Status and Prospects of Higgs CP Properties with CMS and ATLAS

Andrew Whitbeck – Fermilab

The CP Nature of the Higgs Boson Workshop @ U. Mass. Amherst

May 1, 2015

- 125 GeV narrow width resonance
 - driven by the two high-resolution decay channels, $ZZ \rightarrow 4\ell \& \gamma\gamma$
 - mass has now been determined to be ~.2 GeV!
- constraints from off-shell production suggest that the width is consistent with the SM prediction
- Branching ratios consistent with SM Higgs boson
 - Only moderate sensitivity, yet, in the fermionic decay channels
- Various production modes seen
 - overall rates are consistent with SM expectation
 - still not sensitive to SM strength ttH production
- In general, couplings to various SM fields (constrained by yields) are consistent with SM predictions

125 GeV narrow width resonance

- driven by the two high-resolution decay channels, $ZZ \rightarrow 4\ell \& \gamma\gamma$
- mass has now been determined to be ~.2 GeV!
- constraints from events off-shell suggest that the width is consistent with the SM prediction
- Branching ratios consistent with SM Higgs boson
 - Only moderate sensitivity, yet, in the fermionic decay channels
- Various production modes seen
 - overall rates are consistent with SM expectation
 - still not sensitive to SM strength ttH production
- In general, couplings to various SM fields (constrained by *yields)* are consistent with SM predictions

3

- 125 GeV narrow width resonance
 - driven by the two high-resolution decay channels, $ZZ \rightarrow 4\ell \& \gamma\gamma$
 - mass has now been determined to be ~.2 GeV!
- constraints from off-shell production suggest that the width is consistent with the SM prediction
- Branching ratios consistent with SM Higgs boson
 - Only moderate sensitivity, yet, in the fermionic decay channels
- Various production modes seen
 - overall rates are consistent with SM expectation
 - still not sensitive to SM strength ttH production
- In general, couplings to various SM fields (constrained by *yields)* are consistent with SM predictions

4

- 125 GeV narrow width resonance
 - driven by the two high-resolution decay channels, $ZZ \rightarrow 4\ell \& \gamma\gamma$
 - mass has now been determined to be ~.2 GeV!
- constraints from off-shell production suggest that the width is consistent with the SM prediction
- Branching ratios consistent with SM Higgs boson
 - Only moderate sensitivity, yet, in the fermionic decay channels
- Various production modes seen
 - overall rates are consistent with SM expectation
 - still not sensitive to SM strength ttH production \bullet
- In general, couplings to various SM fields *(constrained by*) *yields)* are consistent with SM predictions

- Kinematic used to test various J^P signal hypotheses
 - these measurements use *distributions* for characterizing signal models making them *complementary* to coupling fit based on rates
 - early analyses focused on hypothesis separation, but now we are starting to constrain the tensor structure of a generic spin-0 resonance decaying to a pair of vector bosons
- Anomalous HVV couplings are currently the primary focus since these are the channels that have the most sensitivity to signal events

6

Outline

- CMS & ATLAS 4^e analyses
- $W(\ell v)W(\ell v)$ analyses & ZZ-WW combination
- γγ & Zγ couplings
- Prospects for the future

