OLD AND NEW RESULTS FOR HADRONIC-LIGHT-BY-LIGHT

Study of Strongly Interacting Matter

* HadronPhysics**

* **

Johan Bijnens

Lund University

Vetenskapsrådet

bijnens@thep.lu.se http://www.thep.lu.se/~bijnens http://www.thep.lu.se/~bijnens/chpt.html

Hadronic Probes of Fundamental Symmetries, Amherst, 6-8 March 2014

Old and new results HLbL results

Johan Bijnens

Overview

contributions

HLbL

Future

Overview

- Overview
- Main contributions
 - QED
 - HO hadronic
- 3 HLbL
 - General properties
 - π^0 -exchange
 - π -loop: new stuff is here
 - Quark-loop
 - Scalar
 - a₁-exchange
 - Summary
- 4 Future
 - Theory
 - Experiment
- Conclusions

Old and new results HLbL results

Johan Bijnens

)verview

lain ontributions

LDL

uture

Literature

• Final experimental paper:

G. W. Bennett *et al.* [Muon G-2 Collaboration], "Final Report of the Muon E821 Anomalous Magnetic Moment Measurement at BNL," Phys. Rev. D **73** (2006) 072003 [hep-ex/0602035].

• Review 1:

F. J. M. Farley and Y. K. Semertzidis, "The 47 years of muon g-2," Prog. Part. Nucl. Phys. **52** (2004) .

Review 2:

J. P. Miller, E. de Rafael and B. L. Roberts, "Muon (g-2): Experiment and theory," Rept. Prog. Phys. 70 (2007) 795 [hep-ph/0703049].

• Review 3:

F. Jegerlehner and A. Nyffeler, "The Muon g-2," Phys. Rept. **477** (2009) 1 [arXiv:0902.3360 [hep-ph]].

Old and new results HLbL results

Johan Bijnens

Overview

contribution

.___

-uture

Lonciusions

Literature

Lectures:

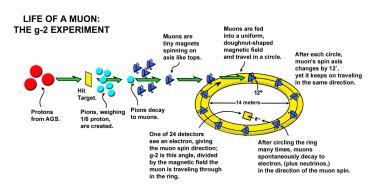
M. Knecht, Lect. Notes Phys. **629** (2004) 37 [hep-ph/0307239].

- "Final" HLBL number:
 - J. Bijnens and J. Prades, Mod. Phys. Lett. A 22 (2007) 767 [hep-ph/0702170].
 - J. Prades, E. de Rafael and A. Vainshtein, "Hadronic Light-by-Light Scattering Contribution to the Muon Anomalous Magnetic Moment," (Advanced series on directions in high energy physics. 20) [arXiv:0901.0306 [hep-ph]].
- New stuff here:

JB, Mehran Zahiri Abyaneh, Johan Relefors HLbL pion loop contribution arXiv:1208.3548, arXiv:1208.2554, arXiv:1308.2575 and to be published

Old and new results HLbL results

Johan Bijnens


Overview

Main contributions

ILDL

Future

Old and new results HLbL results

Johan Bijnens

Overview

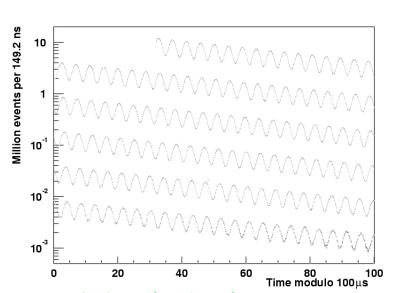
Main contribution

HLbL

Future

Old and new results HLbL results

Johan Bijnens


Overview

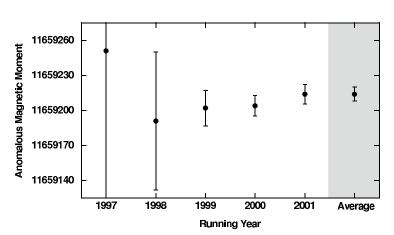
Main contributions

TLDL

Future

Old and new results HLbL results

Johan Bijnens


Overview

Main contributions

HLbL

Phys.Rev. D73 (2006) 072003 [hep-ex/0602035]

Phys.Rev. D73 (2006) 072003 [hep-ex/0602035]

2001: μ^- , others μ^+

Old and new results HLbL results

Johan Bijnens

Overview

Main contributions

.....

Future

Muon g-2: overview

- in terms of the anomaly $a_{\mu}=(g-2)/2$
- Data dominated by BNL E821 (statistics)(systematic) $a_{\mu^+}^{\rm exp}=11659204(6)(5)\times 10^{-10}$ $a_{\mu^-}^{\rm exp}=11659215(8)(3)\times 10^{-10}$ $a_{\mu}^{\rm exp}=11659208.9(5.4)(3.3)\times 10^{-10}$
- Theory is off somewhat (electroweak)(LO had)(HO had) $a_{\mu}^{\rm SM} = 11659180.2(0.2)(4.2)(2.6) \times 10^{-10}$
- $\Delta a_{\mu} = a_{\mu}^{\text{exp}} a_{\mu}^{\text{SM}} = 28.7(6.3)(4.9) \times 10^{-10} \text{ (PDG)}$
- E821 goes to Fermilab, expect factor of four in precision
- Note: g agrees to $3 \cdot 10^{-9}$ with theory
- Many BSM models CAN predict a value in this range (often a lot more or a lot less)
- Numbers taken from PDG2012, see references there

Old and new results HLbL results

Johan Bijnens

Overview

contributions

ILDL

-uture

Lonciusions

Summary of Muon g-2 contributions

	$10^{10}a_{\mu}$	
exp	11 659 208.9	6.3
theory	11 659 180.2	5.0
QED	11 658 471.8	0.0
EW	15.4	0.2
LO Had	692.3	4.2
HO HVP	-9.8	0.1
HLbL	10.5	2.6
difference	28.7	8.1

- Error on LO had all e^+e^- based OK au based 2 σ
- Error on HLbL
- Errors added quadratically
- 3.5 σ
- Difference:4% of LO Had270% of HLbL1% of leptonic LbL

Old and new results HLbL results

Johan Bijnens

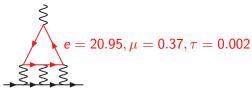
Overview

contribution

uture

Conclusion

Generic SUSY: $12.3 \times 10^{-10} \left(\frac{100 \text{ GeV}}{M_{SUSY}}\right)^2 \tan \beta$ $M_{SUSY} \approx 66 \text{ GeV} \sqrt{\tan \beta}$



Muon g-2: QED

$$a_{\mu}^{\text{QED}} = \frac{\alpha}{2\pi} + 0.765857410(27) \left(\frac{\alpha}{\pi}\right)^2 + 24.05050964(43) \left(\frac{\alpha}{\pi}\right)^3 + 130.8055(80) \left(\frac{\alpha}{\pi}\right)^4 + 663(20) \left(\frac{\alpha}{\pi}\right)^5 + \cdots$$

