Acknowledgements: D. Armstrong, M. Dalton, K. Paschke, J. Mammei, M. Pitt, B. Waidyawansa and all my theory colleagues

A_n Experiments

Krishna Kumar Stony Brook University

The Electroweak Box Workshop at ACFI, UMass, Amherst, September 28, 2017

Outline

- Brief motivation for A_n measurements
- Strange quark form factor experiments
- A_n in elastic electron-nuclear scattering
- An from electron-electron scattering
- Concluding remarks

Parity Violating Electron Scattering $A_{LR} = A_{PV} = \frac{\sigma_{1} - \sigma_{1}}{\sigma_{1} + \sigma_{1}} \sim \frac{A_{weak}}{A_{\gamma}} \sim \frac{G_{F} Q^{2}}{4 \pi \alpha} (g_{A}^{e} g_{V}^{T} + \beta g_{V}^{e} g_{A}^{T})$

 g_V is a function of $\sin^2\theta_W$ Weak Charge Qw

Beam Normal Asymmetry Measurements

Experimental Technique

Experimental Technique

Symmetry of the apparatus helps systematic control:

$$A_{corr} = A_{det} - A_Q + \alpha \Delta_E + \Sigma \beta_i \Delta x_i$$

Symmetric azimuthal coverage: Up cancels down, right cancels left...

Assumption on previous page: perfect longitudinal polarization **The An Systematic**

Transversely polarized electrons scattering from unpolarized nucleons

Measured asymmetry has an azimuthal dependence

$$A_T(\phi_e) = \frac{N \uparrow - N \downarrow}{N \uparrow + N \downarrow} = B_n \cdot S \sin(\phi_e - \phi_s) = B_n (P^V \cos \phi_e - P^H \sin \phi_e)$$
$$P^V = S \sin \phi_s \text{ and } P^H = S \cos \phi_s$$

time-reversal invariance forces this SSA to vanish for one-photon exchange

arises from an interference between the one-photon exchange (Born) amplitude and the imaginary part of the two-photon exchange amplitude

$$B_{n} = \frac{\sigma_{\uparrow} - \sigma_{\downarrow}}{\sigma_{\uparrow} + \sigma_{\downarrow}} = \frac{2 \text{Im}(T_{2\gamma} \cdot T_{1\gamma}^{*})}{|T_{1\gamma}|} \qquad \qquad \underbrace{k \quad k_{1} \quad k'}_{q_{1}} \\ \text{Asymmetry is} \qquad B_{n} \sim \alpha_{\text{em}} \frac{m_{e}}{E_{e}} \sim 10^{-6} - 10^{-5} \\ \text{very small} \qquad 10^{-6} - 10^{-5} \\ \text{very small} \qquad \text{ultra-relativistic}} \qquad \underbrace{k \quad k_{1} \quad k'}_{p \quad 1} \\ \text{states on-shell} \\ \text{very states on-shell} \end{cases}$$

Beam Normal Asymmetry Measurements

PV Experiments

Experiment	Magnets	Detector	Count	e^- angles(°)
SLAC E122	DQD	Pb Glass	No	4
Mainz	None	Air C	No	130
MIT-Bates	\mathbf{Q}	Lucite C	No	35
SAMPLE	None	Air C	No	146
HAPPEX-I	$\mathbf{Q}\mathbf{Q}\mathbf{D}\mathbf{Q}$	Pb-Lucite	No	15
G0	Toroid	Scintillator	Yes	6-20; 110
A4	None	PbF_2	Yes	35; 145
SLAC E158	QQQQ	Cu-Quartz	No	2
HAPPEX-II	DQQDQ	Cu-Quartz	No	5
PREx -I	DQQDQ	Quartz	No	5
HAPPEX-III	$\mathbf{Q}\mathbf{Q}\mathbf{D}\mathbf{Q}$	Pb-Lucite	No	15
PVDIS	QQDQ	Pb Glass	Yes	19
PREx -II	DQQDQ	Quartz	No	5
CREx	DQQDQ	Quartz	No	4
Qweak	Toroid	Pb-Quartz	No	5
Møller	Toroid	Quartz	No	0.3 - 1
SoLID	Solenoid	Package	Yes	22 - 35
P2	Solenoid	Quartz	No	20
Mainz C	Solenoid	Quartz	No	40

open geometry, integrating

 G_{M}^{s} , (G_{A}) at $Q^{2} = 0.1 \ GeV^{2}$

SAMPLE at MIT-Bates

Proton Target

200 MeV

Beam Normal Asymmetry Measurements

G0 at JLab

Center-of-Mass Angle θ_{CM} (degrees)

50

GO Neutron (from ²H)

for the neutron

PVA4 at Mainz

Recent publication

Precise backward angle measurements

Both ¹H and ²H

 G_{E}^{s} + 0.23 G_{M}^{s} at Q² = 0.23 GeV^{2} G_{E}^{s} + 0.10 G_{M}^{s} at Q² = 0.1 GeV^{2} G_{M}^{s} , G_{A}^{e} at Q² = 0.1, 0.23, 0.5 GeV^{2}

11

GO Inelastic Scattering

Backward angle measurements have the ability to tag electrons and pions, and there are bins dominated by inelastic electrons

C. Capuano

Ph.D. Thesis, William and Mary

 B_n less than few x 10⁻⁵

J. Mammei GO Pion Production

Pion Asymmetries

raw data

Dataset	Amplitude	φo
H362	-112 ± 20	-90° ± 2°
D362	-184 ± 8	-90° ± 2°
H687	-144± 16	-88° ± 7°
D687	-67 ± 13	-85° ± 11°

Note: there is no background asymmetry correction here; there may be very large electron contamination

errors are statistical

Trying to determine the theoretical implications – input is welcome!