detailed explanation of observables, model parameters, and methods

Mod

- Start
- More func
 - an \bullet

del Parameters

$$A(X_{J=0} \rightarrow V_{1}V_{2}) \sim v^{-1} \left(\begin{bmatrix} a_{1} - e^{i\phi_{\Lambda_{1}}} \frac{q_{Z_{1}}^{2} + q_{Z_{2}}^{2}}{(\Lambda_{1})^{2}} \end{bmatrix} m_{z}^{2} e^{i\phi_{\Lambda_{1}}} \frac{q_{Z_{1}}^{2} + q_{Z_{2}}^{2}}{(\Lambda_{1})^{2}} \end{bmatrix} m_{z}^{2} e^{i\phi_{\Lambda_{1}}} + a_{2}f_{\mu\nu}^{*(Z_{1})}f^{*(Z_{2}),\mu\nu} + a_{3}f_{\mu\nu}^{*(Z_{1})}\tilde{f}^{*(Z_{2})} + a_{2}f_{\mu\nu}^{*(Z_{1})}f^{*(Z_{2}),\mu\nu} + a_{3}f_{\mu\nu}^{*(Z_{1})}\tilde{f}^{*(Z_{2})} + a_{2}^{2}f_{\mu\nu}^{*(Z_{1})}f^{*(Z_{2}),\mu\nu} + a_{3}^{2}f_{\mu\nu}^{*(Z_{1})}\tilde{f}^{*(Z_{2})} + a_{2}^{2}f_{\mu\nu}^{*(Z_{1})}f^{*(Z_{2}),\mu\nu} + a_{3}^{2}f_{\mu\nu}^{*(Z_{1})}\tilde{f}^{*(Q_{1})} + a_{2}^{2}f_{\mu\nu}^{*(Z_{1})}f^{*(Q_{1}),\mu\nu} + a_{3}^{2}f_{\mu\nu}^{*(Z_{1})}\tilde{f}^{*(Q_{1})} + a_{2}^{2}f_{\mu\nu}^{*(Q_{1})}\tilde{f}^{*(Q_{1})} + a_{2}^{2}f_{\mu\nu}^{*(Q_{1})}\tilde{f}^{*(Q_{1})}f^{*(Q_{1})} + a_{2}^{2}f_{\mu\nu}^{*(Q_{1})}\tilde{f}^{*(Q_{1})}f^{*(Q_{1})} + a_{2}^{2}f_{\mu\nu}^{*(Q_{1})}\tilde{f}^{*(Q_{1})}f^{*(Q_{1})} + a_{3}^{2}f_{\mu\nu}^{*(Q_{1})}\tilde{f}^{*(Q_{1})}\tilde{f}^{*(Q_{1})} + a_{2}^{2}f_{\mu\nu}^{*(Q_{1})}\tilde{f}^{*(Q_{1})}\tilde{f}^{*(Q_{1})} + a_{2}^{2}f_{\mu\nu}^{*(Q_{1})}\tilde{f}^{*(Q_{1})}f^{*(Q_{1})} + a_{2}^{2}f_{\mu\nu}^{*(Q_{1})}}\tilde{f}^{*(Q_{1})}\tilde{f}^{*(Q_{1})} + a_{2}^{2}f_{\mu\nu}^{*(Q_{1})}\tilde{f}^{*(Q_{1})}\tilde{f}^{*(Q_{1})} + a_{2}^{2}f_{\mu\nu}^{*(Q_{1})}\tilde{f}^{*(Q_{1})}\tilde{f}^{*(Q_{1})}} + a_{2}^{2}f_{\mu\nu}^{*(Q_{1})}\tilde{f}^{*(Q_{1})}\tilde{f}^{*(Q_{1})}\tilde{f}^{*(Q_{1})} + a_{2}^{2}f_{\mu\nu}^{*(Q_{1})}\tilde{f}^{*(Q_{1})}\tilde{f}^{*(Q_{1})}} + a_{2}^{2}f_{\mu\nu}^{*(Q_{1})}\tilde{f}^{*(Q_{1})}\tilde{f}^{*(Q_{1})}\tilde{f}^{*(Q_{1})}} + a_{2}^{2}f_{\mu\nu}^{*(Q_{1})}\tilde{f}^{*(Q_{1})}\tilde{f}^{*(Q_{1})}} + a_{2}^{2}f_{\mu\nu}^{*(Q_{1})}\tilde{f}^{*(Q_{1})}\tilde{f}^{*(Q_{1})}} + a_{2}^{2}f_{\mu\nu}^{*(Q_{1})}\tilde{f}^{*(Q_{1})}\tilde{f}^{*(Q_{1})}\tilde{f}^{*(Q_{1})}} + a_{2}^{2}f_{\mu\nu}^{*(Q_{1})}\tilde{f}^{*(Q_{1})}\tilde{f}^{*(Q_{1})}} + a_{2$$

where σ_i is the cross section of the process corresponding to $a_i = 1, a_{j \neq i} = 0$, while $\tilde{\sigma}_{\Lambda_1}$ is the effective cross section of the process corresponding to $\Lambda_1 > 0$, $a_{j \neq \Lambda_1} = 0$, given in units fb · GeV⁴.

