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My agenda today

I know nothing about T violation, except that no one ever seems to go back in
time

I told Vladimir I’d review ab initio methods as they apply to scattering & reaction
observables

I’ll also talk a little about the kinds of operators (strong & electroweak) in use,
because it seems relevant here

There’s a lot more going on than what I keep up with

What follows will be a review of some things that I think are either important or
likely to be of interest to this audience

Things that I sort of understand will be overrepresented
(and I assume you can find papers without explicit reference)



The ab initio program: One man’s view

Ab initio: Latin “from the beginning”

The idea is to compute nuclei as collections of interacting nucleons

The interaction should be the same one measured in NN scattering

A successful ab initio theory of nuclei requires accurate interaction & accurate
computational methods

The payoffs (not linearly independent):

Quantitative comparison with a broad range of experiments

Reliable application to astrophysics & technology where there’s little data

Probing small interaction terms (3-body; P, T, or T violating)



Another turtle below this one?

“The beginning” ought in principle to be quarks & gluons, but that’s difficult

There is work being done to compute a nucleon-nucleon interaction on the
lattice

It’s still far from the physical pion mass, which is a show-stopper for most
nuclear physics – π exchange is important

Proponents of computing nuclei from lattice QCD occasionally admit that the
mπ difficulty will limit what they can usefully do

Demonstrated failure of the nucleon-level model would be interesting, but you
really have to nail the computational aspects before calling it a failure



The basic NN interaction

“Realistic” ab initio models are based on an NN interaction that reproduces NN
scattering observables up to E ≈ mπ (& 2H properties)

So far this has meant reproducing the Nijmegen
phase shift analysis

(Lots of weeding & cleaning up of data)

Smooth phase shifts required:

• consistent data
• explicit one-pion exchange
• small corrections to the EM potential:

vacuum polarization, magnetic moments...
Stoks et al. (1993)

Several representations of the potential have been fitted with χ2
ν ≈ 1 :

Nijmegen I & II, Reid 93, CD Bonn, Argonne v18, N3LO chiral



What an NN interaction looks like

A good NN interaction, like a good story, has a beginning, middle, and end

Long range (& 1.5 fm) looks like one-π exchange (tensor term important)

Medium range (& 0.5 fm) has a complicated operator structure in spin & isospin

Short range has strong repulsion

No matter what you do, you end up with ∼ 40 parameters fitted to NN phase
shifts (∼ 18 operators, as in Argonne v18)

The operators have been organized in several ways to get different interactions
(“empirical” operators, meson exchange, χEFT)

Multiple approaches get to χ2
ν ∼ 1.0



NN interactions: practical aspects

Traditionally, the largest sources of computational difficulty were strong short-
range repulsion & rich operator structure (esp. tensor term)

These required enormous model spaces in basis methods (e.g. no-core shell
model)

Quantum Monte Carlo allowed E calculations from good variational guesses
built from the potential: no basis, so no convergence problem

But only Argonne-Illinois approach with “phenomenological local operators” had
favorable forms for use with quantum Monte Carlo

Green’s function Monte Carlo (but not variational Monte Carlo) has trouble with
some types of momentum-dependent terms (often designed into χEFT)

There’s finally progress on this front, both to work around “bad” potentials & to
avoid unnecessary “badness”



Evolving operators

The solution to the hard-core problem in basis methods is to soften the hard
core of the potential with a cutoff while retaining phase shifts

This had a false (but important) start with Vlow k & is now done with similarity
renormalization group (SRG)

You also pay for smoothed 2-body NN potential with induced 3- & more-body
terms

It’s extra computation, but you need 3-body terms even before evolution, &
higher-body don’t seem to become larger overall

The evolution is just solution of 1st-order ODEs, so it can be done as exactly
as the original interaction was known



Evolving more operators

Electromagnetic current operators of at least Argonne-type potentials are close
to what you’d guess after your 1st E&M course

2-body currents are needed for current conservation, but they’re small unless
there’s cancellation: i[H, ρ] = ∂tρ = ∇ · j

This lets you cover (e, e′p) to E > mπ, actually to surprisingly high E

If you SRG-evolve the strong force, you also must evolve the EM currents (or
others that interest you)

There somehow has to be a reasonable starting point for this – the unevolved
currents must be consistent with the unevolved NN interaction



Few-ish-body calculations

The calculation of substantial nuclei from “bare” NN interaction has been one
of the great triumphs of the last 20 years

This is a large body of work on mainly bound states, following several methods:

Variational Monte Carlo (VMC) & Green’s function Monte Carlo (GFMC) – collectively
QMC (also AFDMC) – Pandharipande, Carlson, Pieper, Wiringa...

Ab initio no-core shell model (NCSM) – Navratil, Quaglioni, Vary, Barrett, Ormand...

Coupled cluster (CC) – Hagen, Dean, Papenbrock...

Fermionic molecular dynamics (FMD) – Neff, Feldmeier

Lattice effective field theory (LEFT?) – Lee, Meißner...

In A ≤ 4, there’s also important work via Fadeev & related methods, and the
correlated hyperspherical harmonic (CHH) basis



Energy spectra from quantum Monte Carlo
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GFMC Calculations

• IL7: 4 parameters fit to 23 states
• 600 keV rms error, 51 states
• ~60 isobaric analogs also computed



Well, actually...

