The Nuclear Shell Model and Beta Decay

Alex Brown

Michigan State University

Evaluation of the theoretical nuclear matrix elements for $\beta \beta$ decay of ${ }^{76} \mathbf{G e}$

B. A. Brown, ${ }^{1}$ D. L. Fang, ${ }^{2}$ and M. Horoi ${ }^{3}$

Nuclear Matrix Elements for Tests of Local Lorentz Invariance Violation

B. A. Brown, ${ }^{1}$ G. F. Bertsch, ${ }^{2}$ L. M. Robledo, ${ }^{3}$ M. V. Romalis, ${ }^{4}$ and V. Zelevinsky ${ }^{1}$

Energy of 2+ States in Even-Even Nuclei

Energy of 2+ States in Even-Even Nuclei

pf model space
both spin-orbit
partners are included
Gamow-Teller Sum rule is full filled in the model space

1950s, 1960s Cohen, Kurath, Talmi, Lawson....

One could understand all details in terms of specific shell-model configurations

The computational challenge

$j j 44$ means $f_{5 / 2}, p_{3 / 2}, p_{1 / 2}, g_{9 / 2}$ orbits for protons and neutrons

NuShellX (Bill Rae) starts with good-J proton and neutron basis states. Then a good-J pn basis is generated from vector coupling:

$$
\mid\left[\left(J_{p}, \alpha_{p}\right) \otimes\left(J_{n}, \alpha_{n}\right)\right] J>
$$

Fortran95
OpenMP (uses up to about 32 cores)
The Hamiltonian matrix is obtained "on the fly"

```
NATHAN, E. Caurier, G. Martinez-Pinedo, F. Nowacki, A. Poves, J. Retamosa and A.
P. Zuker, Phys. Rev. C 59, 2033 (1999). link
J. Toivanen, arXiv:nucl-th/061002v1 9 Oct 2006.
```


Example for ${ }^{56} \mathrm{Ni}$ in the pf shell

Example for ${ }^{56} \mathrm{Ni}$ in the pf shell

Example for ${ }^{56} \mathrm{Ni}$ in the pf shell

$$
<B_{f}, J\left|H_{p n}\right| B_{i}, J>=\sum_{p p^{\prime} n n^{\prime} \lambda} F_{\lambda}\left(p p^{\prime} n n^{\prime}\right) \Gamma_{\lambda} \operatorname{RDM}\left(p_{f}, p_{i}, p, p^{\prime}, \lambda\right) \operatorname{RDM}\left(n_{f}, n_{i}, n, n^{\prime}, \lambda\right)
$$

where, for example, p_{f}, stands for labels $\left(J_{p_{f}}, \alpha_{p_{f}}\right)$,

$$
\Gamma_{\lambda}=\left\{\begin{array}{ccc}
J_{p_{f}} & J_{p_{i}} & \lambda \\
J_{n_{f}} & J_{n_{i}} & \lambda \\
J & J & 0
\end{array}\right\}
$$

and RDM are the reduced density matricies:

$$
\operatorname{RDM}\left(p_{f}, p_{i}, p, p^{\prime}, \lambda\right)=<\left[(J _ { p _ { f } } , \alpha _ { p _ { f } }) \| [a _ { p } ^ { + } \tilde { a } _ { p ^ { \prime } }] ^ { \lambda } \| \left[\left(J_{p_{i}}, \alpha_{p_{i}}\right)>\right.\right.
$$

and

$$
\operatorname{RDM}\left(n_{f}, n_{i}, n, n^{\prime}, \lambda\right)=<\left[(J _ { n _ { f } } , \alpha _ { n _ { f } }) \| [a _ { n } ^ { + } \tilde { a } _ { n ^ { \prime } }] ^ { \lambda } \| \left[\left(J_{n_{i}}, \alpha_{n_{i}}\right)>\right.\right.
$$