e.g.
$$f_{a3} = 1$$
, $f_{a2} = 0$ for pure pseudoscalar
 $f_{a3} = f_{a2} = 0$ for SM Higgs (up to highe

her order corrections)

Generic Amplitudes vs. Effective Field Theories

$$L(HVV) \sim a_{1} \frac{m_{Z}^{2}}{2} HZ^{\mu}Z_{\mu} + \frac{1}{(\Lambda_{1})^{2}} m_{Z}^{2} HZ_{\mu} \Box Z^{\mu} - \frac{1}{2} a_{2} HZ^{\mu\nu} Z_{\mu\nu} - \frac{1}{2} a_{3} HZ^{\mu\nu} \tilde{Z}_{\mu\nu}$$

$$+ a_{1}^{WW} \frac{m_{W}^{2}}{2} HW^{\mu}W_{\mu} + \frac{1}{(\Lambda_{1}^{WW})^{2}} m_{W}^{2} HW_{\mu} \Box W^{\mu} - \frac{1}{2} a_{2}^{WW} HW^{\mu\nu}W_{\mu\nu} - \frac{1}{2} a_{3}^{WW} HW^{\mu\nu} \tilde{W}_{\mu\nu}$$

$$+ \frac{1}{(\Lambda_{1}^{2\gamma})^{2}} m_{Z}^{2} HZ_{\mu} \partial_{\nu} F^{\mu\nu} - a_{2}^{2\gamma} HF^{\mu\nu} Z_{\mu\nu} - a_{3}^{2\gamma} HF^{\mu\nu} \tilde{Z}_{\mu\nu} - \frac{1}{2} a_{2}^{\gamma\gamma} HF^{\mu\nu} F_{\mu\nu} - \frac{1}{2} a_{3}^{\gamma\gamma} HF^{\mu\nu} \tilde{F}_{\mu\nu},$$

$$+ \frac{1}{(\Lambda_{1}^{2\gamma})^{2}} m_{Z}^{2} HZ_{\mu} \partial_{\nu} F^{\mu\nu} - a_{2}^{2\gamma} HF^{\mu\nu} Z_{\mu\nu} - a_{3}^{2\gamma} HF^{\mu\nu} \tilde{Z}_{\mu\nu} - \frac{1}{2} a_{2}^{\gamma\gamma} HF^{\mu\nu} F_{\mu\nu} - \frac{1}{2} a_{3}^{\gamma\gamma} HF^{\mu\nu} \tilde{F}_{\mu\nu},$$

$$f_{g_{1}} = \frac{r_{11}^{2}}{1 + r_{11}^{2}}; \quad (i = 0)$$

$$f_{g_{1}} = \frac{r_{1}^{2}}{1 + r_{11}^{2}}; \quad (i = 0)$$

$$G_{HVV} / O_{SM} = 0.$$

$$T_{1} = \frac{1}{2} \frac{1}{\Lambda} \left[c_{\alpha} \kappa_{HWW} W_{\mu\nu}^{+} W^{-\mu\nu} + s_{\alpha} \kappa_{AWW} W_{\mu\nu}^{+} \tilde{W}^{-\mu\nu} \right] \right] X_{0}$$

$$r_{21}^{2} = \frac{\sigma_{HVV}}{\sigma_{SM}} \left(\frac{\tilde{k}_{HVV}}{k_{SM}} \right)^{2}, \quad \text{and} \quad r_{41}^{2} = \frac{\sigma_{AVV}}{\sigma_{SM}} \left(\frac{\tilde{k}_{AVV}}{k_{SM}} \right)^{2}$$