The important points of that work:

Nuclear structure up to A & 20 does indeed trace back to bare interactions

You can compute electroweak observables accurately with those wave functions

3-body terms (IL7 in the diagram) are important

At least in this collection of systems (& some higher masses with NCSM, CC,
in-medium SRG), computational approximations are under control

(Some variation of computational precision withA, method, observable, inclusion
of 3-body)



Strengths & weaknesses

As with anything in life, the best tool depends on the problem to be solved

QMC: Lack of basis is good for highly clusterized nuclei (e.g. 12C) & weakly-
bound states (if you can make good variational functions)

Each individual state requires human effort (not Lanczos diagonalization), lack
of spatial basis can be unwieldy, problem grows fast with A

NCSM: Linear algebra in Slater determinants is powerful (Lanczos diagonalization
of many states)

Clusterization & weakly-bound states difficult without further modification, 3-body
forces take a lot of computation

CC: Scales very well with A but needs a closed-(sub)shell reference state



How do you extend that to reactions/scattering?

All of those methods naturally give you an eigenenergy & a square-integrable
wave function

But reaction/scattering observables are S-matrix elements, not energies

Continuum wave functions are extended in r-space & highly clusterized

The natural extension is to compute wave functions in a finite volume & match
across the boundary to get the S-matrix

You need a basis that can handle extended & clusterized wave functions

Even if the quantity that interests you can be handled by Fermi’s golden rule,
explicit continuum states are intermediate steps



Example: QMC in the continuum

Scattering calculations with QMC methods have been based on a particle-in-a-
box formalism

The wave function is computed only within a (spherical) box defined by a cluster-
cluster separation

Forcing Ψ = 0 or ∂rΨ = γΨ at the surface, HΨ = EΨ has a discrete
spectrum

VMC or GFMC most easily gives the ground state energy at the chosen γ &
box radius

You get phase shifts δJL by matching onto

Ψ ∝
1

kr12
{Φc1Φc2YL}J [FL(kr12) cos δJL +GL(kr12) sin δJL] ,

at the box surface

Scanning over boundary conditions γ maps out δJL(E)



GFMC scattering: 4He + n

We’ve done one complete GFMC scattering calculation, in 5He
It linked splitting between Jπ = 3/2− and 1/2− states to 3-body force
(Backwards graphs: Fitted data are curves, points are GFMC)

0 1 2 3 4 50

1

2

3

4

5

6

7

Ec.m. (MeV)

σ
LJ

 (b
)

1
2

+

1
2

-

3
2

-

R-Matrix

Pole location

Nollett et al. (2007)

Extracted S-matrix poles & scattering length are in good agreement with experiment



QMC scattering: Lessons learned

Building boundary & clusterization (near the boundary) into VMC is easy

GFMC is slow to asymptote in outer, noninteracting-cluster, parts of the box

Small inaccuracies in E calculation can cause headaches in matched δJL

Coupled channels (e.g. s- & d-waves of same J) will be a lot more work
(preliminary 3H + n exists)

Isospin rotation of 5He gave reasonable preliminary calculations of low-E 5Li

Going to higher energies will require computing many states in the box (not
just ground state at each γ), or finding a way to abandon the eigenvalue
approach

The small remaining work to do n spin rotation is to choose γ at threshold &
normalize the wave functions for unit flux



Extending NCSM with the resonating group method

In the 1970s & 1980s, the resonating group method (RGM) was developed for
calculations of continuum states

You sort the nucleons into clusters (very simple single-configuration shell models)

A variational principle gives you Schrödinger-like coupled equations∑
j

Hijψj(r12) = E
∑
j

Nijψj(r12)

At each E, which you solve for relative motion ψi(r12) in each cluster
channel i

Computation was more limited in the past decades: simple clusters & simple
interaction (central & exchange terms, maybe L · S, no tensor)



Merging RGM with NCSM

Navratil, Quaglioni, & collaborators have absorbed this formalism into NCSM

Instead of single-reference Hartree-like clusters, the clusters are full NCSM
wave functions

The Hamiltonian comes from a realistic interaction (SRG-evolved)

Most of the computation goes into the “norm kernel” Nij, computed from
antisymmetrized cluster products Φ1Φ2

WithR-matrix boundary conditions at some surface & a discrete basis, continuum
solution amounts to a matrix inversion

This builds in clusterization & lets you specify the E you want



NCSM/RGM or NCSMC: The fine print

In principle, there need to be many channels, including ones with all possible
excitations of the clusters & types of rearrangements

In practice, that seems to be taken care of now by including an ordinary A-body
NCSM wave function in the (overcomplete) basis

The purely NCSM version was “NCSM/RGM”

The hybrid approach is new (ca. 2013) & is called “NCSMC” (C for “continuum”)

3-body interactions are still missing from a lot (but not
all) of these calculations

It turns out you can tune the SRG evolution so that
induced & bare NNN terms nearly cancel in E
(works in s- & lower p-shell)

The “magic” SRG parameter value is λ ∼ 2.0 fm−1

only depends slightly on an initial NNN interaction. In
both cases the dotted line represents the converged value
for the initial Hamiltonian. At large !, the discrepancy is
due to a lack of convergence at Nmax ¼ 18, but at !<
3 fm"1 SRG decoupling takes over and the discrepancy is
due to short-range induced four-body forces, which there-
fore contribute about 50 keV net at ! ¼ 2 fm"1. This is
small compared to the rough estimate in Ref. [20] that the
contribution from the long-ranged part of the N3LO four-
nucleon force to 4He binding is of order of a few hundred
keV. If needed, we could evolve 4-body matrix elements in
A ¼ 4 and will do so when nuclear structure codes can
accommodate them.

