gV(q2)γµ − gA(q2)γ5γ
µ

− igM(q2)
σµν

2mp
qν + gP(q2)γ5qµ

)
u(p′) .

May not be adequate.

q0 typically of order inverse inter-nucleon distance, 100 MeV, so
denominator can be taken constant and sum done in closure.



Final Form of Nuclear Part

M0ν = MGT
0ν −

g2
V

g2
A

MF
0ν + . . .

with

MGT
0ν = 〈F| |

∑
i, j

H(rij)σi · σj τ
+
i τ

+
j |I 〉+ . . .

MF
0ν =〈F |

∑
i, j

H(rij) τ
+
i τ

+
j |I 〉+ . . .

H(r) ≈ 2R
πr

∫∞
0

dq
sin qr

q + E − (Ei + Ef)/2
roughly ∝ 1/r

Contribution to integral peaks at q ≈ 100 MeV inside nucleus.

Corrections are from “forbidden” terms, weak nucleon form
factors, many-body currents . . .



II. Basic Ideas of Nuclear Structure



Traditional Nucleon-Nucleon Potential

From E. Ormand, http://www.phy.ornl.gov/npss03/ormand2.ppt



Shell Model of Nucleus

Nucleons occupy orbitals like electrons in atoms. Central force on
nucleon comes from averaging forces produced by other nucleons.

http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/shell.html

Reasonable potentials give magic numbers at 2, 8, 20, 28, 50, 126



An Example

←− d3/2

←− s1/2

←− d5/2



Simple Model Can’t Explain Collective Rotation. . .

From Booth and Combey, http://www.shef.ac.uk/physics/teaching/phy303/phy303-3.html and

E. Ormand, http://www.phy.ornl.gov/npss03/ormand1.ppt

Collective rotation between magic numbers



Or Collective Vibrations

Two vibrational ”phonons” with
angular momentum 2 give states
with angular momentum 0, 2, 4.

From Booth and Combey, http:///www.shef.ac.uk/physics/teaching/phy303/phy303-3.html and
http://www.fen.bilkent.edu.tr/˜aydinli/Collective%20Model.ppt



Alternative Early View: “Liquid Drop” Model
Protons and neutrons move together; volume is conserved, surface
changes shape.
Ansatz for surface:

R(θ,φ) = R0

(
1 +

∑
m

αmY2,m(θ,φ)

)

The 5 α’s are collective variables. For vibrations, Hamiltonian
obtained e.g. from classical fluid model:

H ≈ 1/2B
∑

m |α̇m|
2 + 1/2C

∑
m |αm|

2

with

B ≈
ρR5

0
2

=
3

8π
mAR2

0 , C ≈ aSA2/3

π
−

3e2Z2

10πR0
, ω =

√
C/B

ω is roughly the right size, but real life is more complicated, with
frequencies depending on how nearly magic the nucleus is.



Deformation in Liquid Drop Model

If Coulomb effects overcome surface tension, C is
negative and nucleus deforms. 5 “intrinsic-frame”
α’s replaced by 3 Euler angles, and:

β ≡
√
α2

0 + 2α2
2 , γ ≡ tan−1[

√
2α2/α0]

so that

Ψ(θ,ϕ,ψ) ≈ DJ∗
MK(θ,ϕ,ψ)Φint.(β, γ).
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Low-lying states

1. Rotations of deformed nucleus
2. Surface vibrations along or against
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Density Oscillations

Photoabsorption cross section proportional to “isovector” dipole
strength. Resonance lies at higher energy than surface modes.

Ikeda et al., arXiv:1007.2474 [nucl-th]

Szpunar et al., Nucl. Inst. Meth. Phys. A 729, 41 (2013)

Giant dipole resonance



III. Development of Structure Models for for ββ
Decay



Development Since the First Models



Modern Shell-Model Basic Wave Functions

Nucleus is usually taken to reside in a confining harmonic oscillator.
Eigenstates of oscillator part are localized Slater determinants, the
simplest many-body states:

ψ(~r1 · · ·~rn) =

∣∣∣∣∣∣∣∣∣
φi(~r1) φj(~r1) · · · φl(~r1)
φi(~r2) φj(~r2) · · · φl(~r2)

...
...