4ℓ analyses

- two pairs of opposite-sign same flavor leptons (e,µ only)
- SM ZZ contributions taken from NLO MC simulation
- Z+X backgrounds estimated from a loose ID control region
- similar strategy employed by CMS (see backup for details)

:		C !1	77*	J. Z. ista	Oleaser 1
		Signal	LL^*	tt, Z + jets	Observed
			$\sqrt{s} = 7 \text{ TeV}$	T	
Ŭ	4μ	1.02 ± 0.10	0.65 ± 0.03	0.14 ± 0.06	3
0	$2\mu 2e$	0.47 ± 0.05	0.29 ± 0.02	0.53 ± 0.12	1
\tilde{O}	$2e2\mu$	0.64 ± 0.06	0.45 ± 0.02	0.13 ± 0.05	2
	4 <i>e</i>	0.45 ± 0.04	0.26 ± 0.02	0.59 ± 0.12	2
V	Total	2.58 ± 0.25	1.65 ± 0.09	1.39 ± 0.26	8
740			$\sqrt{s} = 8 \text{ TeV}$		
	4μ	5.81 ± 0.58	3.36 ± 0.17	0.97 ± 0.18	13
V	$2\mu 2e$	3.00 ± 0.30	1.59 ± 0.10	0.52 ± 0.12	8
5	$2e2\mu$	3.72 ± 0.37	2.33 ± 0.11	0.84 ± 0.14	9
	4 <i>e</i>	2.91±0.29	1.44 ± 0.09	0.52 ± 0.11	7
	Total	15.4 ± 1.5	8.72 ± 0.47	2.85 ± 0.39	37

Observables

• An example of a complete set of observables describing the higgs decay kinematics

invariant masses: *m*₄*e*,*m*₁, *m*₂ powerful background discrimination,

incensitive to CP properties

production angles: $cos(\theta^*)$, Φ_1 sensitive to the spin and polarization of the X resonance

decay angles: $cos(\theta_{1,2}), \Phi$ sensitive to the CP properties of X

 other variables, pT & η, are sensitive to NLO effects & insensitive to CP

Distributions masses

- good resolution
 - both CMS and ATLAS exploit the masses to discriminate signal from background
 - not much sensitivity different CP quantum numbers

• In some sense, the power of the 4ℓ channel stems from the ability to reconstruct masses with very

Distributions production angles

- Angles describing Z's with respect to incoming partons
- Sensitive to the spin and polarization of X resonance, but aren't sensitive to various CP quantum numbers
 - some help in distinguishing signal from backgrounds

Distributions decay angles

- Angles describing directions of leptons with respect to Z's
- These *are* sensitive to the CP properties!

arXiv:1411.3441

ATLAS distributions

see backup for more plots

ATLAS-CONF-2015-008

Multidimensional fits & modeling data

- modeling data with either
 - templates based on kinematic discriminants
 - discriminants based on LO ME or BDT
 - 3D templates describing various event categories (one sensitive to signal/background, one sensitive to CP eigenstates, one sensitive to interference)
 - fully correlated multi-dim likelihood (including approx. detector effects)
 - CMS: 8D

 $(m_{4\ell}, m_{1,2}, \cos\theta_{1,2}, \phi, \cos\theta^*, \phi_1)$ ATLAS: 9D $(p_T^{4_\ell}, \eta_{4^\ell}, m_{4^\ell}, m_{1,2}, \cos\theta_{1,2}, \phi, \cos\theta^*)$

used to validate discriminant fits

$|\mathcal{M}\mathcal{E}|^2 = |\mathcal{M}\mathcal{E}_{0+}|^2 + |\mathcal{M}\mathcal{E}_{0-}|^2 + 2\mathcal{R}e(\mathcal{M}\mathcal{E}^*_{0+}\mathcal{M}\mathcal{E}_{0-})|$ $\mathcal{D}_{0-} = |\mathcal{M}\mathcal{E}_{0-}|^2 / [\mathcal{M}\mathcal{E}_{0+}|^2 + |\mathcal{M}\mathcal{E}_{0-}|^2]$