In Fig. 3, we show the triton ground-state energy as a
function of the oscillator basis size, Nmax, for various
calculations. The lower (upper) curves are with (without)
an initial three-body force (see Table I). The convergence
of the bare interaction is compared with the SRG evolved
to ! ¼ 2:0 fm"1. The oscillator parameter @! in each case
was chosen roughly to optimize the convergence of each
Hamiltonian. (As ! decreases, so does the optimal @!.) We
also compare to a Lee-Suzuki (LS) effective interaction,
which has been used in the NCSM to greatly improve
convergence [21,22]. These effective interactions result
from unitary transformations within the model space of a
given nucleus, in contrast to the free-space transformation
of the SRG, which yields nucleus-independent matrix
elements.

The SRG calculations are variational and converge
smoothly and rapidly from above with or without an initial
three-body force. The dramatic improvement in conver-
gence rate compared to the initial interaction is seen even
though the "EFT interaction is relatively soft. Thus, once

evolved, a much smaller Nmax basis is adequate for a
desired accuracy and extrapolating in Nmax is also feasible.
Figure 4 illustrates for 4He the same rapid convergence

with Nmax of an SRG-evolved interaction. However, in this
case the asymptotic value of the energy differs slightly
because of the omitted induced four-body contribution.
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NCSM/RGM & NCSMC results

The results have been fairly impressive, first with no NNN, then magic λ, & now
A = 5 with real NNN

I’ll say more about
radiative captures in a
minute

.

382 P. Navrátil et al. / Physics Letters B 704 (2011) 379–383

Fig. 4. (Color online.) Calculated 7Be(p,γ )8B S-factor as function of the energy
in the c.m. compared to data and the microscopic cluster model calculations of
Ref. [15] with the Minnesota (MN) interaction (a). Only E1 transitions were con-
sidered. Initial-state partial wave contributions are shown in panel (b). Calculation
as in Fig. 2.

tials with the aim to match closely the experimental s.e. in each
of the largest calculation. From these results we conclude that the
use of the Nmax = 10 space is justified and a limitation to the five
lowest 7Be eigenstates is quite reasonable (or that the Nmax = 8
space is insufficient and a limitation to just 3 states is unrealis-
tic). Also, based on these results we estimate the uncertainty of
our calculated S17(0) to be ±0.7 eV b.

An interesting feature of the S-factor is its flattening around
1.5 MeV. As seen in Fig. 4(b), this phenomenon is due to the
S-wave contribution that dominates the J i = 2− and 1− partial
waves at low energies. The increase of flattening with the num-
ber of 7Be eigenstates included in the calculation, seen in Fig. 5(a),
indicates that this is an effect due to the many-body correlations.
This finding corroborates the observations of Ref. [15], where the
flattening was attributed to the deformation of the 7Be core. At
the same time, we find that the flattening is somewhat corre-
lated with the S-wave scattering length. For example, the S-wave
s = 2 scattering length increases in absolute value from −13.4 fm,
in the calculation with four states, to −14.5 fm, in that with the
eight states [see Fig. 5(a)]. We also note that the flattening found
in the present work is slightly larger than that obtained in the
microscopic three-cluster model of Ref. [15], as seen in Fig. 4(a).
Presumably, this is because in the three-cluster model the 7Be
structure was assumed to be of 3He–4He nature only, while the
NCSM wave functions include in addition 6Li-p configurations, par-
ticularly for the 5/2−

2
7Be state, as discussed earlier.

In Table 2, we summarize our calculated S17(0) S-factor, the
S-wave scattering lengths and selected ANCs. We note that the
ANCs from our ab initio approach are smaller than those obtained
within the microscopic three-cluster model [15] (consistently with

Fig. 5. (Color online.) Convergence of the 7Be(p,γ )8B S-factor with the number of
7Be eigenstates (a) and the size of the HO basis used to expand the 7Be eigenstates
and localized parts of the integration kernels (b). The number of eigenstates and the
calculated separation energy in each case is shown in the legend. HO frequencies of
h̄Ω = 19 MeV (a) and 17 MeV (b) corresponding to the respective minima of 7Be
g.s. were used.

Table 2
Calculated S17(0) S-factor, the p-7Be S-wave scattering lengths, a01 (s = 1), a02
(s = 2) and the 8B ground-state ANCs for 7Be(g.s.)-p in the P -wave and the channel
spins s = 1 (C11) and s = 2 (C12). The NCSM/RGM calculation as described in Fig. 2.
The S17(0) uncertainty was obtained as discussed in the text.

S17(0) [eV b] a01 [fm] a02 [fm] C11 [fm−1/2] C12 [fm−1/2]
19.4(7) −5.2 −15.3 0.294 0.650

our smaller S17(0) value as seen from Fig. 4(a)) but in fairly good
agreement with recent ab initio variational Monte Carlo calcula-
tions [38]. They are, however, still larger than the experimental
ones from the DWBA analysis of Ref. [39].

The present calculations improve significantly the first NCSM-
based 7Be(p,γ )8B S-factor calculations [16] by a consistent treat-
ment of both the bound and the scattering states. In Ref. [16],
the scattering states were obtained within a potential model. The
shape of the S-factor presented in this work clearly superseeds that
found in Ref. [16]. The presently found S17(0) S-factor value is in
between the values found in Ref. [16] with the two different NN
potential models used there.

