Lecture IX: Ab Initio N(uclear Structure for Double-Beta Decay

J. Engel

November 1, 2017

- Amherst Center for Fundamental Interactions

Physics at the interface: Energy, Intensity, and Cosmic frontiers
University of Massachusetts Amherst

Ab Initio Shell Model

Partition of Full Hilbert Space

$P=$ valence space
$Q=$ the rest

Task: Find unitary transformation to make H block-diagonal in P and Q, with $H_{\text {eff }}$ in P reproducing d most important eigenvalues.

Shell model done here.

Ab Initio Shell Model

Partition of Full Hilbert Space

$P=$ valence space
$Q=$ the rest

Task: Find unitary transformation to make H block-diagonal in P and Q, with $H_{\text {eff }}$ in P reproducing d most important eigenvalues.

Shell model done here.

Ab Initio Shell Model

Partition of Full Hilbert Space

$P=$ valence space
$Q=$ the rest

Task: Find unitary transformation to make H block-diagonal in P and Q, with $H_{\text {eff }}$ in P reproducing d most important eigenvalues.

For transition operator \widehat{M}, must apply same transformation to get $\widehat{M}_{\text {eff }}$.

Shell model done here.

Ab Initio Shell Model

Partition of Full Hilbert Space

$P=$ valence space
$Q=$ the rest

Task: Find unitary transformation to make H block-diagonal in P and Q, with $H_{\text {eff }}$ in P reproducing d most important eigenvalues.

For transition operator \widehat{M}, must apply same transformation to get $\widehat{M}_{\text {eff }}$.

As difficult as solving full problem. But idea is that N-body effective operators may not be important for $\mathrm{N}>2$ or 3 .

Method 1: Coupled-Cluster Theory

Ground state in closed-shell nucleus:

States in closed-shell + a few constructed in similar way.

Method 1: Coupled-Cluster Theory

Ground state in closed-shell nucleus:

$$
\left|\Psi_{0}\right\rangle=e^{T}\left|\varphi_{\mathrm{O}}\right\rangle \quad T=\sum_{i, m} t_{i}^{m} a_{m}^{\dagger} a_{i}+\sum_{i, m n} \frac{1}{4} t_{i j}^{m n} a_{m}^{\dagger} a_{n}^{\dagger} a_{i} a_{j}+\ldots
$$

States in closed-shell + a few constructed in similar way.
Construction of Unitary Transformation to Shell Model for ${ }^{76} \mathrm{Ge}$:

1. Calculate low-lying spectra of ${ }^{56} \mathrm{Ni}+1$ and 2 nucleons (and 3 nucleons in some approximation), where full calculation feasible.
2. Do Lee-Suzuki mapping of lowest eigenstates onto $f_{5 / 2} \mathrm{Pg}_{9 / 2}$ shell, determine effective Hamiltonian and decay operator.
Lee-Suzuki maps d lowest eigenvectors to orthogonal vectors in shell model space in way that minimizes difference between mapped and original vectors.
3. Use these operators in shell-model calculation of matrix element for ${ }^{76} \mathrm{Ge}$ (with analogous plans for other elements).

Option 2: In-Medium Similarity Renormalization Group

Flow equation for effective Hamiltonian. Asymptotically decouples shell-model space.

$$
\frac{d}{d s} H(s)=[\eta(s), H(s)], \quad \eta(s)=\left[H_{d}(s), H_{o d}(s)\right], \quad H(\infty)=H_{\mathrm{eff}}
$$

Hergert et al.
Trick is to keep all 1- and 2-body terms in H at each step after normal ordering. Like truncation of coupled-clusters expansion.

If shell-model space contains just a single state, approach yields ground-state energy. If it is a typical valence space, result is effective interaction and operators.

Ab Initio Calculations of Spectra

Coupled Cluster Test in Shell-Model Space: ${ }^{48} \mathrm{Ca} \longrightarrow{ }^{48} \mathrm{Ti}$

 No Shell-Model MappingFrom G. Hagen

0^{+}
$\mathbf{1}^{+}$
3^{+}
2^{+}

0^{+}

EOM CCSDT-1
Exact
${ }^{48}$ Ti Spectrum

Coupled Cluster Test in Shell-Model Space: ${ }^{48} \mathrm{Ca} \longrightarrow{ }^{48} \mathrm{Ti}$

 No Shell-Model MappingFrom G. Hagen

EOM CCSDT-1 ${ }^{48}$ Ti Spectrum Exact
$\beta \beta O v$ Matrix Element

	GT	F	T
Exact	.85	.15	-.06
CCSDT-1	.86	.17	-.08

Full Chiral NN + NNN Calculation (Preliminary)

From G. Hagen

Method	$E 3_{\max }$	$M^{0 v}$
CC-EOM (2p2h)	0	1.23
CC-EOM (3p3h)	10	0.33
CC-EOM (3p3h)	12	0.45
CC-EOM (3p3h)	14	0.37
CC-EOM (3p3h)	16	0.36
SDPFMU-DB	-	1.12
SDPFMU	-	1.00

Last two are two-shell shell-model calculations with effective interactions.