 $\mathcal{D}_{int} = 2\mathcal{R}e(\mathcal{M}\mathcal{E}^*_{0+}\mathcal{M}\mathcal{E}_{0-}) / [\mathcal{M}\mathcal{E}_{0+}|^2 + |\mathcal{M}\mathcal{E}_{0-}|^2]$

- **D**_{bkg} used to distinguish signal from background, dominant contribution from masses
- ${}^{\bullet}$
- **D**_{CP} used to enhance interference effects, become important at small values of fa3

- for the CMS analysis
- BDT_{zz} trained for signal versus backgrounds (inputs: $\eta_{4\ell}$, $p_{\tau}^{4\ell}$, $m_{4\ell}$, $cos(\theta^*)$, ϕ_1)

1D likelihood scans CMS

- log-likelihood scans for f_{a3} show consistency with the SM
- f_{a3} is a direct probe of CP-violating interactions 95% C.L. upper limits set as low as f_{a3}<0.2 (depending on the assumptions made)

arXiv:1411.3441

19

Fermilab

1D likelihood scans ATLAS

- Results consistent with SM expectations (KAVV/KSM=0)
 - small deviation from zero observed, only 1σ effect
- Results similar to CMS

Coupling ratio	Best fi	t value	ç
$H \to Z Z^* \to 4\ell$	Expected	Observed	Expe
$\tilde{\kappa}_{HVV}/\kappa_{\rm SM}$	0.0	-0.2	(-∞, -0.75]
$(\tilde{\kappa}_{AVV}/\kappa_{\rm SM}) \cdot \tan \alpha$	0.0	-0.8	(−∞, −2.95]

2D likelihood scans CMS

• For completeness: 2D scan of f_{a2} , $f_{\Lambda 1}$ versus f_{a3} are shown

arXiv:1411.3441

WW analysis

- opposite sign e-µ events selected
- Events classified based on the exclusive numbers of jets (0 or 1 jet)
- Main backgrounds, WW, ttbar/tW, and Z/W+jets are extrapolated from data control regions
- CMS: 2D distribution of mll and mT distributions are used to describe events ATLAS: 2D distributions of BDT discriminants are used

Channel	0-	-jet	1-	-jet
Energy	7 TeV	8 TeV	7 TeV	8 TeV
WW	861 ± 12	4185 ± 63	249.9 ± 4.0	1268 ± 21
$WZ + ZZ + Z/\gamma^*$	22.7 ± 1.2	178.3 ± 9.5	26.4 ± 1.4	193 ± 11
$t\bar{t} + tW$	91 ± 20	500 ± 96	226 ± 14	1443 ± 46
W+jets	150 ± 39	620 ± 160	60 ± 16	283 ± 72
$W\gamma^{(*)}$	68 ± 20	282 ± 76	10.1 ± 2.8	55 ± 14
Background	1193 ± 50	5760 ± 210	573 ± 22	3242 ± 90
Signal $gg \rightarrow H$	50 ± 10	227 ± 46	17.1 ± 5.5	88 ± 28
Signal VBF+VH	0.44 ± 0.03	10.27 ± 0.41	2.09 ± 0.12	19.83 ± 0.81
Observed	1207	5747	589	3281

22

1D likelihood scans WW

	Parameter	Observed	
ហ	$f_{\Lambda 1}^{ m WW}\cos(\phi_{\Lambda 1}^{ m WW})$	$0.21^{+0.18}_{-1.21}$ [-1.00, 1.00]	0.0
S	$f_{a2}^{WW}\cos(\phi_{a2}^{WW})$	$-0.02^{+1.02}_{-0.16}$ [-1.00, -0.54] \cup [-0.29, 1.00]	0.0
	$f_{a3}^{WW}\cos(\phi_{a3}^{WW})$	$-0.03^{+1.03}_{-0.97}$ [-1.00, 1.00]	0.0