In conclusion, we performed ab initio many-body calculations of
the 7Be(p,γ )8B radiative capture that predict simultaneously both
the normalization and the shape of the S-factor. Our S-factor result
at zero energy, S17(0) = 19.4(7) eV b, is on the lower side of, but
consistent with, the latest evaluation, and its shape follows closely
the Coulomb breakup data from Ref. [8]. Our calculations can be
further improved by including effects of additional higher-lying
7Be resonances. This can be best done by coupling the NCSM/RGM
binary-cluster basis with the NCSM calculations for 8B as outlined
in Ref. [40]. The inclusion of three-nucleon interactions, both chiral

exponential extrapolation is valid for unbound states. In
addition, no information on the width of the resonance can
be obtained from this calculation performed in a square-
integrable HO basis. We can, however, study the structure
of the 7He NCSM eigenstates by calculating their overlaps
(related, as discussed earlier, to !g!") with

6Heþ n cluster
states and the corresponding spectroscopic factors summa-
rized in Table II. Overall, we find a very good agreement
with the variational Monte Carlo (VMC) and GFMC
results as well as with the latest experimental value for
the g.s. [2]. Interesting to notice is the about equal spread of
1=2" between cluster states with the 6He in the 0þ and 2þ2
states. We stress that, in the present calculations, the over-
lap functions and spectroscopic factors are not the final
products to be compared to experiment but are rather
inputs to more sophisticated NCSMC calculations.

Next, we present NCSMC 7He calculations obtained by
solving Eq. (3) in a model space containing the six lowest
negative-parity (3=2"1 , 1=2", 5=2", 3=2"2 , 3=2"3 ,
3=2"4 ) and four lowest positive-parity (1=2þ, 5=2þ1 ,
3=2þ, 5=2þ2 ) NCSM eigenstates of 7He as well as nþ
6He binary-cluster states including up to the three lowest
eigenstates of 6He, i.e., 0þ, 2þ1 , and 2þ2 (see Fig. 1). These
results are also compared to those obtained by keeping
only the binary-cluster part of such a model space [corre-
sponding to the second term in the right-hand side of
Eq. (2)], i.e., by solving the coupled-channel NCSM/

RGM equations !H# ¼ E#. First, in Fig. 2, we study the
dependence of the 3=2" g.s. diagonal phase shifts on the
number of 6He eigenstates included in the NCSM/RGM
(blue lines) and NCSMC (red lines) calculations. The
NCSM/RGM calculation with the 6He target restricted to
its g.s. does not produce a 7He 3=2" resonance (the phase
shift does not reach 90 degrees). A 2P3=2 resonance does

appear once the 2þ1 state of 6He is coupled, and the reso-
nance position further moves to lower energy with the
inclusion of the second 2þ state of 6He. On the contrary,

the 2P3=2 resonance is already present in the NCSMC

calculation with only the g.s. of 6He. In fact, this
NCSMC model space is already enough to obtain the
7He 3=2" g.s. resonance at about 1 MeV above threshold,
which is lower than the NCSM/RGM prediction when
three 6He states are included. Adding the 2þ1 state of 6He
generates a modest shift of the resonance to a still lower
energy, while the second 2þ state of 6He has no significant
influence. We further observe that the resonance position in
the NCSMC calculation is lower than the NCSM/RGM one
by about 0.7 MeV. This difference is due to the additional
correlations brought by the 7He eigenstates that are
coupled to the nþ 6He binary-cluster states in the
NCSMC and that compensate for higher excited states of
the 6He target omitted in the NCSM/RGM sector of the
basis. These include both positive-parity states, some of
which are shown in Fig. 1, and negative-parity excitations,
e.g., the 1" soft dipole excitation, etc. While NCSM/RGM
calculations with a large number of cluster excited states
can become prohibitively expensive, the coupling of a few
square-integrable NCSM eigenstates of the composite sys-
tem is straightforward.
Panels (a) and (b) of Fig. 3 show the five P-wave and

2S1=2 nþ 6He phase shifts calculated within the NCSM/

RGM and NCSMC approaches, respectively. The adopted
model spaces are the same as described above. As expected
from a variational calculation, the introduction of the addi-
tional A-body correlations carried by the jA!J$Ti basis
states [i.e., going from (a) to (b)] lowers the centroids of all
7He resonances. In particular, the 7He 3=2" g.s. and 5=2"

excited state are pushed toward the 6Heþ n threshold,
closer to their respective experimental positions.
The experimental values for the centroids of the accepted

7He 3=2" and 5=2" resonances and the possible 1=2"

states are shown in Table III, together with our Nmax ¼ 12
calculations. Within both NCSM/RGM and NCSMC,

TABLE II. NCSM spectroscopic factors compared to Cohen-
Kurath (CK) [36] and VMC-GFMC [16,37,38] calculations and
to experiment. The CK values should still be multiplied by
A=ðA" 1Þ to correct for the center-of-mass motion.

7He J$ 6He" nðljÞ NCSM CK VMC GFMC Experiment

3=2"1 0þ " p 3
2 0.56 0.59 0.53 0.565 0.512(18) [2]

0.64(9) [39]

0.37(7) [11]
3=2"1 2þ1 " p 1

2 0.001 0.06 0.006

3=2"1 2þ1 " p 3
2 1.97 1.15 2.02

3=2"1 2þ2 " p 1
2 0.12 0.09

3=2"1 2þ2 " p 3
2 0.42 0.30

1=2" 0þ " p 1
2 0.94 0.69 0.91

1=2" 2þ1 " p 3
2 0.34 0.60 0.26

1=2" 2þ2 " p 3
2 0.93
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FIG. 10. (Color online) Comparison of the n-4He (a) and p-4He
(b) phase shifts (2S1/2, 2P1/2, 2P3/2, and 2D3/2 waves) within the largest
considered model space including the first six low-lying resonant
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to the experimental phase shifts (purple crosses) obtained from an
R-matrix analysis [39]. Results for the NN + 3N -full Hamiltonian
are shown as red solid lines, those for the NN + 3N -induced
Hamiltonian as blue dashed lines. For remaining parameters, see
text or Fig. 2.