...
...

φi(~rn) φj(~rn) · · · φl(~rn)

∣∣∣∣∣∣∣∣∣ −→ a†i a†j · · · a
†
l |0〉

They make a convenient basis for diagonalization of the real
internucleon Hamiltonian. To get a complete set just put distribute
the A particles, one in each oscillator state, in all possible ways.



Truncation Scheme of the Modern Shell-Model

Core is inert; particles can’t move
out.
Particles outside core confined to
limited set of valence shells.
Can’t use basic nucleon-nucleon
interaction as Hamiltonian
because of truncation, which
excludes significant configurations.
Most Hamiltonians to date are in
good part phenomenological, with
fitting to many nuclear energy
levels and transition rates. All
operators need to be
“renormalized” as well.

We’ll return to this problem later.

Example: 20Ne

core

valence

0s

1p

0f 1p

0s 1d



What the Shell Model Can Handle

From W. Nazarewicz, http://www-highspin.phys.utk.edu/˜witek/

All these are easy now. But more than one oscillator shell still
usually impossible.



Level of Accuracy (When Good)

48Ca 48Sc

From A. Poves, J. Phys. G: Nucl. Part. Phys. 25 (1999) 589 597.



Shell Model Calculations of 0νββ Decay

M0ν with shell-model ground states |48Ca〉 and |48Ti〉

3

TABLE II: Parameters for the SRC parametrization of Eq.
(11).

SRC a b c
Miller-Spencer 1.10 0.68 1.00

CD-Bonn 1.52 1.88 0.46
AV18 1.59 1.45 0.92

FIG. 2: (Color online) The dependence of the NME on the ef-
fective interaction used and the short range correlation (SRC)
model. M-S stands for Miller-Spencer.

nucleus (in our case 48Ca), and | 0+i > is the g.s. of the
grand daughter nucleus (in our case 48Ti).

Due to the two-body nature of the transition oper-
ator, the matrix element can be reduced to a sum of
products of two-body transition densities TBTD and
antisymmetrized two-body matrix elements,

M0ν
α =

∑

jpjp′ jnjn′Jπ

TBTD (jpjp′ , jnjn′ ; Jπ)

〈jpjp′ ; JπT | τ−1τ−2O
α
12 | jnjn′ ; JπT 〉a , (5)

where Oα
12 are given by

OGT
12 = ~σ1 · ~σ2HGT (r) ,

OF
12 = HF (r) ,

OT
12 = [3 (~σ1 · r̂) (~σ1 · r̂)− ~σ1 · ~σ2]HT (r) . (6)

The matrix elements of Oα
12 for the jj-coupling scheme

consistent with the conventions used by modern shell
model effective interactions are described in the Ap-
pendix.
To calculate the two-body matrix elements in Eq. (5)

one needs the neutrino potentials entering into the radial
matrix element 〈nl | Hα | nl′〉 in Eq. (13) below. Follow-
ing Ref. [35] and using closure approximation one gets,

Hα(r) =
2R

π

∫ ∞

0

fα(qr)
hα(q

2)

q + 〈E〉Gα(q
2)qdq , (7)

where fF,GT (qr) = j0(qr) and fT (qr) = j2(qr) are spher-
ical Bessel functions, 〈E〉 is the average energy of the

TABLE III: Different contributions to the NME for the
GXPF1A interaction with 〈E〉 = 7.72 MeV

SRC M0ν
GT M0ν

F M0ν
T M0ν

None 0.556 -0.219 -0.015 0.711
Miller-Spencer 0.465 -0.141 -0.014 0.570

CD-Bonn 0.688 -0.222 -0.014 0.845
AV18 0.634 -0.204 -0.014 0.779

virtual intermediate states used in the closure approx-
imation, and the form factors hα(q

