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Generator Coordinate Method:  an approach that treats 
large-amplitude fluctuations, which is essential for nuclei 
that cannot be approximated by a single mean field. 

How it works:

Construct a set of mean-field states by constraining 
coordinates, e.g., quadrupole moment. Then diagonalize  
Hamiltonian in space of symmetry-restored nonorthogonal 
vacua with different amounts of quadrupole deformation. 

GCM based on EDF has been applied to double-beta 
decay, however…  
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Our long-term goal is to combine the virtues of both frameworks 
through an EDF-based or ab-initio GCM that includes all the important 
shell model correlations and a large single-particle space.

Current results with EDF-based GCM 

The discrepancy may be 
because:
• The GCM omits correlations. 
• The shell model omits many 

single-particle levels

Both the shell model and the EDF-
based GCM could be missing 
important physics. 



To get closer to the ultimate goal: 
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We can use SM Hamiltonian in the GCM

Our short-term goal is more modest: a shell-model 
Hamiltonian-based GCM in one and two (and possibly 
more) shells.

At a minimum, we can use these as a first step in the 
MR-IMSRG (see J. M. Yao’s talk).



Our Current Procedure
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① Using a shell-model Hamiltonian
② HFB states             with multipole constraints q.  
      We are trying to include all possible collective correlations. 
③ Angular momentum and particle number projection

④ Configuration mixing within GCM:  

1. GCM  2. Correlations   3. Multi-shell GCM   4. Summary
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Level 1 GCM: Axial shape and pn pairing fluctuation
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The wave functions are pushed into 
a region with large isoscalar pairing 
amplitude.  
                 reduce  the 0νββ NMEs. 
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FIG. 2. (Color online) Dependence of the GCM (solid) and
QRPA (dashed) 0νββ matrix elements on the strength gT =0 of the
isoscalar pairing interaction. The red (upper) and blue (lower) lines
of each type correspond to the interaction parameters extracted from
SkO′ and SkM*. The divergence in the QRPA near gT =0/ḡT =1 = 1.5
is discussed in the text.

To clarify this last statement, we show the GCM and QRPA
matrix elements as functions of gT =0/ḡT =1 in Fig. 2. The
QRPA curves lie slightly above their GCM counterparts until
gT =0/ḡT =1 reaches a critical value slightly larger than 1.5;
at that point a mean-field phase transition from an isovector
pair condensate to an isoscalar condensate causes the famous
QRPA “collapse.” The collapse is spurious, as the GCM results
show. Its presence in mean-field theory makes the QRPA
unreliable near the critical point. It is actually a bit of a
coincidence that the QRPA matrix elements in the table are
as close as they are to those of the GCM; a small change in
gT =0 would alter them substantially (though because it also
alters B(GT+) a lot, fitting to B(GT+) = 0.62 rather than
1.0 does not have a huge effect on the 0νββ matrix element).
The GCM result is not only better behaved near the critical
point but also, we believe, quite accurate. In the SO(8) model
used to test many-body methods in ββ decay many times,
the GCM result is nearly exact for all gT =0. That is not the
case for extensions of the QRPA that attempt to ameliorate
its shortcomings [32,33], though some of those work better
around the phase transition than others.

To show why the GCM behaves well, we dis-
play in the bottom right part of Fig. 3 the quantity
NφI

NφF
⟨φF |PF M̂0νPI |φI ⟩, where |φI ⟩ is a quasiparticle vac-

uum in 76Ge constrained to have isoscalar pairing amplitude
φI , φF is an analogous state in 76Se, PI , PF project onto states
with angular momentum zero and the appropriate values of
Z and N , and NφI

,NφF
normalize the projected states. This

quantity is the contribution to the 0νββ matrix element from
states with particular values of the initial and final isoscalar
pairing amplitudes. The contribution is positive around zero
condensation in the two nuclei and negative when the final
pairing amplitude is large. Thus the GCM states must contain
components with significant pn pairing when gT =0 is near its
fit value. The appearance of this plot is different from those
in which the matrix element is plotted versus initial and final
deformation [6–8]. Here the matrix element is small or negative
even if the initial and final pairing amplitudes have the same
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FIG. 3. (Color online) Bottom right: NφI
NφF

⟨φF |PF M̂0ν

PI |φI ⟩ for projected quasiparticle vacua with different values of the
initial and final isoscalar pairing amplitudes φI and φF , from the
SkO′-based interaction (see text). Top and bottom left: Square of
collective wave functions in 76Ge and 76Se.

value, as long as that value is large. The behavior reflects the
qualitatively different effects of isovector and isoscalar pairs
on the matrix element [3], effects that have no analog in the
realm of deformation.

The weight function f in the GCM ansatz multiplies
nonorthogonal states and so is not really a “collective ground-
state wave function.” The object that does play that role is a
member of an orthogonalized set defined, e.g., in Refs. [4]
and [7]. The top and left parts of Fig. 3 show the square of
this collective wave function for 76Ge and 76Se, with gT =0

set both to zero and the fit value. It is clear in both nuclei,
but particularly in 76Se, that the isoscalar pairing interaction
pushes the wave function into regions of large φ, where
the matrix element in the bottom right panel is significantly
reduced. It is also clear that for gT =0 ̸= 0 the collective wave
functions are far from the Gaussians that one would obtain in
the harmonic (QRPA) approximation. Isoscalar pairing really
is, and must be treated as, a large-amplitude mode.