2. Comparison of phase shifts with experiment

In the top panel of Fig. 10 we compare our results for n-4He
low-energy phase shifts to experimental phase shifts obtained
from an accurate R-matrix analysis of 5He data depicted as
crosses [39]. The phase shifts obtained with the NN + 3N -full
Hamiltonian are shown as solid red lines, while those from the
NN + 3N -induced Hamiltonian, which is unitarily equivalent
to an initial NN Hamiltonian, are given as dashed blue lines.
Overall, we find a very good reproduction of the experimental
phase shifts for the 2S1/2, 2P1/2, and 2D3/2 partial waves. In
particular, for the 2P1/2 phase shift the initial 3N interaction
is responsible for this agreement. However, we also note that
for the 2S1/2 phase shift at large energies the initial 3N force
leads to slightly larger deviations from experiment compared
to the NN + 3N -induced case. Concerning the 2P3/2 partial
wave, the initial 3N interaction brings the phase shift closer
to experiment, resulting in quite good agreement starting at
about 4 MeV c.m. energy. Moreover, this interaction leads to

the expected increased spin-orbit splitting in the P waves,
as evident from the comparison to the splitting from the
NN + 3N -induced calculation. However, for energies around
the resonance position the enhancement of the 2P3/2 partial
wave is too small, so it misses the experimental resonance
energy at 0.78 MeV, related to the low-lying 3

2
− 1

2 state of
5He. Though the need for an even richer spin-orbit structure
of the 3N force cannot be ruled out [8], one reason for
this disagreement has to be searched in a still insufficient
model space in our NCSM/RGM calculations for this partial
wave. We have included the first six excited states of 4He,
that is up to a maximum of 24 MeV excitation energy (see
Table I). However, the d-3H channel opens experimentally at
17.63 MeV; therefore, we would arrive at a more complete
description of the scattering by including the coupling to
this channel. This would require a generalization of the
formalism developed in Ref. [32] to include 3N forces.
Another possibility to clarify this issue is to include the
couplings to low-lying states of 5He in the framework of the
NCSMC as recently proposed in Refs. [11] and [36]. Work in
both these directions is currently under way.

In Fig. 10(b) we present the comparison of the p-4He phase
shifts to those obtained from an R-matrix analysis of data [39].
The results are qualitatively very similar to the n-4He case:
The 2S1/2 and 2D3/2 partial waves are in good agreement with
experimental phase shifts. This is also true for the 2P1/2 phase
shift at large energies including the initial 3N interaction.
Instead, the initial 3N interaction leads to deviations near
the resonance located at 3.2 MeV, where the calculation
at the NN + 3N -induced level is in good agreement with
experiment. For the 2P3/2 phase shift, the initial 3N interaction
improves the overall agreement with experiment. However,
we observe again quite large discrepancies at energies below
6 MeV and the phase shift misses the experimental resonance
of the 5Li system at 1.69 MeV, though the spin-orbit splitting
of the 2P3/2 and 2P1/2 phase shifts is increased by adding the
initial 3N force. Again this deviation may be partly attributable
to the limited model space and the missing d-3He channel.

Overall, the degree of agreement with experiment obtained
for the nucleon-4He phase shifts is very promising in view
of future developments towards more refined reaction models
and paves the way for ab initio applications and benchmarks of
chiral NN + 3N Hamiltonians in nucleon scattering on light
nuclei.

3. Cross sections and analyzing powers

We now focus on a comparison of our theory to n-4He and
p-4He elastic scattering observables. Using the chiral NN -
only Hamiltonian, in Ref. [31] it was shown that NCSM/RGM
calculations including only the g.s. and first excited state of the
4He target were able to provide a reasonable description of the
angular differential cross section and analyzing power for these
reactions at nucleon incident energies well beyond 10 MeV. At
those energies, as can be seen from Fig. 5, target-polarization
effects are weaker and, owing to the artificial enhancement
of the 2P3/2 resonance with the NN -only Hamiltonian (see
discussion of Sec. III C 1), one can reproduce the experimental
scattering phase shifts already in such a smaller model space.

054622-12



Still more efforts

There’s been one scattering calculation using CC in a Gamow (complex-energy)
basis (40Ca + p; Hagen & Michel 2012)

There has been a calculation of α capture in 3He(α, γ)7Be & 3H(α, γ)7Li by
Neff (2011) with FMD

and quadrupole moments test the tail of the wave functions
and agree reasonably well with experiment.

In Fig. 2, we show the phase shifts for scattering in the
S- and D-wave channels. As for the bound states, the
addition of polarized configurations to the model space
significantly changes the results and leads to a good agree-
ment with the available data [32,33].

The capture cross section for the 3Heð!;"Þ7Be reaction
is calculated by using the many-body scattering and bound
eigenstates of the Hamiltonian. In the energy range up to
2.5 MeV, it has been shown [18] that only dipole transitions
from the S- and D-wave scattering states have to be con-
sidered. The obtained S factor is shown in Fig. 3 together
with the experimental data. Our results are in good agree-
ment with the recent measurements regarding both the
absolute normalization and the energy dependence. The
extrapolated zero-energy S factor is S34ð0Þ ¼ 0:593 keVb.