- First three loops known analytically
- four-loops fully done numerically
- Five loops estimate
- Kinoshita, Laporta, Remiddi, Schwinger,...
- α fixed from the electron g-2: $\alpha = 1/137.035999084(51)$
- $a_{\mu}^{\text{QED}} = 11658471.809(0.015) \times 10^{-10}$
- Light-by-light surprisingly large: 2670×10^{-10}

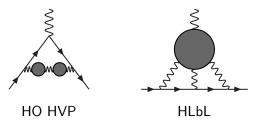
Old and new results HLbL results

Johan Bijnens

Overview

Main contributi

HO hadronic


ILDL

Future

Muon g-2: HO hadronic

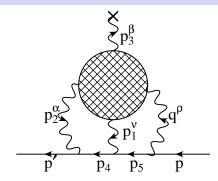
Two main types of contributions

- HO HVP is like LO Had, can be derived from $e^+e^- \rightarrow \text{hadrons}$. $a_{\mu}^{\text{HO HVP}} = -9.84(0.06) \times 10^{-10}$
- HLbL is the real problem: best estimate now: $a_{\mu}^{\mathrm{HLbL}}=10.5(2.6)\times10^{-10}$
- Note that the sum is very small: but not an indication of the error

Old and new results HLbL results

Johan Bijnens

Overview


Main contributions QED HO hadronic

ILDL

uture

HLbL: the main object to calculate

• Muon line and photons: well known

The blob: fill in with hadrons/QCD

Trouble: low and high energy very mixed

 Double counting needs to be avoided: hadron exchanges versus quarks

Old and new results HLbL results

Johan Bijnens

ны

properties π^0 -exchange π -loop

Scalar a₁-exchange

A separation proposal: a start

E. de Rafael, "Hadronic contributions to the muon g-2 and low-energy QCD," Phys. Lett. **B322** (1994) 239-246. [hep-ph/9311316].

- ullet Use ChPT p counting and large N_c
- p^4 , order 1: pion-loop
- p^8 , order N_c : quark-loop and heavier meson exchanges
- p^6 , order N_c : pion exchange

Does not fully solve the problem only short-distance part of quark-loop is really p^8 but it's a start

Old and new results HLbL results

Johan Bijnens

Overview

contributions

HLbL

General properties π^0 -exchange π -loop Quark-loop Scalar a_1 -exchange

Future

A separation proposal: a start

E. de Rafael, "Hadronic contributions to the muon g-2 and low-energy QCD," Phys. Lett. **B322** (1994) 239-246. [hep-ph/9311316].

- ullet Use ChPT p counting and large N_c
- p^4 , order 1: pion-loop
- p^8 , order N_c : quark-loop and heavier meson exchanges
- p^6 , order N_c : pion exchange

Implemented by two groups in the 1990s:

- Hayakawa, Kinoshita, Sanda: meson models, pion loop using hidden local symmetry, quark-loop with VMD, calculation in Minkowski space
- JB, Pallante, Prades: Try using as much as possible a consistent model-approach, ENJL, calculation in Euclidean space

Old and new results HLbL results

Johan Bijnens

Overview

contributions

HLbL

General properties π^0 -exchange π -loop

Scalar a₁-exchange

uture

$$\Pi^{\rho\nu\alpha\beta}(p_1, p_2, p_3) =$$

$$q$$

$$p_1$$

$$p_2$$

$$p_3$$

Actually we really need $\frac{\delta \Pi^{\rho\nu\alpha\beta}(p_1, p_2, p_3)}{\delta p_{3\lambda}}$

Old and new results HLbL results

Johan Bijnens

Overview

Main

HLbL

General properties π^0 -exchange

 π -loop Quark-loop Scalar

a₁-exchange Summary

Future

$\Pi^{\rho\nu\alpha\beta}(p_1,p_2,p_3)$

- In general 138 Lorentz structures (but only 28 contribute to g-2)
- Using $q_{\rho}\Pi^{\rho\nu\alpha\beta} = p_{1\nu}\Pi^{\rho\nu\alpha\beta} = p_{2\alpha}\Pi^{\rho\nu\alpha\beta} = p_{3\beta}\Pi^{\rho\nu\alpha\beta} = 0$ 43 gauge invariant structures
- Bose symmetry relates some of them
- All depend on p_1^2 , p_2^2 and q^2 , but before derivative and $p_3 \rightarrow 0$ also p_3^2 , $p_1 \cdot p_2$, $p_1 \cdot p_3$
- Compare HVP: one function, one variable
- General calculation from experiment difficult to see how
- In four photon measurement: lepton contribution

Old and new results HLbL results

Johan Bijnens

Overview

Main contributions

HLbL

General properties π^0 -exchange π -loop Quark-loop

a₁-exchange Summary

16/64

$$\int \frac{d^4p_1}{(2\pi)^4} \int \frac{d^4p_2}{(2\pi)^4}$$
 plus loops inside the hadronic part

- 8 dimensional integral, three trivial,
- 5 remain: $p_1^2, p_2^2, p_1 \cdot p_2, p_1 \cdot p_\mu, p_2 \cdot p_\mu$
- Rotate to Euclidean space:
 - Easier separation of long and short-distance
 - Artefacts (confinement) in models smeared out.
- More recent: can do two more using Gegenbauer techniques Knecht-Nyffeler, Jegerlehner-Nyffeler,JB-Zahiri-Abyaneh-Relefors
- P_1^2 , P_2^2 and Q^2 remain
- study $a_{\mu}^{\rm X}=\int dl_{P_1}dl_{P_2}a_{\mu}^{\rm XLL}=\int dl_{P_1}dl_{P_2}dl_{Q}a_{\mu}^{\rm XLLQ}$ $l_P=\ln\left(P/{\rm G}eV\right)$, to see where the contributions are
- Study the dependence on the cut-off for the photons

Old and new results HLbL results

Johan Bijnens

Overview

contributions

lLbL

General properties π^0 -exchange π -loop

Scalar a₁-exchange Summary

uture

$$\int \frac{d^4 p_1}{(2\pi)^4} \int \frac{d^4 p_2}{(2\pi)^4}$$
 plus loops inside the hadronic part

- 8 dimensional integral, three trivial,
- 5 remain: $p_1^2, p_2^2, p_1 \cdot p_2, p_1 \cdot p_\mu, p_2 \cdot p_\mu$
- Rotate to Euclidean space:
 - Easier separation of long and short-distance
 - Artefacts (confinement) in models smeared out.
- More recent: can do two more using Gegenbauer techniques Knecht-Nyffeler, Jegerlehner-Nyffeler,JB-Zahiri-Abyaneh-Relefors
- P_1^2 , P_2^2 and Q^2 remain
- study $a_{\mu}^{\rm X} = \int dl_{P_1} dl_{P_2} a_{\mu}^{\rm XLL} = \int dl_{P_1} dl_{P_2} dl_{Q} a_{\mu}^{\rm XLLQ}$ $l_P = \ln{(P/{\rm G}eV)}$, to see where the contributions are
- Study the dependence on the cut-off for the photons