The key is to optimize the sums in this equation for OpenMP and/or MPI

Hamiltonian

Wick's theorem for a Closed-shell vacuum filled orbitals

Closed-shell vacuum filled orbitals

From experiment or EDF models

Shell Model Hamiltonians

- Core energy and single-particle energies are taken from experiment (or in their absence some HF-EDF predictions)
- For the two-body part - start with an ab-initio Hamiltonian based on measured NN and then renormalized into the model space.
- Some combinations of two-body matrix elements (10-30) are adjusted to fit energy data - single-valued decomposition
- Hamiltonian is model-space dependent
- Result is that all BE and levels up to about 5 MeV can be reproduced or predicted with an rms deviation of $100-200 \mathrm{keV}$
- Examples
- p-shell - Cohen-Kurath, CKI, CKII, CKPOT
- sd-shell - USD, USDA, USDB
- pf-shell - FPD6, KB3, KB3G, GPFX1, GPFX1A
- p-sd-shell (Nhw) - WBP, WBT
- sd-pf-shell - SDPF-M

model space

vertical expansion
particle-hole configurations for all orbitals

1) QRPA in
a) $\mathrm{jj} 44=\left(0 \mathrm{f}_{5 / 2}, 1 \mathrm{p}_{3 / 2}, 1 \mathrm{p}_{1 / 2}, 0 \mathrm{~g}_{9 / 2}\right)$
b) $\mathrm{fpg}=0 \mathrm{f}_{7 / 2},\left(0 \mathrm{f}_{5 / 2}, 1 \mathrm{p}_{3 / 2}, 1 \mathrm{p}_{1 / 2}, 0 \mathrm{~g}_{9 / 2}\right) 0 \mathrm{~g}_{7 / 2}$
c) 21 orbits (as on the left)
2) Many-body perturbation theory (MBPT) to include 2 particle-2 hole ($2 \mathrm{p}-2 \mathrm{~h}$) excitations to high excitation.
3) Δ particle admixtures and mesonic exchange currents (MEC)

The $2_{1}^{+} \rightarrow 3_{1}^{+}$gamma width in ${ }^{22} \mathrm{Na}$ and second class currents

S. Triambak, ${ }^{1,2, *}$ L. Phuthu, ${ }^{1}$ A. García, ${ }^{3}$ G.C. Harper, ${ }^{3}$ J. N. Orce, ${ }^{1}$
D. A. Short, ${ }^{3}$ S. P. R. Steininger, ${ }^{3}$ A. Diaz Varela, ${ }^{4}$ R. Dunlop, ${ }^{4}$ D. S. Jamieson, ${ }^{4}$ W.A. Richter, ${ }^{1}$ G. C. Ball, ${ }^{5}$ P. E. Garrett, ${ }^{4}$ C. E. Svensson, ${ }^{4}$ and C. Wrede ${ }^{3,6}$

TABLE IV. Relative branches obtained for the thre

$\begin{gathered} E_{\gamma} \\ (\mathrm{keV}) \end{gathered}$	Branching frac			
	$E_{p}=908 \mathrm{keV}$		USDB	X
	HPGe1	HPGe2		
1295	0.278(69)	0.280(208)	0.14	0.14
1369	99.291(86)	99.202(259)	99.3	99.9
1952	0.431(52)	$0.519(156)$	0.56	0.0005

$$
\begin{equation*}
c\left(q^{2}\right) \equiv c_{1}+c_{2} q^{2}+\ldots, \tag{4}
\end{equation*}
$$

the leading axial-vector form factor c_{1} can be obtained from the average of several precisely measured corrected $\mathcal{F} t$ values for superallowed Fermi decays [18] and the $f t$ value of ${ }^{22} \mathrm{Na} \beta$ decay, so that [19]

$$
\begin{equation*}
c_{1} \simeq\left(\frac{2 \mathcal{F} t^{F e r m i}}{f t(22 \mathrm{Na})}\right)^{1 / 2} \simeq 0.0153 \tag{5}
\end{equation*}
$$

Firestone, McHarris and Holstein [20] performed shell model calculations of recoil-order form factors for ${ }^{22} \mathrm{Na}$ β decay using the impulse approximation and the wavefunctions described in Ref. [12]. The calculations, listed in Table I, yielded higher-order corrections relative to the leading Gamow-Teller term c_{1} [21]. In light of these calculations, the currently available data present some contradictions if one considers previous measurements of the electron-capture to positron decay branching ratio [20] and the most recent measurement of the $\beta-\gamma$ correlation in ${ }^{22} \mathrm{Na}$ decay with the Gammasphere array [22]. The

TABLE I. Calculations of higher-order form factors for ${ }^{22} \mathrm{Na}$ beta decay from Ref. [20]. A is nucleon number and R is nuclear radius.