Complementary Ideas: Density Functionals and GCM

Construct set of mean fields by constraining coordinate(s), e.g. quadrupole moment $\left\langle Q_{0}\right\rangle$. Then diagonalize H in space of symmetry-restored quasiparticle vacua with different $\left\langle Q_{0}\right\rangle$.

Robledo et al.: Minima at $\beta_{2} \approx \pm .15$

Collective wave functions

Rodriguez and Martinez-Pinedo:
Wave functions peaked at $\beta_{2} \approx \pm .2$

We're now including crucial isoscalar pairing amplitude as collective coordinate...

Capturing Collectivity with Generator Coordinates

How Important are Collective Degrees of Freedom?
Can extract collective separable interaction -- monopole + pairing + isoscalar pairing + spin-isospin + quadrupole -- from shell model interaction, see how well it mimics full interaction for $\beta \beta$ matrix elements in light $p f$-shell nuclei.

GCM Example: Proton-Neutron (pn) Pairing

Can build possibility of pn correlations into mean field. They are frozen out in mean-field minimum, but included in GCM.

Collective pn-pairing wave functions

Proton-neutron pairing significantly reduces matrix element.

GCM in Shell-Model Spaces

Combining DFT-like and Ab Initio Methods

GCM incorporates some correlations that are hard to capture automatically (e.g. shape coexistence). So use it to construct initial "reference" state, let IMSRG, do the rest.

Test in single shell for "simple" nucleus.

In progress:

- Improving GCM-based flow.
- Coding IMSRG-evolved $\beta \beta$ transition operator.
t To do: applying with DFT-based GCM.

Improving RPA/QRPA

RPA produces states in intermediate nucleus, but form is restricted to $1 \mathrm{p}-1 \mathrm{~h}$ excitations of ground state. Second RPA adds $2 \mathrm{p}-2 \mathrm{~h}$ states.

Issue Facing All Models: " g_{A} "

40-Year-Old Problem: Effective g_{A} needed for single-beta and two-neutrino double-beta decay in shell model and QRPA.

If $0 v$ matrix elements quenched by same amount as $2 v$ matrix elements, experiments will be much less sensitive; rates go like fourth power of g_{A}.

Arguments Suggesting Strong Quenching of Ov

- Both β and $2 v \beta \beta$ rates are strongly quenched, by consistent factors.
- Forbidden (2^{-}) decay among low-lying states appears to exhibit similar quenching.
- Quenching due to correlations shows weak momentum dependence in low-order perturbation theory.

Arguments Suggesting Weak Quenching of Ov

- Many-body currents seem to suppress $2 v$ more than $0 v$.
- Enlarging shell model space to include some effects of high- j spin-orbit partners reduces $2 v$ more than $0 v$.
- Neutron-proton pairing, related to spin-orbit partners and investigated pretty carefully, suppresses $2 v$ more than $0 v$.

Large r contributes more to $2 v$.

Effects of Closure on Quenching

Two-level model:

Assume

$$
\begin{array}{ll}
\text { Lower levels: } & \left\langle\mathrm{O}_{\mathrm{M}}\right| \beta\left|\mathrm{O}_{\mathrm{I}}\right\rangle=\left\langle\mathrm{O}_{\mathrm{F}}\right| \beta\left|\mathrm{O}_{\mathrm{M}}\right\rangle \equiv \mathrm{M}_{\beta} \\
\text { Upper levels: } & \left\langle 1_{\mathrm{M}}\right| \beta\left|1_{\mathrm{I}}\right\rangle=\left\langle 1_{\mathrm{F}}\right| \beta\left|1_{\mathrm{M}}\right\rangle=-\alpha \mathrm{M}_{\beta}
\end{array}
$$

Operator doesn't connect lower and upper levels.
"Shell-model" calculation gets

$$
M_{\beta \beta}=\frac{M_{\beta}^{2}}{E_{0}} \quad \quad M_{\beta \beta}^{\mathrm{cl}}=M_{\beta}^{2}
$$

Effects of Closure on Quenching (Cont.)

In full calculation, low and high-energy states mix:

$$
\begin{aligned}
\left|0^{\prime}\right\rangle & =\cos \theta|0\rangle+\sin \theta|1\rangle \\
\left|1^{\prime}\right\rangle & =-\sin \theta|0\rangle+\cos \theta|1\rangle
\end{aligned}
$$

in all three nuclei. Then we get

$$
\begin{aligned}
M_{\beta}^{\prime} & =M_{\beta}\left(\cos ^{2} \theta-\alpha \sin ^{2} \theta\right)^{2} \\
M_{2 v}^{\prime} & =M_{\beta}^{\prime 2}\left(\frac{1}{E_{0}}+\frac{(\alpha+1)^{2} \sin ^{2} \theta \cos ^{2} \theta}{E_{1}}\right) \\
M_{2 v}^{\prime \mathrm{cl}} & =M_{\beta}^{\prime 2}\left(1+(\alpha+1)^{2} \sin ^{2} \theta \cos ^{2} \theta\right)
\end{aligned}
$$

Effects of Closure on Quenching (Cont.)