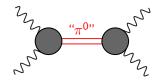
Old and new results HLbL results

Johan Bijnens

Overview

contributions

HLbL


General properties π^0 -exchange π -loop Quark-loop

Quark-loop Scalar a₁-exchange

Future

π^0 exchange

- " π^0 " = $1/(p^2 m_\pi^2)$
- The blobs need to be modelled, and in e.g. ENJL contain corrections also to the $1/(p^2-m_\pi^2)$
- Pointlike has a logarithmic divergence
- Numbers π^0 , but also η, η'

Old and new results HLbL results

Johan Bijnens

Overview

Main contributions

General properties π^0 -exchange

 π -loop Quark-loop Scalar a_1 -exchange

ummary

Future

π^0 exchange

• BPP:

$$a_{\mu}^{\pi^0} = 5.9(0.9) \times 10^{-10}$$

• Nonlocal quark model:

$$a_{\mu}^{\pi^0}=6.27 imes10^{-10}$$

DSE model:

$$a_{\mu}^{\pi^0} = 5.75 \times 10^{-10}$$

Goecke, Fischer and Williams, Phys.Rev.D83(2011)094006[1012.3886]

A. E. Dorokhov, W. Broniowski, Phys.Rev. D78 (2008)073011. [0805.0760]

LMD+V:

$$a_{\mu}^{\pi^0} = (5.8 - 6.3) \times 10^{-10}$$

M. Knecht, A. Nyffeler, Phys. Rev. **D65**(2002)073034, [hep-ph/0111058]

• Formfactor inspired by AdS/QCD: $a_{11}^{\pi^0} = 6.54 \times 10^{-10}$

Cappiello, Cata and D'Ambrosio, Phys.Rev.D83(2011)093006 [1009.1161]

• Chiral Quark Model: $a_{\mu}^{\pi^0}=6.8 imes 10^{-10}$

D. Greynat and E. de Rafael, JHEP 1207 (2012) 020 [1204.3029].

- Constraint via magnetic susceptibility: $a_{\mu}^{\pi^0} = 7.2 \times 10^{-10}$ A. Nyffeler, Phys. Rev. D **79** (2009) 073012 [0901.1172].
- All in reasonable agreement

Old and new results HLbL results

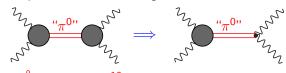
Johan Bijnens

Overview

Main contributions

HLbL

General properties π⁰-exchange


Quark-loop Scalar a₁-exchange

Future

MV short-distance: π^0 exchange

- K. Melnikov, A. Vainshtein, Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment revisited, Phys. Rev. D70 (2004) 113006. [hep-ph/0312226]
- take $P_1^2 \approx P_2^2 \gg Q^2$: Leading term in OPE of two vector currents is proportional to axial current
- $\Pi^{\rho\nu\alpha\beta} \propto \frac{P_{\rho}}{P_{1}^{2}} \langle 0 | T \left(J_{A\nu} J_{V\alpha} J_{V\beta} \right) | 0 \rangle$
- AVV triangle anomaly: extra info
- Implemented via setting one blob = 1

• $a_{\mu}^{\pi^0} = 7.7 \times 10^{-10}$

Old and new results HLbL results

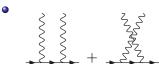
Johan Bijnens

Overview

Main contributions

General properties π⁰-exchange

π-loop Quark-loop Scalar


a₁-exchange Summary

uture

π^0 exchange

• The pointlike vertex implements shortdistance part, not only π^0 -exchange

Are these part of the quark-loop? See also in Dorokhov, Broniowski, Phys. Rev. D78(2008)07301

ullet BPP quarkloop + π^0 -exchange pprox MV π^0 -exchange

Old and new results HLbL results

Johan Bijnens

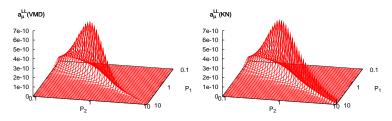
Overview

Main contributions

General properties π^0 -exchange

 π -loop Quark-loop Scalar a_1 -exchange

Summary


Future

π^0 exchange

 Which momentum regimes important studied: JB and J. Prades, Mod. Phys. Lett. A 22 (2007) 767 [hep-ph/0702170]

•
$$a_{\mu} = \int dl_1 dl_2 a_{\mu}^{LL}$$
 with $I_i = \log(P_i/GeV)$

Which momentum regions do what: volume under the plot $\propto a_{\mu}$

Old and new results HLbL results

Johan Bijnens

Overview

Main contributions

General properties π^0 -exchange

π-loop Quark-loop Scalar a₁-exchange

Future

Conclusio

Pseudoscalar exchange

- Point-like VMD: π^0 η and η' give 5.58, 1.38, 1.04.
- Models that include $U(1)_A$ breaking give similar ratios
- Pure large N_c models use this ratio
- The MV argument should give some enhancement over the full VMD like models
- Total pseudo-scalar exchange is about $a_{\mu}^{PS} = 8 10 \times 10^{-10}$
- AdS/QCD estimate (includes excited pseudo-scalars) $a_{\mu}^{PS} = 10.7 \times 10^{-10}$

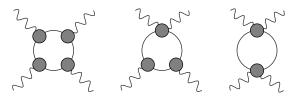
D. K. Hong and D. Kim, Phys. Lett. B 680 (2009) 480 [0904.4042]

Old and new results HLbL results

Johan Bijnens

Overview

Main contributions


HLbL
General properties π^0 -exchange

π-loop Quark-loop Scalar a₁-exchange

Summary

π -loop

- A bare π -loop (sQED) give about $-4 \cdot 10^{-10}$
- The $\pi\pi\gamma^*$ vertex is always done using VMD
- $\pi\pi\gamma^*\gamma^*$ vertex two choices:
 - ullet Hidden local symmetry model: only one γ has VMD
 - Full VMD
 - Both are chirally symmetric
 - The HLS model used has problems with π^+ - π^0 mass difference (due to not having an a_1)
- Final numbers quite different: -0.45 and -1.9 ($\times 10^{-10}$)
- ullet For BPP stopped at 1 GeV but within 10% of higher Λ

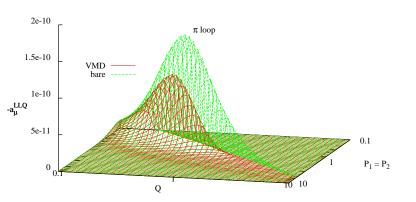
Old and new results HLbL results

Johan Bijnens

Overview

Main contributions

General properties


properties π^0 -exchange π -loop

Quark-loop Scalar a₁-exchange

uture

π loop: Bare vs VMD

- $\bullet \ \ \mathsf{plotted} \ \ a_{\mu}^{\mathit{LLQ}} \ \ \mathsf{for} \ \ P_1 = P_2$
- ullet $a_{\mu}=\int dl_{P_1}dl_{P_2}dl_Q~a_{\mu}^{LLQ}$
- $I_Q = \log(Q/1 \text{ GeV})$