2) that include the
higher order terms in the nucleon currents are

hF (q
2) = g2V (q

2)

hGT (q
2) =

g2A(q
2)

g2A

[
1− 2

3

q2

q2 +m2
π

+
1

3

(
q2

q2 +m2
π

)2
]

+
2

3

g2M (q2)

g2A

q2

4m2
p

,

hT (q
2) =

g2A(q
2)

g2A

[
2

3

q2

q2 +m2
π

− 1

3

(
q2

q2 +m2
π

)2
]

+
1

3

g2M (q2)

g2A

q2

4m2
p

. (8)

The gV,A,M form factors in Eq.(8) can include nucleon
finite size effects, which in the dipole approximation are
given by

gV (q
2) =

gV

(1 + q2/Λ2
V )

2 ,

gM (q2) = (µp − µn)gV (q
2),

gA(q
2) =

gA

(1 + q2/Λ2
A)

2 . (9)

Here gV = 1, gA = 1.25, (µp−µn) = 3.7, ΛV = 850MeV ,
and ΛA = 1086 MeV .
The short range correlations are included via the corre-

lation function f(r) that modifies the relative wavefunc-
tions at short distances,

ψnl(r) → [1 + f(r)]ψnl(r) , (10)

where f(r) can be parametrized as [35],

f(r) = −ce−ar2
(
1− br2

)
. (11)

The radial matrix elements of Hα between relative
harmonic oscillator wavefunctions ψnl(r) and ψn′l′(r),
〈nl | Hα(r) | n′l′〉, become

∫ ∞

0

r2drψnl(r)Hα(r)ψn′l′(r) [1 + f(r)]
2

(12)

Effects of varying the phenomenological Hamiltonian

Problem with shell model: Experimental energy levels tell us,
roughly, how to “renormalize” Hamiltonians to account for orbitals
omitted from the shell-model space. But what about the ββ
operator? How is it changed? Most calculations use “bare” operator.



The Beginning of Nuclear DFT: Mean-Field Theory

For a long time the best that could be done in a large single-particle
space.

Call the Hamiltonian H (not the “bare” NN interaction itself). The
Hartree-Fock ground state is the Slater determinant with the
lowest expectation value 〈H〉.



Variational Procedure
Find best Slater det. |ψ〉 by minimizing H ≡ 〈ψ|H |ψ〉 / 〈ψ|psi〉:
In coordinate space, resulting equations are

−
∇2

2m
φa(~r) +

∫ d~r′V(|~r − ~r′|)
∑
j6F

φ∗j (~r′)φj(~r′)︸ ︷︷ ︸
ρ(~r′)

φa(~r)

−
∑
j6F

[∫
d~r′V(|~r − ~r′|)φ∗j (~r′)φa(~r′)

]
φj(~r) = εaφa(~r) .

First potential term involves the “direct” (intuitive) potential

Ud(~r) ≡
∫

d~r′V(|~r − ~r′|)ρ(~r′) .

Second term contains the nonlocal “exchange potential”

Ue(~r, ~r′) ≡
∑
j6F

V(|~r − ~r′|)φ∗j (~r′)φj(~r) .



Self Consistency

Note that in potential-energy terms Ud and Ue depend on all the
occupied levels. So do the eigenvalues εa, therefore, and solutions
are “self-consistent.” To solve equations:

