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f7/2 model space



pf model space

both spin-orbit 
partners are included

Gamow-Teller 
Sum rule is full filled 
in the model space 



j4 model space

Some spin-orbit
partners are missing
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p

f7/2

1950s, 1960s  Cohen, Kurath, Talmi, Lawson….

One could understand all details in terms of 
specific shell-model configurations
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jj44



105 matrix dimension

109 matrix dimension

1011 matrix dimension

jj44 means f5/2, p3/2, p1/2, g 9/2 orbits for protons and neutrons

The computational challenge



jj44 means f5/2, p3/2, p1/2, g 9/2 orbits for protons and neutrons
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Ham
Hamiltonian 
Input programs NuShellX@MSU 

wrapper 

Toi (Table of 
Isotopes)

library of  published
Hamiltonians
(sps folder)

*.sp model space files
*.int Hamiltonian files

Observables and 
Graphics 

Outputs for energies *.lpt
<|a+|>  *.lsf
<|a+ a|> *.obd
<|a+ a+|>  *.tna

postscript (*.eps) (*.pdf) 
figures

NuShellX
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NuShellX (Bill Rae) starts with good-J proton and neutron basis states.
Then a good-J pn basis is generated from vector coupling:

Fortran95
OpenMP (uses up to about 32 cores)
The Hamiltonian matrix is obtained “on the fly” 
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pf
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Example for 56Ni in the pf shell 
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Example for 56Ni in the pf shell 
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Example for 56Ni in the pf shell 
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The key is to optimize the sums in this equation for OpenMP and/or MPI



Hamiltonian



Wick’s theorem for a 
Closed-shell vacuum
filled orbitals



Closed-shell vacuum
filled orbitals

Closed shell 
“core” energy



Closed-shell vacuum
filled orbitals

Closed shell   
“core” energy

Single particle 
energy

From experiment or EDF models



Closed-shell vacuum
filled orbitals

Closed shell   
“core” energy

Single particle 
energy

From experiment or EDF models

Renormalized nucleon-nucleon 
interaction



Closed-shell vacuum
filled orbitals

Closed shell   
“core” energy

Single particle 
energy

From experiment or EDF models

“tuned” (adjusted) valence
two-body matrix elements



Shell Model Hamiltonians

• Core energy and single-particle energies are taken from 
experiment (or in their absence some HF-EDF predictions)

• For the two-body part - start with an ab-initio Hamiltonian based 
on measured NN and then renormalized into the model space.

• Some combinations of two-body matrix elements (10-30) are 
adjusted to fit energy data – single-valued decomposition

• Hamiltonian is model-space dependent
• Result is that all BE and levels up to about 5 MeV can be 

reproduced or predicted with an rms deviation of 100-200 keV
• Examples

– p-shell - Cohen-Kurath, CKI, CKII, CKPOT
– sd-shell - USD, USDA, USDB
– pf-shell - FPD6, KB3, KB3G, GPFX1, GPFX1A
– p-sd-shell (Nhw) - WBP, WBT
– sd-pf-shell - SDPF-M
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vertical expansion

particle-hole configurations for all orbitals

1) QRPA in 

a)   jj44  =        (0f5/2, 1p3/2, 1p1/2, 0g9/2 )  
b)   fpg  = 0f7/2, (0f5/2, 1p3/2, 1p1/2, 0g9/2) 0g7/2 
c)   21 orbits (as on the left)

2) Many-body perturbation theory
(MBPT) to include 2 particle-2 hole (2p-2h)
excitations to high excitation.

3)  ∆ particle admixtures and mesonic 
exchange currents (MEC)

model space
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USDB    x
0.14     0.14
99.3     99.9
0.56      0.0005
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exp     USDB   USDA   USD

B(M1)  2+ to 1+   1.95      1.92       1.96       1.80
B(M1)  2+ to 3+   3.0        6.7         13.0       6.7   x 10 -3

B(GT)  3+ to 2+   2.7        1.6         0.13       0.8   x 10 -4

USDB   M1(b)  GT(c)     + +    for the matrix elements   ?????

But  < na22 2+ ||F+|| ne22 2+ > = -3.16

This means the b and c  matrix elements have the opposite sign
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3+ to 2+                 USDB    USDA     USD

M(s-tau)  (c1)             0.042      0.012     0.027 

M(l-tau)  (part of b)   -1.07      -1.00      -1.00

M(d-tau)                      0.062      0.081     0.066 

Relative phases look robust but s-tau is not very uncertain

so we should look at b/d  (not b/c and d/c)
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