Old and new results HLbL results

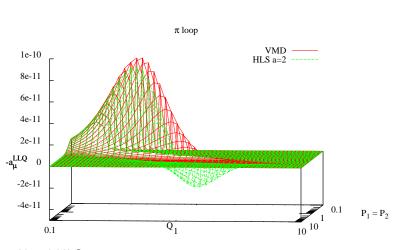
Johan Bijnens

Overview

Main contributions

HLbL

General properties π^0 -exchange


π-loop Quark-loop Scalar

a₁-exchange Summary

Future

π loop: VMD vs HLS

Usual HLS, a=2

Old and new results HLbL results

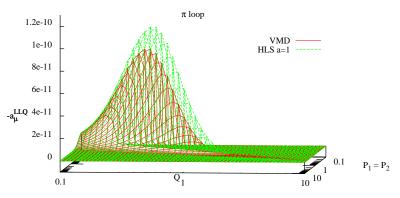
Johan Bijnens

Overview

Main

JI LI

General properties π^0 -exchange


 π^{U} -exchang π -loop

Scalar a₁-exchange

Future

π loop: VMD vs HLS

HLS with a = 1, satisfies more short-distance constraints

Old and new results HLbL results

Johan Bijnens

Overview

Main contributions

HLbL

General properties π^0 -exchange

π-loop Quark-loop

Scalar a₁-exchange

Future

Conclusio

π loop

- $\pi\pi\gamma^*\gamma^*$ for $q_1^2=q_2^2$ has a short-distance constraint from the OPE as well.
- HLS does not satisfy it
- full VMD does: so probably better estimate
- Ramsey-Musolf suggested to do pure ChPT for the π loop K. T. Engel, H. H. Patel and M. J. Ramsey-Musolf, "Hadronic light-by-light scattering and the pion polarizability," Phys. Rev. D **86** (2012) 037502 [arXiv:1201.0809 [hep-ph]].
- So far ChPT at p^4 done for four-point function in limit $p_1, p_2, q \ll m_\pi$ (Euler-Heisenberg plus next order)
- Polarizability $(L_9 + L_{10})$ up to 10%, charge radius 30%
- Both HLS and VMD have charge radius effect but not polarizability

Old and new results HLbL results

Johan Bijnens

Overview

Main contributions

HLbL
General properties π⁰-exchange π-loop

Quark-loop Scalar a₁-exchange Summary

Future

π loop

- $\pi\pi\gamma^*\gamma^*$ for $q_1^2=q_2^2$ has a short-distance constraint from the OPE as well.
- HLS does not satisfy it
- full VMD does: so probably better estimate
- Ramsey-Musolf suggested to do pure ChPT for the π loop K. T. Engel, H. H. Patel and M. J. Ramsey-Musolf, "Hadronic light-by-light scattering and the pion polarizability," Phys. Rev. D **86** (2012) 037502 [arXiv:1201.0809 [hep-ph]].
- So far ChPT at p^4 done for four-point function in limit $p_1, p_2, q \ll m_\pi$ (Euler-Heisenberg plus next order)
- ullet Polarizability (L_9+L_{10}) up to 10%, charge radius 30%
- Both HLS and VMD have charge radius effect but not polarizability

Old and new results HLbL results

Johan Bijnens

Overview

Main contributions

HLbL
General properties π⁰-exchange π-loop

Quark-loop Scalar a₁-exchange Summary

Future

π loop

- $\pi\pi\gamma^*\gamma^*$ for $q_1^2=q_2^2$ has a short-distance constraint from the OPE as well.
- HLS does not satisfy it
- full VMD does: so probably better estimate
- Ramsey-Musolf suggested to do pure ChPT for the π loop K. T. Engel, H. H. Patel and M. J. Ramsey-Musolf, "Hadronic light-by-light scattering and the pion polarizability," Phys. Rev. D **86** (2012) 037502 [arXiv:1201.0809 [hep-ph]].
- So far ChPT at p^4 done for four-point function in limit $p_1, p_2, q \ll m_\pi$ (Euler-Heisenberg plus next order)
- ullet Polarizability (L_9+L_{10}) up to 10%, charge radius 30%
- Both HLS and VMD have charge radius effect but not polarizability

Old and new results HLbL results

Johan Bijnens

Overview

Main contributions

HLbL

General properties π⁰-exchange π-loop

Quark-loop Scalar a₁-exchange Summary

Future

 π loop: L_9, L_{10}

- ChPT for muon g-2 at order p^6 is not powercounting finite so no prediction for a_μ exists.
- But can be used to study the low momentum end of the integral over P_1, P_2, Q
- The four-photon amplitude is finite still at two-loop order (counterterms start at order p^8)
- Add L₉ and L₁₀ vertices to the bare pion loop JB-Zahiri-Abyaneh
- Program the Euler-Heisenberg plus NLO result of Ramsey-Musolf et al. into our programs for a_{μ}
- Bare pion-loop and L_9 , L_{10} part in limit $p_1, p_2, q \ll m_\pi$ agree with Euler-Heisenberg plus next order analytically

Old and new results HLbL results

Johan Bijnens

Overview

Main contributions

HLbL

General properties π^0 -exchange π -loop

Quark-loop
Scalar
a1-exchange

Future

 π loop: L_9, L_{10}

• ChPT for muon g-2 at order p^6 is not powercounting finite so no prediction for a_μ exists.

- But can be used to study the low momentum end of the integral over P₁, P₂, Q
- The four-photon amplitude is finite still at two-loop order (counterterms start at order p^8)
- Add L₉ and L₁₀ vertices to the bare pion loop JB-Zahiri-Abyaneh
- Program the Euler-Heisenberg plus NLO result of Ramsey-Musolf et al. into our programs for a_{μ}
- Bare pion-loop and L_9 , L_{10} part in limit $p_1, p_2, q \ll m_{\pi}$ agree with Euler-Heisenberg plus next order analytically

Old and new results HLbL results

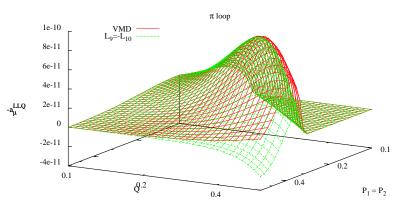
Johan Bijnens

Overview

Main contributions

HLbL

General properties π^0 -exchange


π-loop Quark-loop Scalar

a₁-exchange Summary

Future

π loop: VMD vs charge radius

low scale, charge radius effect well reproduced

Old and new results HLbL results

Johan Bijnens

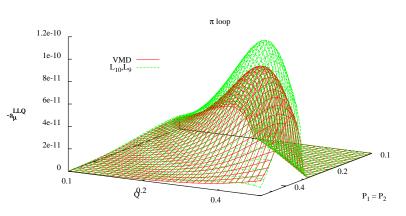
Overview

Main contributions

HLbL

General properties π^0 -exchange

π-loop Quark-loop Scalar


Scalar a₁-exchange Summary

Future

Conclusio

π loop: VMD vs L_9 and L_{10}

- $L_9 + L_{10} \neq 0$ gives an enhancement of 10-15%
- ullet To do it fully need to get a model: include a_1