1. Start with a set of A occupied orbitals φa, φb, φc. . . and
construct Ud and Ue.

2. Solve the HF Schrödinger equation to obtain a new set of
occupied orbitals φa′ , φb′ . . .

3. Repeat steps 1 and 2 until you get essentially the same orbitals
out of step 2 as you put into step 1.



Second-Quantization Version
Theorem (Thouless)
Suppose |φ〉 ≡ a†1 · · · a

†
F |0〉 is a Slater determinant. The most general

Slater determinant not orthogonal to |φ〉 can be written as

|φ′〉 = exp(
∑

m>F,i<F

Cmia
†
mai) |φ〉 = [1 +

∑
m,i

Cmia
†
mai + O(C2)] |φ〉

Minimizing E = 〈ψ|H |ψ〉:
∂H

∂Cnj
= 〈φ|Ha†naj |φ〉 = 0 ∀ n > F, j 6 F

=⇒ hnj ≡ Tnj +
∑
k<F

Vjk,nk = 0 ∀ n > F, j 6 F

where Tab = 〈a| p2

2m |b〉 and Vab,cd = 〈ab|V12 |cd〉− 〈ab|V12 |dc〉. This
will be true if ∃ a single particle basis in which h is diagonal,

hab ≡ Tab +
∑
k6F

Vak,bk = δabεa ∀ a, b .

Another version of the HF equations.



Brief History of Mean-Field Theory
1. Big problem early: Doesn’t work with realistic NN potentials

because of hard core, which causes strong correlations.

2. Hard core included implicitly through effective interaction:
Brueckner G matrix Still didn’t work perfectly; three-body
interations neglected.J. Phys. G: Nucl. Part. Phys. 39 (2012) 124001 J Engel

G = V

+
V

V

+ + . . .

Figure 2. The diagrams generating the G matrix. Railed vertical lines are intermediate nucleons
with very high energy. The mildly wiggly lines labelled V represent the bare interaction and the
very wiggly line labelled G represents the G matrix.

Mhigh
= M

+
V

M
+

M

V

+ + +

+ . . .

Figure 3. The diagrams generating Mhigh, the analogue of the G matrix. Solid (red) lines are
protons, dotted (blue) lines neutrons and railed lines are intermediate nucleons at very high energy.
The dashed horizontal line labeled M is the bare 0νββ operator and that labeled Mhigh is the
0νββ operator that includes the effects of short-range correlations.

82Se. The figure shows the contribution at each value of the internucleon separation r to MGT,
the exact definition of which is

CGT(r) ≡ HGT(r) 〈 f |
∑
a<b

δ(r − rab)σa · σbτ
+
a τ+

b |i〉. (10)

(The HGT in the figure does not include the effects of nucleon from factors or forbidden
currents.) The short-range correlations in Mhigh push the contributions from small to
intermediate values of the internucleon separation. The degree of displacement is less,
however, than that induced by the phenomenological Jastrow function [12] traditionally used
in calculations of double-beta decay and shown alongside the exact and ladder-based results
in the figure. The ladder-sum, labeled ‘microscopic correction,’ is in quite good agreement
with the results of the unitary correlator operator method (UCOM) [13–15].

Having obtained operators that include the effects of short-range correlations one can use
the G matrix andMhigh to evaluate diagrammatic contributions to the full 0νββ matrix element
that represent perturbation expansions in G. Reference [6] evaluated all such diagrams that

5

3. Three-body interaction included approximately as
orbital-dependent two-body interaction, in the same way as
two-body interaction is approximated by orbital-dependent
mean field. Results better, and a convenient “zero-range”
approximation used.
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Brief History (Cont.)

4. Phenomenology successfully evolved toward zero-range
density-dependent interactions, with

H = t0 (1 + x0P̂σ) δ(~r1 −~r2)

+
1
2

t1 (1 + x1P̂σ)
[
(~∇1 − ~∇2)

2δ(~r1 −~r2) + h.c.
]

+ t2 (1 + x2P̂σ) (~∇1 − ~∇2) · δ(~r1 −~r2)(~∇1 − ~∇2)

+
1
6

t3 (1 + x3P̂σ) δ(~r1 −~r2)ρ
α([~r1 +~r2]/2)

+ iW0 (~σ1 + ~σ2) · (~∇1 − ~∇2)× δ(~r1 −~r2)(~∇1 − ~∇2) ,

where
P̂σ =

1 + σ1 · σ2

2
,

and ti, xi, W0, and α are adjustable parameters.

Abandoning first principles leads to still better accuracy.



Brief History (Cont.)