Form factor	Calculated value
Weak magnetism $b / A c_{1}$	-19
Second-order axial vector $c_{2} / c_{1} R^{2}$	-0.37
First-class induced tensor $d / A c_{1}$	-3.2

$$
\begin{equation*}
\frac{d}{A c_{1}}=\frac{1}{4.4}\left[A_{22} 10^{5}+0.6 \frac{c_{2}}{c_{1} R^{2}}\right]-\frac{b}{A c_{1}} \tag{6}
\end{equation*}
$$

which yielded $d / A c_{1}=26(7)$, in strong disagreement with theoretical predictions (Table I). The above conclusion was based on an unpublished determination of the weak magnetism form factor $\left|b / A c_{1}\right|=14(4)$ [23] and the assumption that b and c_{1} have opposite signs, with c_{2} being a small contribution.

V. RESULTS AND DISCUSSION

The measured branches of the three γ rays of interest are listed in Table IV. With our value for the $1952 \rightarrow 0 \mathrm{keV}$ branch and the lifetime of the $1952-\mathrm{keV}$ level, $\tau=11.5(2.9)$ fs [37], we obtain a partial width of

$$
\begin{equation*}
\Gamma_{\gamma}=2.57(79) \times 10^{-4} \mathrm{eV} \tag{8}
\end{equation*}
$$

This value is more precise but not in disagreement with the result reported in Refs. [22, 23]. Making the same assumptions as Ref. [22], namely, that the width in Eq. (7) is the partial width of the $1952 \rightarrow 0 \mathrm{keV}$ transition and that the relative signs of b and c_{1} are as predicted by the shell-model calculation, we obtain

$$
\begin{equation*}
b / A c_{1}=-8.7(1.1) . \tag{9}
\end{equation*}
$$

Inserting this value in Eq. (6) yields

$$
\begin{equation*}
d / A c_{1}=21(6) \tag{10}
\end{equation*}
$$

$$
\nu=|\Delta K|-\lambda= \begin{cases}2 & \text { for } M 1 \tag{12}\\ 1 \text { for } E 2\end{cases}
$$

where λ is the multipolarity of the transition. Empirically, this implies that the $M 1$ strength could be two orders of magnitude more hindered than the E2 component [47]. This is at odds with the shell model prediction, but not unexpected, considering that collective excitations are not naturally incorporated in the shell model. Thus, it is likely that the M1 component of the transition is much smaller than the one obtained from the branch. Assuming a vanishing isovector M1 component and thereby setting $b=0$, we obtain

$$
\begin{equation*}
d / A c_{1}=12(6) \tag{13}
\end{equation*}
$$

which is roughly consistent with expectations. An alternative scenario is that the γ transition is M1 dominated, but the relative signs of b and c_{1} are opposite to that obtained by the shell model. In that case one obtains

$$
\begin{equation*}
d / A c_{1}=3(6) \tag{14}
\end{equation*}
$$

\exp USDB USDA USD

$\mathrm{B}(\mathrm{M} 1) 2+$ to $1+$	1.95	1.92	1.96	1.80
$\mathrm{~B}(\mathrm{M} 1)$	$2+$ to $3+$	3.0	6.7	13.0
			6.7×10^{-3}	
$\mathrm{~B}(\mathrm{GT})$	$3+$ to $2+$	2.7	1.6	0.13

USDB M1(b) GT(c) ++ for the matrix elements ?????
But < na22 2+ ||F+|| ne22 2+ > = -3.16
This means the b and c matrix elements have the opposite sign

$$
d / A c_{1}=21(6)
$$

$3+$ to $2+\quad$ USDB USDA USD

$\mathrm{M}(\mathrm{s}-\mathrm{tau})\left(\mathrm{c}_{1}\right)$	0.042	0.012	0.027
$\mathrm{M}($ l-tau) (part of b)	-1.07	-1.00	-1.00
M (d-tau)	0.062	0.081	0.066

Relative phases look robust but s-tau is not very uncertain
so we should look at b / d (not b / c and d / c)

