Searches with a Disappearing-Track Signature

Andy Haas
New York University

LHC Searches for Long-Lived BSM Particles
U. Mass, Amherst
Nov. 12, 2015

Introduction / motivations

- Only sfermions (Gauginos and Higgsinos) are within LHC reach
- Can go after gluinos or EW-inos... that's it!

- **Gluino lifetime depends on** m_0

Split SUSY

Nima

Reason for splitting:

- fermions carry R-symmetry
- scalars don't

Scalar

- Unification \(\checkmark \)
- Dark Matter \(\checkmark \)
- No Flavor, CP, moduli,... problems

Gluino

- Fermions

$c_T \approx 10^{-5} m \left(\frac{m_\tilde{g}}{\text{PeV}} \right)^4 \left(\frac{\text{TeV}}{m_\tilde{g}} \right)^5$
Introduction / motivations

- **EW-ino phenomenology depends on SUSY spectrum**

- Light Bino only: $pp \rightarrow$ invisible!
 - mono-jet+MET?
 - Out of luck?
 - ILC? μ-collider?

- Light Wino and Bino
 - Heavy Higgsinos
 - Bino LSP: $\chi_1^+ \chi_1^- \rightarrow W^+W^- (+\text{MET})$, $\chi_1^+ \chi_2^0 \rightarrow W^+h (+\text{MET})$
 - Wino LSP: Disappearing track (~ 10 cm, $\Delta m \sim 165$ MeV)
 - Light Higgsinos: $W^+W^- (+\text{MET})$, $W^+h (+\text{MET})$ and Zh (or Z^*) and hh (or h^*)

- Higgino LSP
 - Only light Higgsinos: Disappearing track (~ 1 cm, $\Delta m \sim 355$ MeV)
 - Light Gravitino: hh (+MET), possibly displaced?
Long-lived Chargino

- Chargino becomes long-lived when nearly-degenerate with the LSP
- Phenomenology identical to Anomaloy-Mediated SUSY Breaking (AMSB)

- Light Wino and Bino, heavy Higgsinos, Wino LSP
 - Lifetime \(\sim 50 \text{ mm} \), \(\Delta m \sim 165 \text{ MeV} \) from EW contribution

- Higgsino LSP, only light Higgsinos
 - Lifetime \(\sim 5 \text{ mm} \), \(\Delta m = \frac{1}{2} \alpha m_Z = \sim 355 \text{ MeV} \)

\[pp \rightarrow \tilde{\chi}_1^\pm \tilde{\chi}_1^0 + \text{jet} \, , \, pp \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1^- + \text{jet} \]

Need \(p_T > 90 \text{ GeV} \) ISR for MET trigger: \(\sim 15\% \) of cross-section
ATLAS Disappearing track search

- Chargino travels through some layers then decays to a soft pion (not reconstructed) + MET

- Look for high-pt isolated track with few hits in outer tracking layer
 - Track needs at least 3 inner pixel hits and 1 silicon strip hit
 - Require <5 outer-tracker (TRT) hits

![Diagram of charged particle decay](image.png)
Improved ATLAS disappearing track search

- Large improvement from customized track reconstruction
 - *(Needs access to data with all tracker hits saved...)*

- Require just 1 Si strip layer (instead of 3) and no TRT
 - Decay volume moves to $r > \sim 300$ mm and widens
 - Efficiency $100\times$ larger for $c\tau = 50$ mm (165 MeV)
Improved ATLAS disappearing track search

- Background track pT shapes fit to data
 - No excess seen at high pT :(

- Exclude chargino <270 GeV in AMSB with $\Delta m \sim 165$ MeV
CMS Run1 search for disappearing tracks

- CMS has recently published a very similar search with very similar sensitivity and results
- Takes advantage of more tracking layers to reduce fake-track background
- Additional pattern-recognition issues (outer hits can form an alternate track)

<table>
<thead>
<tr>
<th>Event source</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrons</td>
<td><0.49 (stat) <0.50 (stat+syst)</td>
</tr>
<tr>
<td>Muons</td>
<td>$0.64^{+1.47}_{-0.53}$ (stat) ± 0.32 (syst)</td>
</tr>
<tr>
<td>Taus</td>
<td><0.55 (stat) <0.57 (stat+syst)</td>
</tr>
<tr>
<td>Fake tracks</td>
<td>$0.36^{+0.47}_{-0.23}$ (stat) ± 0.13 (syst)</td>
</tr>
<tr>
<td>Data</td>
<td>2</td>
</tr>
</tbody>
</table>

- Have $Pt > 50$ GeV.
- Be isolated.
- Deposit < 10 GeV in calorimeter.
- Not be identified e, μ or τ.
CMS Run1 search for disappearing tracks

- Slightly better (expected) mass reach, slightly worse (expected) small-lifetime reach
- Nice “model-independent” plot of cross-section exclusion
Lots of room for gains!