5. Convenient because exchange potential is local; easy to solve.
Also, variational principal can be reformulated in terms of a
local energy-density functional. Defining

ρab =
∑
i6F

〈b|φi〉〈φi |a〉 , ρ(~r) =
∑
i6F,s

|φi(~r, s)|2

τ(~r) =
∑
i6F,s

|∇φi(~r, s)|2 , ~J(~r) = −i
∑

i6F,s,s ′
φi(~r, s)[∇φi(~r, s′)× ~σss ′ ]

and

E = 〈φ|H |φ〉 =
∫

d~r[
 h2

2n
τ+

3
8

t0ρ
2 +

1
16
ρ3 +

1
16

(3t1 + 5t2)ρτ

+
1

64
(9t1 − 5t2)(∇ρ)2 +

3
4

W0ρ~∇ ·~J +
1

32
(t1 − t2)~J2]

and minimizing E gives you back the Hartree-Fock equations.



Brief History (Cont.)

6. “Shoot, we can include more correlations, get back to first
principles, if we mess with the density functional via:”

Theorem (Hohenberg-Kohn and Kohn-Sham, vulgarized)
∃ universal functional of the density that, together with a simple one
depending only on external potentials, gives the exact ground-state
energy and density when minimized through Hartree-like equations.
(Finding the functional is up to you!)

There is some work to construct functionals form first principles,
but they are determined largely by fitting Skyrme parameters.

Results are pretty good, but it’s hard to quantify systematic error.



Densities Near Drip Lines

This and next 2 slides from J. Dobacewski
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Two-Neutron Separation Energies

Experiment Theory



Deformation



Collective Excited States

Can do time-dependent Hartree-Fock in an external potential
f(~r, t) = f(~r)e−iωt + f†(~r)eiωt. TDHF equation is (schematically):

−i
dρ
dt

=
∂E[ρ]
∂ρ

+ f(t)

Assuming small amplitude oscillations

ρ = ρ0 + δρe−iωt + δρ†e−iωt

gives equation for δρω, the transition density to the state with with
energy E =  hω. Square of matrix element connecting ground state
of operator f to that state is (schematically)

Im
(∫

d~r f(~r)δρω(~r)
)
.

This is the “random phase approximation” (RPA).



Isovector Dipole in RPA
Strength Distribution Transition Densities
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Generalization to Include Pairing
HFB (Hartree-Fock-Bogoliubov) is the most general “mean-field”
theory in these kinds of operators:

αa =
∑

c

(
U∗acac + V∗aca†c

)
, α

†
a =

∑
c

(
Uaca†c + Vacac

)
,

Ground state is the “vacuum” for these operators.
In addition to having ordinary density matrix ρ(~r), one also has
“pairing density:”

κ(~r) ≡ 〈0| a(~r)a(~r) |0〉 .

Quasiparticle vacuum violates particle-number conservation, but
includes physics of correlated pairs.
Energy functional E[ρ] replaced by E[ρ, κ]. Minimizing leads to HFB
equations for U and V.
Generalization to linear response is called the quasiparticle random
phase approximation (QRPA).



Gamow-Teller Strength
i.e. Square of Gamow-Teller Transition Matrix Element

Transition operators
are those that generate
allowed β decay:

~f = ~στ± .

Gamow-Teller strength from 208Pb
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QRPA Calculations of 0νββ Decay
These very different in spirit from shell-model calculations, which
involve many Slater determinants restricted to a few
single-particle shells. QRPA involves small oscillations around a
single determinant, but can involve many shells (20 or more).

Recall that the 0ν operator has terms that look like

M̂ =
∑

ij

H(rij)σi · σj .

where i and j label the particles. QRPA evaluates this by expanding
in multipoles, and inserting set of intermediate-nucleus states:

〈F| M̂ |I〉 =
∑

ij,JM,N

〈F| Ôi,JM |N〉 〈N| Ôj,JM |I〉 ,

and uses calculated transition densities to evaluate the matrix
elements.