Old and new results HLbL results

Johan Bijnens

Overview

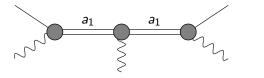
Main contributions

HLbL

General properties π^0 -exchange

π-loop Quark-loop

Scalar a₁-exchange


Future

Include a₁

But to get gauge invariance correctly need

Old and new results HLbL results

Johan Bijnens

 π^0 -exchange

 π -loop

Scalar

a₁-exchange

Include a₁

- Consistency problem: full a₁-loop?
- Treat a_1 and ρ classical and π quantum: there must be a π that closes the loop

 Argument: integrate out ρ and a_1 classically, then do pion loops with the resulting Lagrangian
- To avoid problems: representation without a_1 - π mixing
- Check for curiosity what happens if we add a_1 -loop

Old and new results HLbL results

Johan Bijnens

Overview

Main contributions

HLbL
General properties π^0 -exchange

π-loop Quark-loop Scalar

a₁-exchange Summary

Future

Include a₁

- ullet Use antisymmetric vector representation for a_1 and ho
- Fields $A_{\mu\nu}$, $V_{\mu\nu}$ (nonets)

• Kinetic terms:
$$-\frac{1}{2} \left\langle \nabla^{\lambda} V_{\lambda\mu} \nabla_{\nu} V^{\nu\mu} - \frac{1}{2} V_{\mu\nu} V^{\mu\nu} \right\rangle$$
$$-\frac{1}{2} \left\langle \nabla^{\lambda} A_{\lambda\mu} \nabla_{\nu} A^{\nu\mu} - \frac{1}{2} A_{\mu\nu} A^{\mu\nu} \right\rangle$$

Terms that give contributions to the L_i^r:

$$rac{F_V}{2\sqrt{2}}\left\langle f_{+\mu
u}V^{\mu
u}
ight
angle +rac{iG_V}{\sqrt{2}}\left\langle V^{\mu
u}u_{\mu}u_{
u}
ight
angle +rac{F_A}{2\sqrt{2}}\left\langle f_{-\mu
u}A^{\mu
u}
ight
angle$$

•
$$L_9 = \frac{F_V G_V}{2M_V^2}$$
, $L_{10} = -\frac{F_V^2}{4M_V^2} + \frac{F_A^2}{4M_A^2}$

Weinberg sum rules: (Chiral limit)

$$F_V^2 = F_A^2 + F_\pi^2$$
 $F_V^2 M_V^2 = F_A^2 M_A^2$

• VMD for $\pi\pi\gamma$: $F_VG_V=F_\pi^2$

Old and new results HLbL results

Johan Bijnens

Overview

Main contributions

lLbL

General properties π⁰-exchange

π-loop Quark-loop

Scalar a₁-exchange Summary

Future

$V_{\mu u}$ only

- $\Pi^{\rho\nu\alpha\beta}(p_1, p_2, p_3)$ is not finite (but was also not finite for HLS)
- But $\frac{\delta \Pi^{\rho\nu\alpha\beta}(p_1, p_2, p_3)}{\delta p_{3\lambda}}\Big|_{p_3=0}$ also not finite (but was finite for HLS)
- Derivative one finite for $G_V = F_V/2$
- Surprise: g-2 identical to HLS with $a=\frac{F_V^2}{F_z^2}$
- Yes I know, different representations are identical BUT they do differ in higher order terms and even in what is higher order
- Same comments as for HLS numerics

Old and new results HLbL results

Johan Bijnens

Overview

Main contributions

HLbL

General properties π^0 -exchange π -loop

uark-loop

Scalar a₁-exchange Summary

Future

$V_{\mu u}$ only

- $\Pi^{\rho\nu\alpha\beta}(p_1, p_2, p_3)$ is not finite (but was also not finite for HLS)
- But $\frac{\delta \Pi^{\rho\nu\alpha\beta}(p_1,p_2,p_3)}{\delta p_{3\lambda}}\bigg|_{p_3=0}$ also not finite (but was finite for HLS)
- Derivative one finite for $G_V = F_V/2$
- Surprise: g-2 identical to HLS with $a=\frac{F_V^2}{F_\pi^2}$
- Yes I know, different representations are identical BUT they do differ in higher order terms and even in what is higher order
- Same comments as for HLS numerics

Old and new results HLbL results

Johan Bijnens

Overview

Main contributions

lLbL

General properties π^0 -exchange π -loop

π-Ioop Quark-Ioop Scalar

a₁-exchange Summary

Future

$$V_{\mu
u}$$
 and $A_{\mu
u}$

- Add a₁
- Calculate a lot
- $\frac{\delta \Pi^{\rho\nu\alpha\beta}(p_1, p_2, p_3)}{\delta p_{3\lambda}}\Big|_{p_3=0}$ finite for:
 - $G_V = F_V = 0$ and $F_A^2 = -2F_\pi^2$
 - If adding full a_1 -loop $G_V=F_V=0$ and $F_A^2=-F_\pi^2$
- Clearly unphysical (but will show some numerics anyway)

Old and new results HLbL results

Johan Bijnens

Overview

Main contributions

lLbL

General properties π^0 -exchange π -loop

π-loop Quark-loop

Scalar a₁-exchange

Future

$$V_{\mu
u}$$
 and $A_{\mu
u}$

- Add a₁
- Calculate a lot
 - $\frac{\delta \Pi^{\rho\nu\alpha\beta}(p_1, p_2, p_3)}{\delta p_{3\lambda}}\bigg|_{p_3=0} \text{ finite for:}$
 - $G_V = F_V = 0$ and $F_A^2 = -2F_\pi^2$
 - If adding full a_1 -loop $G_V = F_V = 0$ and $F_A^2 = -F_\pi^2$
- Clearly unphysical (but will show some numerics anyway)

Old and new results HLbL results

Johan Bijnens

Overview

Main contributions

lLbL

General properties π^0 -exchange π -loop

π-loop Quark-loop Scalar

a₁-exchange Summary

Future

$$V_{\mu
u}$$
 and $A_{\mu
u}$

• Start by adding $\rho a_1 \pi$ vertices

•
$$\lambda_{1} \langle [V^{\mu\nu}, A_{\mu\nu}] \chi_{-} \rangle + \lambda_{2} \langle [V^{\mu\nu}, A_{\nu\alpha}] h_{\mu}^{\ \nu} \rangle$$

 $+ \lambda_{3} \langle i [\nabla^{\mu} V_{\mu\nu}, A_{\nu\alpha}] u_{\alpha} \rangle + \lambda_{4} \langle i [\nabla_{\alpha} V_{\mu\nu}, A_{\alpha\nu}] u^{\mu} \rangle$
 $+ \lambda_{5} \langle i [\nabla^{\alpha} V_{\mu\nu}, A_{\mu\nu}] u_{\alpha} \rangle + \lambda_{6} \langle i [V^{\mu\nu}, A_{\mu\nu}] f_{-\alpha}^{\ \alpha} \rangle$
 $+ \lambda_{7} \langle i V_{\mu\nu} A^{\mu\rho} A^{\nu}_{\ \rho} \rangle$

- All lowest dimensional vertices of their respective type
- Not all independent, there are three relations
- ullet Follow from the constraints on $V_{\mu
 u}$ and $A_{\mu
 u}$ (thanks to Stefan Leupold)

Old and new results HLbL results

Johan Bijnens

Overview

Main contributions

HLbL

General properties π^0 -exchange

 π -loop

Scalar a₁-exchange

F.