In full calculation, low and high-energy states mix:

$$
\begin{aligned}
\left|0^{\prime}\right\rangle & =\cos \theta|0\rangle+\sin \theta|1\rangle \\
\left|1^{\prime}\right\rangle & =-\sin \theta|0\rangle+\cos \theta|1\rangle
\end{aligned}
$$

in all three nuclei. Then we get

$$
\begin{aligned}
M_{\beta}^{\prime} & =M_{\beta}\left(\cos ^{2} \theta-\alpha \sin ^{2} \theta\right)^{2}
\end{aligned}<M_{\beta}
$$

Effects of Closure on Quenching (Cont.)

In full calculation, low and high-energy states mix:

$$
\begin{aligned}
\left|0^{\prime}\right\rangle & =\cos \theta|0\rangle+\sin \theta|1\rangle \\
\left|1^{\prime}\right\rangle & =-\sin \theta|0\rangle+\cos \theta|1\rangle
\end{aligned}
$$

in all three nuclei. Then we get

$$
\begin{aligned}
& M_{\beta}^{\prime}=M_{\beta}\left(\cos ^{2} \theta-\alpha \sin ^{2} \theta\right)^{2} \\
& M_{2 v}^{\prime}=M_{\beta}^{\prime 2}\left(\frac{1}{E_{0}}+\frac{(\alpha+1)^{2} \sin ^{2} \theta \cos ^{2} \theta}{E_{1}}\right)^{E_{0} \ll E_{1}} \approx \frac{M_{\beta}^{\prime 2}}{E_{0}} \\
& M_{2 v}^{\prime \mathrm{cl}}=M_{\beta}^{\prime 2}\left(1+(\alpha+1)^{2} \sin ^{2} \theta \cos ^{2} \theta\right)
\end{aligned}
$$

Effects of Closure on Quenching (Cont.)

In full calculation, low and high-energy states mix:

$$
\begin{aligned}
\left|0^{\prime}\right\rangle & =\cos \theta|0\rangle+\sin \theta|1\rangle \\
\left|1^{\prime}\right\rangle & =-\sin \theta|0\rangle+\cos \theta|1\rangle
\end{aligned}
$$

in all three nuclei. Then we get

$$
\begin{aligned}
M_{\beta}^{\prime}=M_{\beta}\left(\cos ^{2} \theta-\alpha \sin ^{2} \theta\right)^{2} & <M_{\beta} \\
M_{2 v}^{\prime}=M_{\beta}^{\prime 2}\left(\frac{1}{E_{0}}+\frac{(\alpha+1)^{2} \sin ^{2} \theta \cos ^{2} \theta}{E_{1}}\right)^{E_{0}} \ll E_{1} & \approx \frac{M_{\beta}^{\prime 2}}{E_{0}} \\
M_{2 v}^{\prime \mathrm{cl}}=M_{\beta}^{\prime 2}\left(1+(\alpha+1)^{2} \sin ^{2} \theta \cos ^{2} \theta\right) & >M_{\beta}^{\prime 2} \\
& =M_{2 v}^{\mathrm{cl}}, \quad \alpha=1
\end{aligned}
$$

So if $\alpha=1$, the closure matrix element is not suppressed at all. If $\alpha=0$, it's suppressed as much as the single $-\beta$ matrix element, but still less than the non-closure $\beta \beta$ matrix element.

We Hope to Resolve the Issue Soon

Problem must be due to some combination of:

1. Truncation of model space.

Should be fixable in ab-initio shell model, which compensates effects of truncation via effective operators.
2. Many-body weak currents.

Size still not clear, particularly for $0 \nu \beta \beta$ decay, where current is needed at finite momentum transfer q.

Leading terms in chiral EFT for finite q only recently worked out. Careful fits and use in decay computations will happen in next year or two.

Benchmarking and Error Estimation

Systematic Error:

1. Calculate and benchmark spectra and transition rates (including β decay) with all good methods.
2. Calculate $\beta, 2 v \beta \beta$ and $0 \nu \beta \beta$ matrix elements in light nuclei $-{ }^{6} \mathrm{He}$, ${ }^{8} \mathrm{He},{ }^{22} \mathrm{O},{ }^{24} \mathrm{O}$ - with methods discussed here plus no-core shell model and quantum Monte Carlo.
3. Do the same in ${ }^{48} \mathrm{Ca}$.
4. Test effects of "next order" in EFT Hamilton, coupled-cluster truncation, restrictions to N -body operators, etc.
5. Benchmark methods against spectra and electromagnetic transitions in $A=76,82,100,130,136,150$.

Statistical Error:

Chiral-EFT Hamiltonians contain many parameters, fit to data. Posterior distributions (for Bayesian analysis) or covariance matrices (for linear regression) developed to quantify statistical errors for $\beta \beta$ matrix elements.

Finally...

Existence of topical collaboration will speed progress in next few years.
Goal is accurate matrix elements with quantified uncertainty by end of collaboration (5 years from now).

That's all; thanks for listening.

Finally...

Existence of topical collaboration will speed progress in next few years.
Goal is accurate matrix elements with quantified uncertainty by end of collaboration (5 years from now).

That's all; thanks for listening.