More on QRPA
Strength of neutron-proton pairing in effective interaction is not
well determined by data, often fit to reproduce 2ν lifetime.

for 76Ge and a five orbits (d5/2, d3/2, s1/2, g7/2, h11/2) for
130Te and 136Xe. These s.p. sets are free of the spurious
center-of-mass states, but obviously miss a large part of
the GT strength as well as of the strength corresponding
to the higher multipoles. In order to describe GT transi-
tions between low-lying states in the NSM, it is necessary
to quench the corresponding strength. This is most con-
veniently formally achieved by using gA = 1.0 instead of
the free nucleon value of gA = 1.25. We follow this pre-
scription in our attempt to use this smallest s.p. space,
and only there.

It appears that it is impossible to describe the 2νββ

decay in such s.p. space using QRPA or RQRPA, and the
nucleon-nucleon potentials employed in this work. One
would have to renormalize the particle-particle block too
much, with gpp ∼ 2.0, unlike the rather modest renor-
malization shown in Table I. With such large value of
gpp the interaction is too far removed from the G-matrix
used in the rest of this work. Therefore, one cannot ex-
pect to obtain sensible 0ν matrix elements. In fact, we
obtained very small matrix elements in this case for 130Te
and 136Xe, while, perhaps accidentally, for 76Ge they are
in a crude agreement with the NSM result [24].

0.7 0.8 0.9 1.0 1.1 1.2 1.3
-0.25

0.00

0.25

9 levels

21 levels

-3.90

3.90

0.00
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0 ν

M
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 (
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 -1
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g
pp

FIG. 1. Dependence of the matrix elements M2νββ (left
scale, dashed lines) and M0νββ (right scale, full lines) on the
parameter gpp. Calculations were performed for 9 and 21
s.p. levels for 76Ge as indicated; the Nijmegen potential and
RQRPA method were used. The thin dotted horizontal line
indicates that by fixing gpp to reproduce the experimental
value M2νββ = 0.15 MeV−1 the value of M0νββ is also stabi-
lized.

We list the results with the three larger single-particle
bases in Table II which represents the most significant
part of the present work. As one can see by inspecting
the entries, one can draw two important conclusions:

• The resulting M0ν do not depend noticeably on the
form of the nucleon-nucleon potential used. That
is not an unexpected result.

• Even more importantly, with our choice of gpp the
results are also essentially independent on the size
of the s.p. basis. This is a much less obvious and
rather pleasing conclusion. It can be contrasted
with the result one would get for a constant gpp

independent on the size of the s.p. basis. The val-
ues of M0ν differ then between the small and large
bases by a factor of two or more.

The effect of the gpp adjustment is illustrated in Fig.
1, showing that our procedure leads to almost constant
M0ν matrix elements. On the other hand, by choosing a
fixed value of gpp the resulting M0ν matrix elements for
9 and 21 s.p. levels would differ substantially.

The entries in Table II are relatively close to each
other. To emphasize this feature, each calculated value is
treated as an independent determination and for each nu-
cleus the corresponding average 〈M0ν〉 matrix elements
(averaged over the three potentials and the three choices
of the s.p. space) is evaluated, as well as its variance σ

σ2 =
1

N − 1

N
∑

i=1

(M0ν
i − 〈M0ν〉)2, (N = 9). (5)

These quantities (with the value of σ in paretheses) are
shown in Table III. Not only is the variance substantially
less than the average value, but the results of QRPA, al-
beit slightly larger, are quite close to the RQRPA values.
The averaged nuclear matrix elements for both methods
and their variance are shown in Fig. 2.

Combining the average 〈M0ν〉 with the phase-space
factors listed in Table II the expected half-lives (for
RQRPA and 〈mν〉 = 50 meV, the scale of neutrino masses
suggested by oscillation experiments) are also shown in
Table III. These predicted half-lives are a bit longer (par-
ticularly for the last three nuclei on our list) then vari-
ous QRPA calculations usually predict. They are faster,
however, then the shell model results of Ref. [24].