S	Coupling ratio	Best fi	t value	95%		
4	$H \rightarrow WW^* \rightarrow e \nu \mu \nu$	Expected	Observed	Expected		
	$\tilde{\kappa}_{HVV}/\kappa_{\rm SM}$	0.0	-1.3	[-1.2, -0.7]	(.	
M	$(\tilde{\kappa}_{AVV}/\kappa_{\rm SM})\cdot \tan \alpha$	0.0	-0.2	—		

Combined fits (ZZ&WW) CMS

- The combination of ZZ & WW channels involves twice as many degrees of freedom
 - We can constrain the size of the SM couplings (a_1) to be the same — custodial symmetry
 - fits are done both with and without this assumption
 - The relative strange of a_3/a_1 can also be fixed

$$r_{ai} = \frac{a_i^{WW}/a_1^{WW}}{a_i/a_1}$$
, or $R_{ai} = \frac{r_{ai}|r_{ai}|}{1+r_{ai}^2}$.

• custodial symmetry & $R_{a3} = 0.5$ implies that $a_1^{WW} = a_1 \& a_3^{WW} = a_3$

arXiv:1411.3441

Combined fits (ZZ & WW) ATLAS

- Assuming $a_1/a_3 = a_1^{WW}/a_3^{WW}$ (R_{a3} = 0.5)
- Deviation slightly reduced when combining ZZ & WW

Coupling ratio	Best fi		
Combined	Expected	Observed	Ex
$\tilde{\kappa}_{HVV}/\kappa_{\rm SM}$	0.0	-0.48	(−∞, −0
$(\tilde{\kappa}_{AVV}/\kappa_{\rm SM}) \cdot \tan \alpha$	0.0	-0.68	(−∞, −2.3

YY & ZY couplings

- Can even start to probe Zy and yy couplings with 4ℓ events
- Different discriminants used in order to be sensitive to these couplings

Measurement	Observables \vec{x}			
$f^{\gamma\gamma}_{a3}$	\mathcal{D}_{bkg}	$\mathcal{D}_{a3}^{\gamma\gamma}$	$\mathcal{D}_{C\!P}^{\gamma\gamma}$	
$f_{a3}^{Z\gamma}$	\mathcal{D}_{bkg}	$\mathcal{D}^{Z\gamma}_{a3}$	$\mathcal{D}_{C\!P}^{Z\gamma}$	

- note, sensitivity to these events is much weaker with 4ℓ events than search with on-shell photons
 - direct searches with on-shell photons are not sensitive to different CP states (only to the total cross section)

arXiv:1411.3441

YY & ZY couplings

- Overall sensitivity still far from SM expectation
 - orders of magnitude small than searches with on-shell photons
 - 95% C.L. upper limit on $\mu^{Z\gamma}(\mu^{\gamma\gamma}) \sim 170$ (730) with 4 ℓ events
 - 95% (68%) C.L upper limit on $\mu^{Z\gamma} = 9.5$ with $2\ell + \gamma$ events