$V_{\mu u}$ and $A_{\mu u}$: big disappointment

- Work a whole lot
- $\bullet \frac{\delta \Pi^{\rho\nu\alpha\beta}(p_1,p_2,p_3)}{\delta p_{3\lambda}}\bigg|_{p_3=0} \text{ not obviously finite}$
- Work a lot more
- Prove that $\frac{\delta \Pi^{\rho\nu\alpha\beta}(p_1, p_2, p_3)}{\delta p_{3\lambda}}\Big|_{p_3=0}$ finite, only same solutions as before
- Try the combination that show up in g-2 only
- Work a lot
- Again, only same solutions as before
- Small loophole left: after the integration for g-2 could be finite but many funny functions of m_π, m_μ, M_V and M_A show up.

Old and new results HLbL results

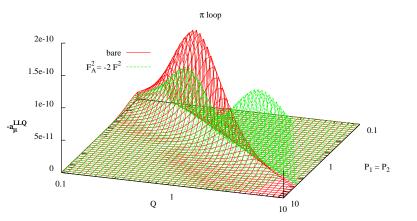
Johan Bijnens

Overview

Main contributions

HLbL General

General properties π⁰-exchange π-loop


Quark-loop Scalar

a₁-exchange Summary

Future

π loop: add a_1 and $F_A^2 = -2F_\pi^2$

- Lowers at low energies, $L_9 + L_{10} < 0$ here
- ullet funny peak at a_1 mass

Old and new results HLbL results

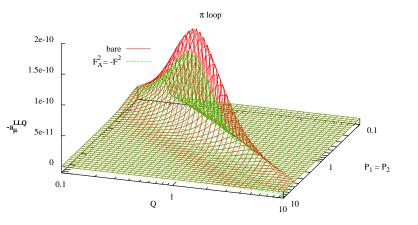
Johan Bijnens

Overview

Main

HLbL

General properties


π°-exchange π-loop Quark-loop

Scalar a₁-exchange

Future

π loop: add a_1 and $F_A^2 = -F_\pi^2$ plus a_1 -loop

- Lowers at low energies, $L_9 + L_{10} < 0$ here
- funny peak at a_1 mass canceled
- Still unphysical case

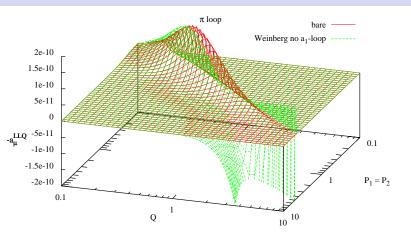
Old and new results HLbL results

Johan Bijnens

Overview

Main

HLbL


General properties π^0 -exchange

π-loop Quark-loop Scalar

a₁-exchange Summary

Future

- Add F_V , G_V and F_A
- ullet Fix values by Weinberg sum rules and VMD in $\gamma^*\pi\pi$
- no a₁-loop

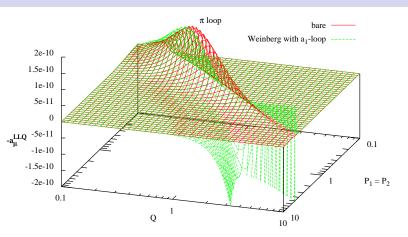
Old and new results HLbL results

Johan Bijnens

Overview

Main contributions

HLbL


General properties π^0 -exchange

π-loop Quark-loop Scalar

a₁-exchange Summary

Future

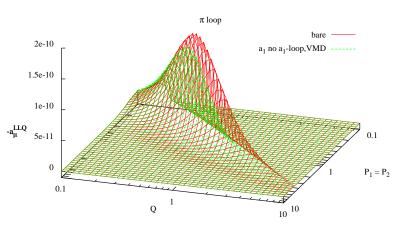
- Add F_V , G_V and F_A
- ullet Fix values by Weinberg sum rules and VMD in $\gamma^*\pi\pi$
- With a_1 -loop (is different plot!!)

Old and new results HLbL results

Johan Bijnens

Overview

Main contributions


HLbL

General properties π^0 -exchange π -loop

π-loop
Quark-loop
Scalar
a₁-exchange

Future

- Add a_1 with $F_A^2 = +F_\pi^2$
- Add the full VMD as done earlier for the bare pion loop

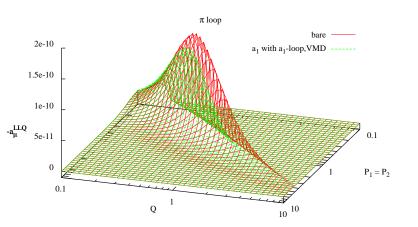
Old and new results HLbL results

Johan Bijnens

Overview

Main contributions

HLbL


General properties π^0 -exchange

π-loop
Quark-loop

Scalar a₁-exchange

Future

- Add a_1 with $F_A^2 = +F_\pi^2$ and a_1 -loop
- Add the full VMD as done earlier for the bare pion loop

Old and new results HLbL results

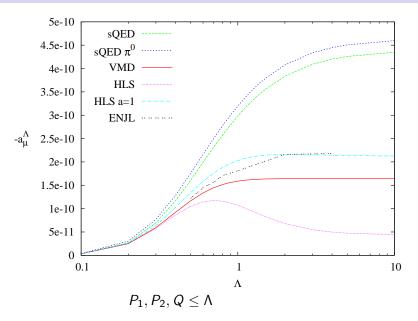
Johan Bijnens

Overview

Main contributions

HLbL

General properties π^0 -exchange


π-loop Quark-loop Scalar

Scalar a₁-exchange

Future

Integration results

Old and new results HLbL results

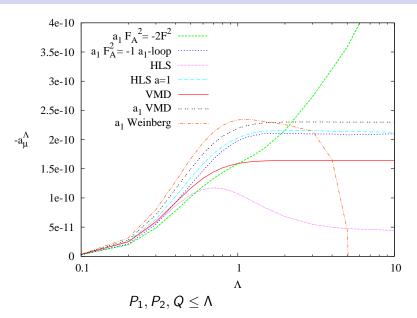
Johan Bijnens

Overview

contributions

lLbL

General properties π^0 -exchange π -loop


π-loop Quark-loop Scalar

a₁-exchange Summary

Future

Integration results

Old and new results HLbL results

Johan Bijnens

Overview

contributions

lLbL

General properties π^0 -exchange π -loop

π-loopQuark-loop
Scalar

a₁-exchange Summary

Future

Integration results with a₁

- Problem: get high energy behaviour good enough
- But all models with reasonable L_9 and L_{10} fall way inside the error quoted earlier $(-1.9 \pm 1.3) \ 10^{-10}$
- Tentative conclusion: Use hadrons only below about 1 GeV: $a_{\mu}^{\pi-{\rm loop}}=(-2.0\pm0.5)~10^{-10}$
- Note that Engel and Ramsey-Musolf, arXiv:1309.2225 is a bit more pessimistic quoting numbers from (-1.1 to -7.1) 10⁻¹⁰