Hall C Users Meeting

30

Very Forward Angle Measurements: HAPPEX/PREX (Hall A) and Qweak (Hall C)

Relationship between photo production cross-section and forward scattering amplitude works well when $q/E \rightarrow 0$

HAPPEX/PREX Data

Beam Normal Asymmetry Measurements

Talks by W. Deconinck and J. Dowd

B. Waidyawansa QWeak

Lots of new BNSSA measurements!

right column obsolete

Interaction	Target	Analysis Status
Elastic e+p at E = 1.165 GeV	Hydrogen	Ready for publication
	Aluminum	Ongoing
	Carbon	Ongoing
Inelastic e+p with a Δ in the final state E=0.877 GeV and 1.165 GeV	Hydrogen, Al, C	Ongoing
Elastic e+e at E=0.877 GeV	Hydrogen	Ongoing
Deep inelastic e+p at W=2.5GeV	Hydrogen	Ongoing
Pion electro-production at E=3.3GeV	Hydrogen	Ongoing

16

Measuring A_n from ¹²C at Mainz-A1

Future: could use other targets (²⁸Si, ⁴⁰Ca, ²⁰⁸Pb) 210-570 MeV beam energies, 15°-25° scattering angles Beam Normal Asymmetry Measurements

E158: Electron-Electron (Møller) Scattering

~ 11 ppb raw statistical error at highest E_{beam} , ~ 0.4% error on weak mixing angle

Beam Normal Asymmetry Measurements

An must vanish at 90 degrees in the COM for Møller scattering E158 Transverse Data

Dixon and Schreiber (2004)

E158 unpublished data might be interesting for phenomenology

- The e-p vector analyzing power is found to be consistent with a dispersive approach prediction assuming that the asymmetry of the 30% inelastic background is zero
- A_{PV} for e-p scattering is found to be consistent with what is expected from the dominant inelastic scattering amplitude (similar to the inelastic scattering measurements done by G0, PVDIS and Qweak at JLab)

MOLLER proposed to do factor of 5 better than E158 **"Odd" MOLLER Acceptance** Spectrometer – Kinematics and Azimuthal Acceptance

- Accept all Møller scattered electrons in range Θ_{CM} = 60° 120°
- Exploit identical particle nature for 100% acceptance; needs odd number of coils

Why Interesting Here?

Transverse asymmety (parity-conserving):

Potential systematic error in A_{PV}. Suppressed by

- small transverse polarization
- azimuthal acceptance symmetry
- acceptance symmetry in c.m.s. polar angle

electron beam polarized transverse to beam direction

$$A_{T} \equiv \frac{2\pi}{\sigma^{\uparrow} + \sigma^{\downarrow}} \frac{d(\sigma^{\uparrow} - \sigma^{\downarrow})}{d\phi} \propto \vec{S}_{e} \bullet (\vec{k}_{e} \times \vec{k'}_{e})$$

Strategy: measure and minimize via feedback

- Initial beam setup ~ 1-2 degrees
- Unique signature of transverse beam polarization
- 50 ppb error on $A_T{}^*P_b$ in 4 hours: 1 degree precision
- Over entire run: feedback will hold transverse polarization small (<<1 degree)

Run Phase 1:

- A_T measurement
- Feedback technique tested

Run Phases 2 and 3:

Routine feedback

Precision Test Planned for MOLLER

Average transverse asymmetry

demonstrate complete understanding of apparatus: simultaneous test of beam polarization, radiative corrections, detector acceptance, backgrounds

- set up for physics running
- convert to vertical polarization at polarized source
- run a few hours
- back to longitudinal polarization
- back off beam energy by 50 MeV: horizontal polarization on target
- extract vector analyzing power to precision and accuracy of around or better than 0.5%

Is theory good to 0.1% with Dixon/Schreiber work?

Concluding Remarks

- There is a wealth of A_n measurements from the parity violation experiments on forward and backward angle elastic electron-proton scattering
- Some additional A_n measurements of electron-proton inelastic scattering might be of interest; new data forthcoming from Qweak
- A_n measurements on heavier nuclei provides an interesting theoretical challenge: any new insights relevant to electroweak boxes on light nuclei/proton? New data will soon become available both at 1 GeV (Qweak) and lower energies (Mainz A1)
- There are already some interesting constraints on the neutral current amplitude in inelastic electron proton scattering: have all the available data been used to reduce gamma-Z box uncertainties?
- The future holds many possibilities for providing precision measurements of A_{PV} in inelastic electron proton scattering at a variety of kinematic points: MOLLER, SOLID and P2. How useful will they be? These experiments are all capable of making new A_n measurements: what's interesting?

Continued dialog is necessary to make best use of existing results and optimizing the future program of auxiliary measurements