As our model successfully describes the 3Heð!;"Þ7Be
reaction, it should also do well for the isospin mirror
reaction 3Hð!;"Þ7Li. As shown in Fig. 4, we observe a
good agreement for the energy dependence of the S factor
but find that the absolute normalization is about 15% larger
than the data by Brune, Kavanagh, and Rolfs [34].
In summary, our calculations are able to describe con-

sistently the bound state properties and the scattering phase
shifts as well as the normalization and energy dependence
of the 3Heð!;"Þ7Be capture cross section. Our results
deviate from the correlation between the ground state
quadrupole moment and zero-energy S factor found in
cluster models using phenomenological interactions
[14,15]. Our approach differs in two main aspects from
those earlier studies. First, we use a well defined effective
interaction that describes the nucleon-nucleon scattering
data. In contrast to phenomenological effective interac-
tions, the UCOM interaction has a pronounced momentum
dependence and a longer range due to the explicitly in-
cluded pion exchange, a feature that turns out to be im-
portant for the low energy scattering solutions. Second, our
model space is larger than in the cluster model. Additional
FMD basis states in the interaction region describe polar-
ized clusters and shell-model-like configurations.
Although they are only a small admixture in the full
wave functions, they are essential to describe the bound
state properties as well as the scattering phase shifts.
The results can also be studied in terms of overlap

functions that are obtained by mapping the microscopic
many-body wave functions onto the relative wave function
of two pointlike nuclei in the resonating group formalism.
In Fig. 5, we show the overlap functions for the 1=2þ

scattering state at Ecm ¼ 50 keV and the 3=2% bound state.
The nodes in the overlap functions reflect the antisymmet-
rization between the clusters. We also show the dipole
strength calculated with these overlap functions. It repro-
duces the dipole matrix element calculated with the micro-
scopic wave functions within 2%. Comparing with the
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and quadrupole moments test the tail of the wave functions
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In Fig. 2, we show the phase shifts for scattering in the
S- and D-wave channels. As for the bound states, the
addition of polarized configurations to the model space
significantly changes the results and leads to a good agree-
ment with the available data [32,33].

The capture cross section for the 3Heð!;"Þ7Be reaction
is calculated by using the many-body scattering and bound
eigenstates of the Hamiltonian. In the energy range up to
2.5 MeV, it has been shown [18] that only dipole transitions
from the S- and D-wave scattering states have to be con-
sidered. The obtained S factor is shown in Fig. 3 together
with the experimental data. Our results are in good agree-
ment with the recent measurements regarding both the
absolute normalization and the energy dependence. The
extrapolated zero-energy S factor is S34ð0Þ ¼ 0:593 keVb.

As our model successfully describes the 3Heð!;"Þ7Be
reaction, it should also do well for the isospin mirror
reaction 3Hð!;"Þ7Li. As shown in Fig. 4, we observe a
good agreement for the energy dependence of the S factor
but find that the absolute normalization is about 15% larger
than the data by Brune, Kavanagh, and Rolfs [34].
In summary, our calculations are able to describe con-

sistently the bound state properties and the scattering phase
shifts as well as the normalization and energy dependence
of the 3Heð!;"Þ7Be capture cross section. Our results
deviate from the correlation between the ground state
quadrupole moment and zero-energy S factor found in
cluster models using phenomenological interactions
[14,15]. Our approach differs in two main aspects from
those earlier studies. First, we use a well defined effective
interaction that describes the nucleon-nucleon scattering
data. In contrast to phenomenological effective interac-
tions, the UCOM interaction has a pronounced momentum
dependence and a longer range due to the explicitly in-
cluded pion exchange, a feature that turns out to be im-
portant for the low energy scattering solutions. Second, our
model space is larger than in the cluster model. Additional
FMD basis states in the interaction region describe polar-
ized clusters and shell-model-like configurations.
Although they are only a small admixture in the full
wave functions, they are essential to describe the bound
state properties as well as the scattering phase shifts.
The results can also be studied in terms of overlap

functions that are obtained by mapping the microscopic
many-body wave functions onto the relative wave function
of two pointlike nuclei in the resonating group formalism.
In Fig. 5, we show the overlap functions for the 1=2þ

scattering state at Ecm ¼ 50 keV and the 3=2% bound state.
The nodes in the overlap functions reflect the antisymmet-
rization between the clusters. We also show the dipole
strength calculated with these overlap functions. It repro-
duces the dipole matrix element calculated with the micro-
scopic wave functions within 2%. Comparing with the
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Something about 4He being spin-0 made this possible, so it may be a one-off



Semi-ab initio methods

Depending on available information & what you want, you might be better off
“cheating” and mixing empirical & ab initio methods

I’ve done this a couple of times

Long ago (with Wiringa & Schiavilla, 2001), I computed α-captures with ab
initio (VMC) clusters & final state but cluster motion from measured phase
shifts
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Ab initio inputs to halo EFT

If you want to produce the best cross section for some application, you’ll want
some nearly-consistent way of blending ab initio & empirical information

With this in mind, Zhang, Phillips & I have been working on halo EFT with mixed
ab initio & empirical inputs (asymptotic normalizations & scattering lengths)
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Some final thoughts on perturbative operators

Reaction observables that don’t require a coupled-channel calculation are the
easiest (at least for QMC)

For example:

Parity-violating nα spin rotation requires completely separate s- & p-wave
calculations, then Fermi’s golden rule with a PV operator

But 3He(n, p)3H requires coupling of 3He+n & 3H+p channels even without
parity violation

The coupled channels can be dealt with, but more easily in some methods than
others – the Pisa group has already dealt well with 3He(n, p)3H in the
CHH basis

Lots of useful work was done with old-fashioned construction of current operators
consistent with unevenly systematic NN potentials



What you can do with good operators

Setting up operators in a consistent χEFT formalism with the NN interaction will
avoid ambiguities & mismatches

Just using operators (including 2-body) from χEFT but matched for use with
Argonne potential does quite well (mag. moments & transition strengths)

(From Pastore et al.)
QUANTUM MONTE CARLO CALCULATIONS OF . . . PHYSICAL REVIEW C 87, 035503 (2013)

isoscalar Coulomb term in the starting VMC wave functions
as well as in the GFMC propagator, are essentially identical to
the standard charge symmetric results, and therefore we do not
report them. In the A = 9, T = 3

2 case there is weak evidence
for a CSB effect so in this case we show the results of the two
independent calculations.