Old and new results HLbL results

Johan Bijnens

Overview

Main contributions

HLbL

General properties π^0 -exchange π -loop

π-loop Quark-loop Scalar

a₁-exchange Summary

Future

Pure quark loop

Cut-off	$a_{\mu} imes 10^7$	$a_{\mu} imes 10^9$	$a_{\mu} imes 10^9$
Λ	Électron	Muon	Constituent Quark
(GeV)	Loop	Loop	Loop
0.5	2.41(8)	2.41(3)	0.395(4)
0.7	2.60(10)	3.09(7)	0.705(9)
1.0	2.59(7)	3.76(9)	1.10(2)
2.0	2.60(6)	4.54(9)	1.81(5)
4.0	2.75(9)	4.60(11)	2.27(7)
8.0	2.57(6)	4.84(13)	2.58(7)
Known Results	2.6252(4)	4.65	2.37(16)

M_Q: 300 MeV

now known fully analytically

Us: 5+(3-1) integrals extra are Feynman parameters

Slow convergence:

electron: all at 500 MeV

Muon: only half at 500 MeV, at 1 GeV still 20% missing

300 MeV quark: at 2 GeV still 25% missing

Old and new results HLbL results

Johan Bijnens

verview)

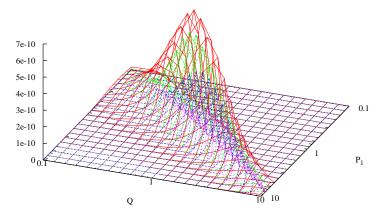
contributions

General properties

Quark-loop Scalar a₁-exchange

Summary

uture


Lonclusion

Pure quark loop: momentum area

quark loop $m_0 = 0.3 \text{ GeV}$

Most from $P_1 \approx P_2 \approx Q$, sizable large momentum part

Old and new results HLbL results

Johan Bijnens

Overview

Main

ILbL

General properties π^0 -exchange π -loop

π-loop Quark-loop Scalar

a₁-exchange Summary

Canalusia

ENJL quark-loop

Cut-off	$a_{\mu} imes 10^{10}$	$a_{\mu} imes 10^{10}$	$a_{\mu} imes 10^{10}$	$a_{\mu} imes 10^{10}$
Λ				sum
GeV	VMD	ENJL	masscut	ENJL+masscut
0.5	0.48	0.78	2.46	3.2
0.7	0.72	1.14	1.13	2.3
1.0	0.87	1.44	0.59	2.0
2.0	0.98	1.78	0.13	1.9
4.0	0.98	1.98	0.03	2.0
8.0	0.98	2.00	.005	2.0

- Very stable
- ENJL cuts off slower than pure VMD
- masscut: $M_Q=\Lambda$ to have short-distance and no problem with momentum regions
- Quite stable in region 1-4 GeV

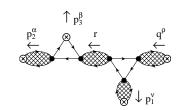
Old and new results HLbL results

Johan Bijnens

Overview

Main contributions

HLbL


General properties π^0 -exchange π -loop Quark-loop

Scalar a₁-exchange

uture

ENJL: scalar

$$\Pi^{\rho\nu\alpha\beta} = \overline{\Pi}_{ab}^{VVS}(p_1, r)g_S(1 + g_S\Pi^S(r))\overline{\Pi}_{cd}^{SVV}(p_2, p_3)\mathcal{V}^{abcd\rho\nu\alpha\beta} + \text{permutations}$$

•
$$g_S(1+g_S\Pi_S) = \frac{g_A(r^2)(2M_Q)^2}{2f^2(r^2)} \frac{1}{M_S^2(r^2)-r^2}$$

- $V^{abcd\rho\nu\alpha\beta}$: ENJL VMD legs
- In ENJL only scalar+quark-loop properly chiral invariant

Old and new results HLbL results

Johan Bijnens

Overview

Main contributions

HLbL

General properties π^0 -exchange π -loop

Quark-loop Scalar a₁-exchange

uture

ENJL: scalar/QL

Cut-off	$a_{\mu} imes 10^{10}$	$a_{\mu} imes 10^{10}$	$a_{\mu} imes 10^{10}$
Λ	Quark-loop	Quark-loop	Scalar
GeV	VMD	ENJL	Exchange
0.5	0.48	0.78	-0.22
0.7	0.72	1.14	-0.46
1.0	0.87	1.44	-0.60
2.0	0.98	1.78	-0.68
4.0	0.98	1.98	-0.68
8.0	0.98	2.00	-0.68

- ENJL only scalar+quark-loop properly chiral invariant
- ullet Note: ENJL+scalar (BPP) pprox Quark-loop VMD (HKS)
- $M_S \approx 620$ MeV certainly an overestimate for real scalars
- If scalar is σ : related to pion loop part?
- ullet quark-loop: $a_{\mu}^{ql}pprox 1 imes 10^{-10}$ bare $a_{\mu}^{ql}=2.37 imes 10^{-9}$

Old and new results HLbL results

Johan Bijnens

Overview

Main contributions

HLbL

General properties π⁰-exchange π-loop

Quark-loop

Scalar

a₁-exchange

uture

Quark loop DSE

- DSE model: $a_{\mu}^{ql}=13.6(5.9)\times 10^{-10}$ T. Goecke, C. S. Fischer and R. Williams, Phys. Rev. D **83** (2011) 094006 [arXiv:1012.3886 [hep-ph]]
- Not a full calculation (yet) but includes an estimate of some of the missing parts
- a lot larger than bare quark loop with constituent mass
- I am puzzled: this DSE model (Maris-Roberts) does reproduces a lot of low-energy phenomenology. I would have guessed that it would give numbers very similar to ENJL.
- Can one find something in between full DSE and ENJL that is easier to handle?
- Error found in calculation, still not finalized: preliminary $a_{\mu}^{ql}=10.7(0.2)\times 10^{-10}$ T. Goecke, C. S. Fischer and R. Williams, arXiv:1210.1759

Old and new results HLbL results

Johan Bijnens

Overview

Main contributions

HLbL General properties π^0 -exchange π -loop Quark-loop Scalar a_1 -exchange

uture

Other quark loop

• de Rafael-Greynat 1210.3029

$$(7.6 - 8.9) 10^{-10}$$

Boughezal-Melnikov 1104.4510

$$(11.8 - 14.8) \ 10^{-10}$$

• Masjuan-Vanderhaeghen 1212.0357

$$(7.6 - 12.5) 10^{-10}$$

- Various interpretations: the full calculation or not
- All (even DSE) have in common that a low quark mass is used for a large part of the integration range

Old and new results HLbL results Johan Bijnens

contributions

HLbL General properties

 π^0 -exchange π -loop Quark-loop

Scalar a₁-exchange

Lituro

Future

Axial-vector exchange exchange

Cut-off	$a_{\mu} imes 10^{10}$ from
Λ	Axial-Vector
(GeV)	Exchange $\mathcal{O}(N_c)$
0.5	0.05(0.01)
0.7	0.07(0.01)
1.0	0.13(0.01)
2.0	0.24(0.02)
4.0	0.59(0.07)

There is some pseudo-scalar exchange piece here as well, off-shell not quite clear what is what.

