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Generator Coordinate Method (GCM)

1. GCM

Generator Coordinate Method: an approach that treats
large-amplitude fluctuations, which is essential for nuclei
that cannot be approximated by a single mean field.

How it works:

Construct a set of mean-field states by constraining
coordinates, e.g., quadrupole moment. Then diagonalize
Hamiltonian in space of symmetry-restored nonorthogonal
vacua with different amounts of quadrupole deformation.

GCM based on EDF has been applied to double-beta
decay, however...



Comparison between GCM and SM

1. GCM
Current results with EDF-based GCM
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Comparison between GCM and SM

1. GCM
Current results with EDF-based GCM
s  [eccwmen| | Boththeshellmodeland the EDF-
A GCM (NREDF) - -
| m ISV | hased GGM could he missing
6| o . 1 Important physics.
c A -
s, A o a2 | The discrepancy may be
_ | because:
® N : :
L A " " " . |+ The GCM omits correlations.
. | * The shell model omits many
5 o single-particle levels

136
48(:a 76Ge SZSe 124Sn 130-|-e Xe

Our long-term goal is to combine the virtues of both frameworks
through an EDF-based or ab-initio GCM that includes all the important
shell model correlations and a large single-particle space.




To get closer to the ultimate goal:

1. GCM

We can use SM Hamiltonian in the GCM

( )
Our short-term goal is more modest: a shell-model
Hamiltonian-based GCM in one and two (and possibly
more) shells.

At a minimum, we can use these as a first step in the
MR-IMSRG (see J. M. Yao’s talk).
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Our Current Procedure

1. GCM

(D Using a shell-model Hamiltonian
2 HFB states |®(q)) with multipole constraints g.

We are trying to include all possible collective correlations.
(3@ Angular momentum and particle number projection

JMK;NZ;q) = P PN PZ|®(q))

@ Configuration mixing within GCM:
U200 = >[5 ()| TMEK; NZ; q)



Level 1 GCM: Axial shape and pn pairing fluctuation

2. Correlations
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N. Hinohara and J. Engel, PRC 90, 031301(R) (2014)



Level 1 GCM: Axial shape and pn pairing fluctuation

2. Correlations

We use the KB3G interaction for the pf shell
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Level 2 GCM: Triaxial deformation

2. Correlations
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With GCN2850 or JUN45 interaction, projected potential energy
surfaces for 76Ge and 76Se give minima with triaxial deformation.




Level 2 GCM: Triaxial deformation

2. Correlations
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Level 2 GCM: triaxial deformation

2. Correlations
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Benchmarking: OvBB NMEs given by GCM and SM

2. Correlations
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Benchmarking: OvBB NMEs given by GCM and SM

2. Correlations
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The NMEs given by SM and GCM are in good agreement, indicating
that the GCM captures most important valence-shell correlations.



Multi-shell GCM

3. Multi-shell GCM

.~ In principle, eftective pfsdg-shell interaction based on chiral EFT
can be calculated by many-body perturbation theory (MBPT),
similarity renormalization group (SRG) or couple cluster (CC).

- We employ two effective pfsdg-shell interactions calculated by
MBPT, which are provided by J. D. Holt.

pfsdg-1: 3N forces normal ordered with respect to 4°0Ca

pfsdg-2: 3N forces normal ordered with respect to °6Ni

Computing Usage:

e Qur calculation within pf5g9 shell used about 15K CPU hours,
iIncluding axial shape, triaxial shape, and isoscalar pairing as
coordinates.

e Extension to pfsdg shell will increase time by a factor of 25,
because of the increased number of orbits.



Multi-shell GCM: SPEs optimization

3. Multi-shell GCM
-
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We optimize the single-particle energies tor pfsadg-shell

interactions by fitting the measured occupancies of valence
neutron and proton orbits.




Multi-shell GCM: low-lying spectra

Excitation energy (MeV)

3. Multi-shell GCM
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Multi-shell GCM: collective wave function

3. Multi-shell GCM
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How does triaxial shape influence NMEs?



Multi-shell GCM: triaxial deformation

3. Multi-shell GCM

With triaxially deformed

configurations, the wave

functions:

(D are pushed to the region with
larger isoscalar pn pairing.
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Multi-shell GCM: triaxial deformation

3. Multi-shell GCM
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Multi-shell GCM

3. Multi-shell GCM
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A relatively simple strateqgy for stochastic basis selection

3. Multi-shell GCM

We still want to add additional coordinates, e.g.,

pp/nn pairing, quasiparticle excitation, etc.

axial H”(q,¢") for initial nucleus —

!

GCM

. . — MY given
axial #”(q, ¢ )for final nucleus —— J

» Dy axially-
l deformed
basis states
axial M7'=%qs,q) —»

stochastically

— selection from<—

rest of |®(qs))

!

calculate H
and M with

[®(qs))
!

GCM

If AMP” > ce, keep |(gs))
otherwise, throw it
away. Loop over all the
initial and final |®(gs))

A

M% updated



Summary

4. Summary

We are trying to combine the virtues of the shell model and

EDF calculations by including all collective correlations in the
GCM.

Tests against exact solutions in one shell indicate that we
indeed have all important valence-space correlations.

Calculation has been extended to two major shell (e.q., pfsdg
shell) model space, which is out of scope of the conventional
SM. Including triaxially deformed configurations signiticantly
affect the calculated NMEs.

To speed up the two-shell calculation, stochastic selection of
basis states is under construction, and we are looking for
more efficient methods.



Summary

4. Summary

Collaborators:

» Jonathan Engel, UNC
e Jiangming Yao, UNC
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Thank you for your
attention!