Also in the A = 6–9 nuclear m.m.’s, the difference between
the SNPA and χEFT corrections is more pronounced in the
isoscalar component. In all cases, the χEFT corrections are
more positive (or less negative) than the corresponding SNPA.
This makes the χEFT predictions closer to the experimental
values. The isovector corrections evaluated with the two
models are reasonably in agreement with each other, although
they are bigger when derived from the χEFT model. MEC
corrections are crucial to bring the theory closer to the
experimental values. Their effect is particularly pronounced
in the isovector combination of the A = 9, T = 3/2 nuclei’s
m.m.’s, for which the MEC SNPA (χEFT) correction provides
∼20% (∼30%) of the total calculated isovector contribution.

It is interesting to note that, despite the large effect observed
in the A = 9, T = 3/2 systems, MEC corrections are consid-
erably smaller in the A = 9, T = 1/2 nuclei. This feature can
be explained by considering the dominant spatial symmetry
(s.s.) of the wave functions associated with the A = 9 systems.
In particular, the dominant spatial symmetry of 9Be (9B) is
[441], corresponding to an [α,α, n(p)] structure as shown in
Ref. [44]. A single nucleon outside an α particle feels no net
OPE potential, and this holds true also for a single nucleon
outside a double-α [44] symmetry state. Consequently, the
NLO OPE currents illustrated in Figs. 1(b) and 1(c), which
are generally the largest MEC terms in both SNPA and χEFT
approaches, do not contribute significantly. On the other hand,
the dominant spatial symmetry of 9C (9Li) is [432] ∼ [α, 3He
(3H), pp (nn)], and the NLO OPE term contributes in both the
trinucleon clusters and in between the trinucleon clusters and
the valence pp (nn) pair. The IA m.m. for 9Be is close to the
experimental value, while those for 9Li and 9C are far from
the data, so this pattern of small and large MEC corrections
provides good overall agreement with the data.

The χEFT results reported in Tables III and V are
summarized in Fig. 4, where the experimental data [34–37]
(there are no data for the m.m. of 9B) are represented by black
stars. We show also the experimental values for the proton and
neutron m.m.’s, as well as their sum, which corresponds to the
m.m. of an S-wave deuteron. The experimental values of the
A = 2–3 m.m.’s have been utilized to fix the LECs, therefore
predictions are for A > 3 nuclei. The blue dots labeled as
GFMC(IA) represent theoretical predictions obtained with the
standard IA one-nucleon EM current entering at LO: diagram
(a) of Fig. 1. The GFMC(IA) results reproduce the bulk
properties of the m.m.’s of the light nuclei considered here.
In particular, we can recognize three classes of nuclei with
nonzero m.m.’s, i.e., odd-even nuclei whose m.m.’s are driven
by an unpaired valence proton, even-odd nuclei driven by
an unpaired valence neutron, and odd-odd nuclei with either
a deuteron cluster or a triton-neutron (3He-proton) cluster
outside an even-even core. Predictions which include all the
contributions to the N3LO χEFT EM currents illustrated in
Fig. 1 are represented by the red diamonds of Fig. 4, labeled
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FIG. 4. (Color online) Magnetic moments in nuclear magnetons
for A ! 9 nuclei. Black stars indicate the experimental values [35–
37], while blue dots (red diamonds) represent GFMC calculations
which include the IA one-body EM current (total χEFT current up
to N3LO). Predictions are for nuclei with A > 3.

GFMC(TOT). In all cases except 6Li and 9Be (where the IA is
already very good and the MEC correction is very small) the
predicted m.m.’s are closer to the experimental data when the
MEC corrections are added to the IA one-body EM operator.

It is also interesting to consider the spatial distribution of
the various contributions to the m.m., i.e., to examine the
magnetic density. The one-body IA contributions from the
starting VMC wave functions are shown in Fig. 5 for
the isobaric analog pairs 7Li–7Be, 8Li–8B, and 9Li–9C.
(The VMC values for the IA m.m.’s are within a few
% of the final GFMC values, so we expect their spatial
distribution to be reasonably accurate.) In the figure, the red
upward-pointing triangles are the contribution from the proton
spin, µp[ρp↑(r) − ρp↓(r)], and similarly the blue downward-
pointing triangles are the contribution from the neutron spin.
The green diamonds are the proton orbital (convection current)
contribution, and the black circles are the sum. The integrals
of the black curves over d3r give the total m.m.’s of the nuclei
in IA.