•
$$a_{\mu}^{\text{axial}} = 0.6 \times 10^{-10}$$

 MV: short distance enhancement + mixing (both enhance about the same)

$$a_{\mu}^{\rm axial} = 2.2 \times 10^{-10}$$

Old and new results HLbL results

Johan Bijnens

Overview

Main contributions

General properties π⁰-exchange

Quark-loop Scalar a₁-exchange

a₁-exchange Summary

uture

Summary: ENJL vc PdRV

Old and new		
esults HLbL		
results		

Johan Bijnens

Overview

Main contributions

HLbL

General properties π^0 -exchange π -loop

Quark-loop

Scalar

a₁-exchange Summary

uture

UND NIVERSITY 56/64

	BPP	PdRV arXiv:0901.0306
quark-loop	$(2.1 \pm 0.3) \cdot 10^{-10}$	
pseudo-scalar	$(8.5 \pm 1.3) \cdot 10^{-10}$	$(11.4 \pm 1.3) \cdot 10^{-10}$
axial-vector	$(0.25\pm0.1)\cdot10^{-10}$	$(1.5 \pm 1.0) \cdot 10^{-10}$
scalar	$(-0.68 \pm 0.2) \cdot 10^{-10}$	$(-0.7 \pm 0.7) \cdot 10^{-10}$
$\pi \mathit{K}$ -loop	$(-1.9 \pm 1.3) \cdot 10^{-10}$	$(-1.9 \pm 1.9) \cdot 10^{-10}$
errors	linearly	quadratically
sum	$(8.3 \pm 3.2) \cdot 10^{-10}$	$(10.5\pm2.6)\cdot10^{-10}$

What can we do more?

- The ENJL model can certainly be improved:
 - \bullet Chiral nonlocal quark-model (like nonlocal ENJL): so far only $\pi^0\text{-exchange}$ done
 - DSE: π^0 -exchange similar to everyone else, quark-loop very different, looking forward to final results
- More resonances models should be tried, AdS/QCD is one approach, R χ T (Valencia *et al.*) possible,...
- Note short-distance matching must be done in many channels, there are theorems JB, Gamiz, Lipartia, Prades that with only a few resonances this requires compromises
- π -loop: HLS smaller than double VMD (understood) models with ρ and a_1 : difficulties with infinities

Old and new results HLbL results

Johan Bijnens

Overview

Main contributions

LbL

Theory

Experiment

What can we do more?

• Constraints from experiment:

J. Bijnens and F. Persson, hep-ph/hep-ph/0106130 Studying three formfactors $P\gamma^*\gamma^*$ in $P\to \ell^+\ell^-\ell'^+\ell'^-$, $e^+e^-\to e^+e^-P$ exact tree level and for g-2 (but beware sign):

- Conclusion: possible but VERY difficult
- \bullet Two γ^* off-shell not so important for our choice of form-factor
- All information on hadrons and 1-2-3-4 off-shell photons is welcome: constrain the models
- More short-distance constraints: MV, Nyffeler integrate with all contributions, not just π^0 -exchange
- Need a new overall evaluation with consistent approach.
- Lattice has done first steps
- Some tentative steps from dispersion theory Pauk-Vanderhaeghen

Old and new results HLbL results

Johan Bijnens

Overview

contribution

HLbL

Future Theory

Experiment

What can we do more?

- Constraints from experiment:
 - J. Bijnens and F. Persson, hep-ph/hep-ph/0106130 Studying three formfactors $P\gamma^*\gamma^*$ in $P\to \ell^+\ell^-\ell'^+\ell'^-$, $e^+e^-\to e^+e^-P$ exact tree level and for g-2 (but beware sign):
 - Conclusion: possible but VERY difficult
 - \bullet Two γ^* off-shell not so important for our choice of form-factor
- All information on hadrons and 1-2-3-4 off-shell photons is welcome: constrain the models
- More short-distance constraints: MV, Nyffeler integrate with all contributions, not just π^0 -exchange
- Need a new overall evaluation with consistent approach.
- Lattice has done first steps
- Some tentative steps from dispersion theory Pauk-Vanderhaeghen

Old and new results HLbL results

Johan Bijnens

Overview

contributions

HLbL

Future Theory

Goal $\pm 1.6 \ 10^{-10}$

Credit: Brookhaven National Laboratory

Old and new results HLbL results

Johan Bijnens

Overview

Main

пы

Future

Theory Experiment

Goal $\pm 1.6 \ 10^{-10}$

Credit: Brookhaven National Laboratory

Old and new results HLbL results

Johan Bijnens

Overview

Main

lLbL

Future

Theory Experiment

Old and new results HLbL results

Johan Bijnens

Overview

Main contributions

LbL

uture

Experiment

Goal $\pm 1.6 \ 10^{-10}$

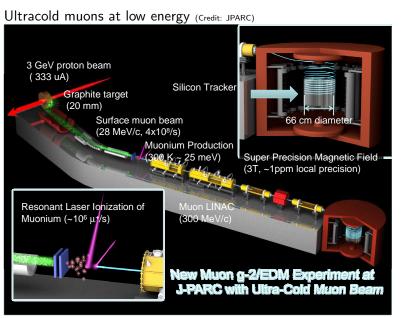
Credit: Fermilab

Old and new results HLbL results

Johan Bijnens

Overview

Main contribution


LbL

uture Theory

Experiment Conclusions

JPARC with a very different method

Old and new results HLbL results

Johan Bijnens

Overview

Main contributions

HLbL

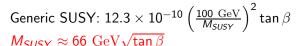
Theory
Experiment

Summary of Muon g-2 contributions

	$10^{10} a_{\mu}$	
exp	11 659 208.9	6.3
theory	11 659 180.2	5.0
QED	11 658 471.8	0.0
EW	15.4	0.2
LO Had	692.3	4.2
HO HVP	-9.8	0.1
HLbL	10.5	2.6
difference	28.7	8.1

- Error on LO had all e^+e^- based OK au based 2 σ
- Error on HLbL
- Errors added quadratically
- 3.5 σ
- Difference:4% of LO Had270% of HLbL1% of leptonic LbL

Old and new results HLbL results


Johan Bijnens

Overview

contributions

TLDL

uture