TABLE III. Averaged 0νββ nuclear matrix elements
〈M0ν〉 and their variance σ (in parentheses) evaluated in the
RQRPA and QRPA. In column 4 the 0νββ half-lives evalu-
ated with the RQRPA average nuclear matrix element and
for the 〈mν〉 = 50 meV are shown.

Nucleus RQRPA QRPA T1/2 (in 1027 y for 〈mν〉 = 50 meV

76Ge 2.40(0.07) 2.68(0.06) 2.3
100Mo 1.16(0.11) 1.28(0.09) 1.4
130Te 1.29(0.11) 1.35(0.13) 1.1
136Xe 0.98(0.09) 1.03(0.08) 1.9

4

Problem: Computation of transition densities for initial and final
nuclei are completely separate. No way to match the states N
computed in initial-nucleus and final-nucleus QRPA.” Must cheat.



Beyond Mean-Field Theory: Generator Coordinates
Sometime called “EDF”

Sometimes a single mean field won’t do, even with density
functionals that includes the effects of many correlations.

Basic idea: Construct set of mean fields
by constraining coordinate(s), e.g.
quadrupole moment:

〈Q0〉 ≡ 〈
∑

i

r2
i Y2,0

i 〉 .

Minimize

〈H ′〉 = 〈H〉− λ 〈Q0〉

for a whole range of the coordinate
〈Q0〉. Then diagonalize H in space of
quasiparticle vacua (projected onto
good particle number and angular
momentum) with different 〈Q0〉.

Collective wave functions
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Figure 1: (a)-(c) Collective wave functions, GT intensity with, (d)-(f) full and, (g)-(i) constant spatial
dependence and (j)-(l) pairing energies for (left) A = 48, (middle) A = 76 and (right) A = 150 decays.
Shaded areas corresponds to regions explored by the collective wave functions.

different deformations (β ≈ +0.40 and β ≈ +0.25, respectively). According to Eq. 6, the final results
depend on the convolution of the collective wave functions with the 0νββ matrix elements as a function
of deformation. In Fig. 1(d)-(f) we show schematically -shaded circles- the areas of the GT intensity
explored by the collective wave functions. We observe, on the one hand, that configuration mixing is
very important in the final result because several shapes can contribute to the value of NME, especially
in A = 48 and 76. On the other hand, we see that the regions with largest values of the GT intensity
are excluded by the collective wave functions. For example, calculations assuming spherical symmetry
give systematically larger NME -except for A = 96- as we show in Figure 2.

To summarize, we have presented a method for calculating 0νββ nuclear matrix elements based on
Gogny D1S Energy Density Functional including beyond mean field effects such as symmetry restoration
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Figure 1: (a)-(c) Collective wave functions, GT intensity with, (d)-(f) full and, (g)-(i) constant spatial
dependence and (j)-(l) pairing energies for (left) A = 48, (middle) A = 76 and (right) A = 150 decays.
Shaded areas corresponds to regions explored by the collective wave functions.

different deformations (β ≈ +0.40 and β ≈ +0.25, respectively). According to Eq. 6, the final results
depend on the convolution of the collective wave functions with the 0νββ matrix elements as a function
of deformation. In Fig. 1(d)-(f) we show schematically -shaded circles- the areas of the GT intensity
explored by the collective wave functions. We observe, on the one hand, that configuration mixing is
very important in the final result because several shapes can contribute to the value of NME, especially
in A = 48 and 76. On the other hand, we see that the regions with largest values of the GT intensity
are excluded by the collective wave functions. For example, calculations assuming spherical symmetry
give systematically larger NME -except for A = 96- as we show in Figure 2.

To summarize, we have presented a method for calculating 0νββ nuclear matrix elements based on
Gogny D1S Energy Density Functional including beyond mean field effects such as symmetry restoration
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Level of Agreement So Far

Significant spread. And all
the models could be missing
important physics.

Uncertainty hard to quantify.
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