For the neutron-rich lithium isotopes, there is one unpaired
proton (embedded in a p-shell triton cluster) with essentially
the same large positive contribution in all three cases. The
proton orbital term is also everywhere positive, but relatively
small. For 7Li and 9Li, the neutrons are paired up, and give only
a small contribution, so the total m.m. is close to the sum of the
proton spin and orbital parts. However, 8Li has one unpaired
neutron which acts against the proton and significantly reduces
the overall m.m. values. For the proton-rich isobaric analogs,
there is one unpaired neutron (embedded in a p-shell 3He
cluster) with the same sizable negative contribution in all three
cases. In 7Be and 9C, the protons are paired up and give little
net contribution, but the orbital term is always positive and acts
against the neutron spin term. In 8B there is also one unpaired
proton, which gives a bigger contribution than the unpaired
neutron and results in a net positive m.m. value.
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Ji the initial state angular momentum. In the equation above,
!E is the energy difference between the final and the initial
state (in units of MeV) for which we take the experimental
values as given in Refs. [35,36].

These calculations are obtained, as before, by propagating
up to τ = 0.8 MeV−1 with an evaluation after every 40 propa-
gation steps, i.e., at intervals of τ = 0.02 MeV−1. The analysis
of the IA and the MEC contributions are performed separately
in the same fashion that was implemented for the m.m.’s.

The predictions for the A = 6, 7 nuclei as well as those for
the A = 8, (1+ →2+) transitions are in very good agreement
with the experimental data. In all these cases the MEC
corrections are needed to bring the theory in agreement with
the experimental data. Results for the (3+ → 2+) transitions
in the A = 8 systems underpredict the experimental data,
however, the latter have large experimental errors, and thus it
is difficult to reach any robust conclusions as to the actual level
of agreement between theory and experiment. The transition
in 9Be is known with good accuracy, but the predicted width
is lower than the experimental data although the error bars
almost touch. We also report a prediction for the ( 1

2
− → 3

2
−

)
M1 transition in 9Li which has not been measured yet. We did
not calculate the 9C transition to its unbound 1

2
−

state.
The magnetic transition densities in IA as obtained from the

VMC starting wave functions are shown in Fig. 6. As before,
the red upward-pointing triangles are the contribution from
the proton spin term, the blue downward-pointing triangles are
from the neutron spin, the green diamonds are from the proton
orbital term, and the black circles are the total IA contribution.
For the lithium isotopes, the transitions are predominantly
from the proton spin term, i.e., these are almost pure proton
spin-flip transitions. For 7Be and 8B, the neutron spin term
is the most important, but with some contribution from the
proton spin and orbital terms. The neutron spin-flip is also the
biggest term in the 9Be transition, but here the proton orbital
piece is almost the same size.

TABLE X. Matrix elements in units of e fm2 and widths of E2
transitions in A = 7–9 nuclei. Only IA results are shown.

(J π
i → J π

f ) E2 and $ IA Expt.

7Li( 1
2

− → 3
2

−
) E2 5.59(16)

$(10−7 eV) 3.1(2) 3.30(21)
7Be( 1

2
− → 3

2
−

) E2 9.43(24)
$(10−7 eV) 5.2(3) n.a.

8Li(1+ → 2+) E2 2.04(8)
$(10−6 eV) 1.0(1) n.a.

8B(1+ → 2+) E2 4.40(16)
$(10−6 eV) 1.4(1) n.a.

8Li(3+ → 2+) E2 6.09(10)
$(10−4 eV) 2.5(1) n.a.

8B(3+ → 2+) E2 8.64(23)
$(10−4 eV) 5.8(3) n.a.

9Li( 1
2

− → 3
2

−
) E2 3.69(9)

$(10−4 eV) 7.7(4) n.a.
9Be( 5

2
− → 3

2
−

) E2 12.39(15)
$(10−3 eV) 1.7(1) 1.89(14)
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FIG. 7. (Color online) Ratio to the experimental M1 and E2
transition widths in A ! 9 nuclei. Black stars with error bars indicate
the experimental values [35,36], while blue dots (red diamonds)
represent GFMC calculations which include the IA one-body EM
current (total χEFT current up to N3LO).

Finally in Table X, we show IA results for the electric
quadrupole matrix elements and the associated transition
widths. The latter in units of MeV is

$E2 = 0.241
(

!E

h̄c

)5

B(E2), (26)

where B(E2) is the square of the reduced matrix element of
the electric quadrupole operator given by

ρIA =
∑

i

eN,i r2
i Y2(r̂i), (27)

where YL is the spherical harmonic. The IA picture provides a
decent description of the two experimental data points that are
available, which might possibly be improved by the inclusion
of two-body effects. This topic has not been addressed in this
work although effort in this direction is underway.

The results discussed in this section are summarized in
Fig. 7 for EM transitions whose widths are known experimen-
tally. We observe that in most cases, the agreement with the
experimental data is excellent, and that the MEC contributions
are crucial for the B(M1) cases.
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Final final thoughts on operators

Putting some effort into consistency of perturbative operators & main NN force
pays off with good reproduction of data

Fully consistent calculations are within reach

This requires currents (or symmetry-violating terms) established in a consistent
formalism with the NN interaction

It also requires currents that are SRG-evolved in the same way as the NN
potential (when that’s done) – this is easily done now

More work is needed on currents consistent with truncated bases (e.g., how to
get r.m.s. radius even in harmonic oscillator basis)



Final thoughts on ab initio continuum states

The unification of nuclear structure & reactions is widely recognized as important

There remain big mismatches between bound-state methods (e.g. VMC) & the
reaction theory (e.g. DWBA) used to compare their results with experiment

Some difficulties remain in fixing 3-body interaction terms, but they can probably
be dodged in many practical calculations

In light nuclei, few or no important features need to be fudged for percent-level
precision in many observables

This field remains severely man- and womanpower-limited
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