Building a v mag moment signal model for LZ

Winnie Wang, Scott Hertel University of Massachusetts, Amherst April 26th 2019

AMHERST CENTER FOR FUNDAMENTAL INTERACTIONS Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst

Noble Element Simulation Technique (NEST)

A comprehensive simulation specifically focused on understanding how noble fluids produce signal quanta (i.e. scintillation and charge)

UMassAmherst

This program pools data from multiple experiments to build response models, but allows for detector-specific inputs (efficiencies, field amplitudes, etc.)

Combining scintillation, charge to reconstruct energy spectrum

W: Work function (recoil energy per signal quantum produced)

- S1: scintillation signal observed (unit in photons)
- S2: electron signal observed (unit in photons)

g1: 'S1 gain', photons detected per photon produced g2: 'S2 gain', photons detected per electron produced

Combining all variables give equation for reconstructed energy:

$$E_{recon} = W(\frac{S1}{q_1} + \frac{S2}{q_2})$$

LZ threshold set by S1: g1 (0.119) and a 3 PMT coincidence requirement

NMM Spectrum Data

Specific to Xe atomic electron shells Provided by Jiuun-Wei Chen from National Taiwan University

UMassAmherst

log(S2) vs. S1 Plot

UMassAmherst

Neutrino Magnetic Moment S2S1 Histogram

Reconstructed energy

Following previous LZ sensitivity studies (arXiv:1802.06039):

- Exposure assumed as 5.6tons x 1000days
- Background is ~15 counts/keV/t/y (Rn-dominated)

Reconstructed energy histogram:

- Energy of electron recoils assumed from E_recon expression
- Histogram constructed with 1keV wide bins
- Rate is then normalized by exposure in detector

Vertical error bars: simple Sqrt(n), where n=number of samples per bin

Reconstructed energy plot

UMassAmherst

Takeaways:

- 1) Effective threshold is ~1keV
- 2) LZ expects world-leading solar-neutrino magnetic moment sensitivity

Next steps:

- Practice making statistical statements using profile likelihood ratios
- 2) Repeat for other non-standard interactions

