

Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst

Welcome to the ACFI !

Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst

We seek answers to key open questions about nature's fundamental interactions, such as:

Why is there more matter than anti-matter in the Universe?

What additional forces were active during the first moments after the Big Bang?

How are protons and neutrons put together?

Our mission:

Advancing research in theoretical and experimental physics at the interface of the Energy, Intensity, and Cosmic frontiers.

http://www.physics.umass.edu/acfi/

Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst

Activities

- **Core Research (in house):** ATLAS, EXO, LUX/LZ, DarkSide, J Lab parity & chiral, RHIC Spin, Borexino, Theory
- Targeted Workshops: Hadronic Probes, Lambda & Quasi Lambda, Higgs Portal,...
- Visiting Researchers: Ph.D. students (Australia, China), post-docs, faculty & senior researchers

Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst

Past Workshops

- Hadronic Probes of Fundamental Symmetries
- Lambda and Quasi-Lambda
- Unlocking the Higgs Portal
- Measuring the Neutron Lifetime
- Fundamental Symmetry Tests w/ Rare Isotopes
- Time-Reversal Tests in Nuclear & Hadronic Processes
- Hadronic Matrix Elements for Probes of CP-Violation
- The CP Nature of the Higgs Boson

- Probing the EW Phase Transition at a Next Gen PP Collider
- LHC Searches for Long-Live BSM Particles
- Neutrino Mass: From the Terrestrial Laboratory to the Cosmos
- Recent Developments in Semiclassical
 Probes of QFT's
- Northeast Gravity Workshop
- Making the EWPT (Theoretically) Strong
- Neutrinos at the High Energy Frontier
- The Electroweak Box
- Testing CP-Violation for Baryogenesis

Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst

Neutron Lifetime

arXiv:1410.5311

Determination of the Free Neutron Lifetime

J. David Bowman,¹ L. J. Broussard,² S. M. Clayton,² M. S. Dewey,³ N. Fomin,⁴ K. B. Grammer,⁴ G. L. Greene^{*},^{4,1,†}
P. R. Huffman,⁵ A. T. Holley,⁶ G. L. Jones,⁷ C.-Y. Liu,⁸ M. Makela,² M. P. Mendenhall,³ C. L. Morris,²
J. Mulholland,⁴ K. M. Nollett,^{9,10} R. W. Pattie, Jr.,² S. Penttilä,¹ M. Ramsey-Musolf,¹¹ D. J. Salvat,^{8,2}
A. Saunders,² S. J. Seestrom,² W. M. Snow,⁸ A. Steyerl,¹² F. E. Wietfeldt,¹³ A. R. Young,⁵ and A. T. Yue³

Hadronic Probes

AMHERST CENTER FOR FUNDAMENTAL INTERACTIONS

Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst

EWPT @ 100 *TeV* arXiv: 1606.09408

CERN-TH-2016-11

ACFI-T16-10

Unlocking the Higgs Portal arXiv: 1604.05324

Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies

Editors:

R. Contino^{1,2}, D. Curtin³, A. Katz^{1,4}, M. L. Mangano¹, G. Panico⁵, M. J. Ramsey-Musolf^{6,7}, G. Zanderighi¹

The Higgs Portal and Cosmology

Ketevi Assamagan.^a Chien-Yi Chen.^{b,c} John Paul Chou.^d David Curtin.^e Michael A. Fedderke,^f Yuri Gershtein,^d Xiao-Gang He,^g Markus Klute,^h Jonathan Kozaczuk,ⁱ Ashutosh Kotwal,^j Steven Lowette,^k Jose Miguel No,^l Tilman Plehn,^m Jianming Qian,ⁿ Michael Ramsey-Musolf,^o Alexei Safonov,^p Jessie Shelton,^q Michael Spannowsky,^r Shufang Su,^s Devin G. E. Walker,^t Stephane Willocq,^o Peter Winslow^o

Long Lived Particles @ LHC

LHC LLP Community White Paper Collecting the efforts of several workshops • "LLP Signatures" — UMass — Nov. 2015 • "Experimental Challenges" — KITP — May 2016 • LHC LLP Mini-Workshop — CERN — May 2016 & April 2017

Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst

Other Meetings & Events

- International Workshop on Baryon & Lepton Number Violation: 2015
- School on the Physics of Electric Dipole Moments: 2016
- Nuclear Theory Topical Collaboration: Neutrinoless Double Beta Decay & EDMs: 2017
- School on the Physics of Neutrinoless Double Beta Decay: 2017

AMHERST CENTER FOR FUNDAMENTAL INTERACTIONS Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst

Upcoming Workshops & Schools

- Theoretical issues and experimental opportunities in searches for time reversal invariance violation using neutrons (fall 2018)
- > 5 for 2019: topics TBD

Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst

Support

- Seed funding from UMass Amherst
- Department of Energy Office of Nuclear Physics (2018+)
- National Science Foundation (NLDBD School)

Physics at the interface: Energy, Intensity, and Cosmic frontiers **University of Massachusetts Amherst**

Meeting Logistics

- Wireless Network: UMASS (usr & pw in packet)
- Lunch: on campus
- WS Dinner: Thursday @ Monkey Bar Bistro, 6:30 pm Amherst Center, Schedule: online
- People: students, post-docs, staff (Brittany Bonenfant)

Espresse !

AMHERST CENTER FOR FUNDAMENTAL INTERACTIONS Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst

This Workshop: Motivation & Goals

- Neutron & nuclear β -decay is entering a new era of precision
- Advances in experimental techniques and Standard Model theory are opening new opportunities to search for BSM physics
- Additional challenges remain to be addressed in order to fully realize these opportunities
- This workshop will lead to a white paper providing a roadmap for the most promising experiments and most pressing theoretical needs