- As opposed to most other BSM searches, selection efficiency for disappearing tracks is *tiny*! (At ATLAS too!)

<table>
<thead>
<tr>
<th>Chargino mass [GeV]</th>
<th>500</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chargino $c\tau$ [cm]</td>
<td>10</td>
<td>100</td>
</tr>
<tr>
<td>Trigger</td>
<td>13%</td>
<td>13%</td>
</tr>
<tr>
<td>Basic selection</td>
<td>8.9%</td>
<td>9.0%</td>
</tr>
<tr>
<td>High-p_T isolated track</td>
<td>0.14%</td>
<td>4.4%</td>
</tr>
<tr>
<td>Candidate track</td>
<td>0.10%</td>
<td>2.9%</td>
</tr>
<tr>
<td>Disappearing track</td>
<td>0.095%</td>
<td>1.4%</td>
</tr>
</tbody>
</table>

(CMS efficiencies from Run 1)

- Need ISR for triggering
 - Are there other production channels we could use? VBF?

- Need to be very boosted / tail of exponential lifetime
 - Can we reconstruct shorter tracks?
 - Can we boost the chargino more?
Improved disappearing track search

- Eventual sensitivity with 14 TeV and *same short-track analysis*
 ~500 GeV for $\Delta m \sim 165$ MeV
- Going to need even shorter tracks to reach the ~5 mm lifetime case...

![Graph showing τ vs. m_{χ_i}](image)

- $\tau \sim 0.2$ ns, ~165 MeV, 50mm
- 0.02 ns, ~355 MeV, 5mm
Detector Upgrades

- New silicon layer installed!
- Many trigger upgrades also installed... (including L1 VBF trigger)
- ...

Original

Updated
IBL installation!

Where did that wire go??
IBL installation!

Never mind, got it!
Improved disappearing track search

- Eventual sensitivity with 14 TeV and *same short-track analysis* ~500 GeV for $\Delta m \sim 165$ MeV
- Going to need even shorter tracks to reach the ~5 mm lifetime case
 - Insertable B-Layer (IBL) added
 - Could have $r>150$ mm tracks using just 4 pixel hits?!

New IBL pixel layer at radius of ~26mm

Sensitivity:~500 GeV for $\Delta m \sim 165$ MeV, 50mm

$T \sim 0.2$ ns, ~165 MeV, 50mm

$S\sqrt{s} = 14$ TeV

Sensitive up to ~800 GeV for 50mm and ~200 GeV for 5mm lifetime using 4-pixel IBL tracks?
Super improved disappearing track search

- **How to find even shorter tracks?**
 - 150 mm → 50 mm tracks gives ~25 times larger Higgsino efficiency
 - Sensitivity for chargino of 5mm lifetime goes from ~200 to ~400 GeV
- **New tracking layers at small radii?**
 - Most important in central eta region
- **Need to maintain ~30% 1/pT resolution at pT=~100 GeV ...**
 - High resolution pixels (in r-phi), small scattering
- **Any other ways? Boosted in forward direction? Pixel disks?**
 - Asymmetric collisions ala BaBar?
Other effects of light charginos

- \(\text{BR}(h \rightarrow \gamma\gamma) \) can be enhanced \(\sim 20\% \) (or suppressed \(\sim 40\% \)) by light charginos

- Long-term LHC can measure \(\text{BR}(h \rightarrow \gamma\gamma) \) to \(\pm 5\% \)

- Sensitive to Chargino masses up to \(\sim 200 \text{ GeV} \)

“Mini-split”

Chargino mass

\(h \rightarrow \gamma\gamma \) enhancement
(Far-)Future of Disappearing Track Searches

- Reconstructing very short tracks (with good momentum resolution!) is essential for mass reach
- 15 cm tracks seem possible at ATLAS

If we could reconstruct 10 cm tracks at a 100 TeV detector:
 - Wino sensitivity from 3.5 → 4.5 TeV
 - Higgsino from ~600 GeV → 1 TeV!

- Short tracks should perhaps be a design goal of future detectors (and accelerators?)

M. Low and L.T. Wang
arXiv: 1404.0682
Exploring other possibilities: *milliQan@LHC*

- Milli-charged particles = new particles with electric charge $\sim 10^{-3}$
- Easy to add to SM: “dark U(1)” (with massless dark photon) mixing through kinetic term → dark fermion milli-charged under SM
- Currently weak direct limits for fermion mass > 100 MeV
- Would need new detector to see them at LHC...
- ~ 1 photo-electron in 1.4m long scintillator
- Require triple coincidence in time window

arXiv:1410.6816