We turn finally to the more realistic calculation that includes
both deformation and the pn pairing amplitude as generator
coordinates. We fit the couplings in H just as described earlier;
the strength of the quadrupole interaction no longer vanishes
and some of the other parameters change slightly: gT =1

0 = 0.90
for the interaction based on SkO′ and 0.79 for that based on
SkM*, and gT =0 = 1.75 for SkO′ and 1.51 for SkM*, in units
of ḡT =1. The calculated B(GT+) in both cases is larger than the
experimental data with or without quenching, which therefore
does not affect the value of gT =0.

First we analyze the influence of the number and
angular-momentum projection on energy. The bottom part
of Fig. 1 shows the projected potential energy surfaces
⟨β,φ|PHP |β,φ⟩ for two values of φ, along with the
unprojected surface from the top part of the panel. Projecting
at φ = 0 without including pn interactions, the figure shows,
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Level 1 GCM: Axial shape and pn pairing fluctuation
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We use the KB3G interaction for the pf shell
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With GCN2850 or JUN45 interaction, projected potential energy 
surfaces for 76Ge and 76Se give minima with triaxial deformation. 

Level 2 GCM: Triaxial deformation
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How does triaxial shape affect NMEs? 
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Level 2 GCM: triaxial deformation
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Benchmarking: 0νββ NMEs given by GCM and SM
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The NMEs given by SM and GCM are in good agreement, indicating 
that the GCM captures most important valence-shell correlations.

A full sdpf-shell 
GCM calculation



Multi-shell GCM
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In principle, effective pfsdg-shell interaction based on chiral EFT 
can be calculated by many-body perturbation theory (MBPT), 
similarity renormalization group (SRG) or couple cluster (CC).  
We employ two effective pfsdg-shell interactions calculated by 
MBPT, which are provided by J. D. Holt.

Computing Usage:
• Our calculation within pf5g9 shell used about 15K CPU hours, 

including axial shape, triaxial shape, and isoscalar pairing as 
coordinates.  

• Extension to pfsdg shell will increase time by a factor of 25, 
because of the increased number of orbits. 

 pfsdg-1: 3N forces normal ordered with respect to 40Ca 
pfsdg-2: 3N forces normal ordered with respect to 56Ni



Multi-shell GCM: SPEs optimization
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We optimize the single-particle energies for pfsdg-shell 
interactions by fitting the measured occupancies of valence 
neutron and proton orbits.

Neutron-orbit occupancies Proton-orbit occupancies



Multi-shell GCM: low-lying spectra
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GCMGCM



Multi-shell GCM: collective wave function
1. Introduction   2. GCM method   3. Shell-model interaction   4. Calculations and results   5. Summary1. Introduction   2. GCM based on shell-model Hamiltonian   3. Calculations and results   4. Summary1. GCM  2. Correlations   3. Multi-shell GCM   4. Summary

-0.4 -0.2 0.0 0.2 0.4
0

1

2

3

76
Se: GCN2850

Deformation
2

0.00

0.04

0.08

0.12

0.16

0.20

-0.4 -0.2 0.0 0.2 0.4
0

1

2

3

4

5

76
Se: pfsdg

Deformation
2

0.00

0.02

0.04

0.06

0.08

0.10

• Larger model space: larger isoscalar pairing in pfsdg-shell calculation
• How does triaxial shape influence NMEs?



Multi-shell GCM: triaxial deformation
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Multi-shell GCM
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full pfsdg-shell GCM calculations



A relatively simple strategy for stochastic basis selection
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Start

axial              for initial nucleusHJ(q, q0)

axial              for final nucleusHJ(q, q0)

           axial                               

GCM 
        given 
by axially-
deformed 
basis states
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0
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M0⌫ stochastically 
selection from 
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If               , keep  
otherwise, throw it 
away. Loop over all the 
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and      with 
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We still want to add additional coordinates, e.g., 
pp/nn pairing, quasiparticle excitation, etc.



Summary
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We are trying to combine the virtues of the shell model and 
EDF calculations by including all collective correlations in the 
GCM. 

Tests against exact solutions in one shell indicate that we 
indeed have all important valence-space correlations. 

Calculation has been extended to two major shell (e.g., pfsdg 
shell) model space, which is out of scope of the conventional 
SM. Including triaxially deformed configurations significantly 
affect the calculated NMEs. 

To speed up the two-shell calculation, stochastic selection of 
basis states is under construction, and we are looking for 
more efficient methods.
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Collaborators: 
• Jonathan Engel, UNC  
• Jiangming Yao, UNC 
• Mihai Horoi, CMU 
• Jason Holt, TRIUMF 
• Javier Menendez, University of Tokyo 
• Nobuo Hinohara, University of Tsukuba 

Summary

Thank you for your 
attention!

1. GCM  2. Correlations   3. Multi-shell GCM   4. Summary