Parameter	Observed	Expected	$f_{ai}^{\rm VV} = 1$
$f_{\Lambda 1}^{Z\gamma}\cos(\phi_{\Lambda 1}^{Z\gamma})$	$-0.27^{+0.34}_{-0.49}$ [-1.00, 1.00]	$0.00^{+0.83}_{-0.53}$ [-1.00, 1.00]	26% (16%)
$f_{a2}^{\tilde{Z}\tilde{\gamma}}\cos(\phi_{a2}^{\tilde{Z}\tilde{\gamma}})$	$0.00^{+0.14}_{-0.20}$ [-0.49, 0.46]	$0.00^{+0.51}_{-0.51}$ [-0.78, 0.79]	<0.01% (0.01%)
$f_{a3}^{Z\gamma}\cos(\phi_{a3}^{Z\gamma})$	$0.02^{+0.21}_{-0.13}$ [-0.40, 0.51]	$0.00^{+0.51}_{-0.51} [-0.75, 0.75]$	<0.01% (<0.01%)
$f_{a2}^{\gamma\gamma}\cos(\phi_{a2}^{\gamma\gamma})$	$0.12^{+0.20}_{-0.11}$ $[-0.04, +0.51]$	$0.00^{+0.11}_{-0.09}$ [-0.32, 0.34]	<0.01% (<0.01%)
$f_{a3}^{\gamma\gamma}\cos(\phi_{a3}^{\gamma\gamma})$	$-0.02^{+0.06}_{-0.13}$ [-0.35, 0.32]	$0.00^{+0.15}_{-0.11}$ [-0.37, 0.40]	<0.01% (<0.01%)

arXiv:1411.3441

Prospects for the LHC CMS

- Projections out to 300/fb & 3000/fb
 - fits are performed with templates in which events are described by 2D distributions of kinematic discriminants:

$$\begin{split} \mathscr{D}_{bkg} &= \left[1 + \frac{\mathscr{P}_{bkg}^{kin}(m_{Z_1}, m_{Z_2}, \vec{\Omega} | m_{4\ell}) \times \mathscr{P}_{bkg}^{mass}(m_{4\ell})}{\mathscr{P}_{0^+}^{kin}(m_{Z_1}, m_{Z_2}, \vec{\Omega} | m_{4\ell}) \times \mathscr{P}_{sig}^{mass}(m_{4\ell} | m_{0})} \right] \\ \\ \mathscr{D}_{J^P} &= \left[1 + \frac{\mathscr{P}_{J^P}^{kin}(m_{Z_1}, m_{Z_2}, \vec{\Omega} | m_{4\ell})}{\mathscr{P}_{0^+}^{kin}(m_{Z_1}, m_{Z_2}, \vec{\Omega} | m_{4\ell})} \right]^{-1} \end{split}$$

- signals model with LO MC
- scaling up all background predictions
- all systematic uncertainties are assumed to be the same: still dominated by statistical uncertainties
- can reach 95% C.L. upper limits of $f_{a3} < 0.13 (0.04)$

Prospects for the LHC ATLAS

- Exploring sensitivity to couplings @ 300 & 3000/fb
 - background: assuming qq->ZZ background • scaled up to account for irreducible background
 - signal: LO MC reweighing to morph signal hypothesis \bullet
- Fitting either
 - templates based on ME-based kinematic discriminants
 - fully correlated 8D likelihood

(including approx. detector effects)

• Systematics uncertainties approximated to be: 3% luminosity, 5% signal and background yields (lepton reco ε), and 9.4% (7.4%) for 300/fb (3000/fb) for background yield

Observable	Sensitivity
$\ln \frac{ \text{ME}(g_1=1,g_2=0,g_4=0) ^2}{ \text{ME}(g_1=0,g_2=0,g_4=1) ^2}$	g 4 / g 1
$\ln \frac{ \text{ME}(g_1=1,g_2=0,g_4=-2+2i) ^2}{ \text{ME}(g_1=1,g_2=0,g_4=2+2i) ^2}$	$\Re(g_4)/g_1$
$\ln \frac{ \text{ME}(g_1=1,g_2=0,g_4=2-2i) ^2}{ \text{ME}(g_1=1,g_2=0,g_4=2+2i) ^2}$	$\Im(g_4)/g_1$
$\ln \frac{ \text{ME}(g_1=1,g_2=0,g_4=0) ^2}{ \text{ME}(g_1=1,g_2=1,g_4=0) ^2}$	g ₂ / g ₁
$\ln \frac{ \text{ME}(g_1=1,g_2=-1+i,g_4=0) ^2}{ \text{ME}(g_1=1,g_2=1+i,g_4=0) ^2}$	$\Re(g_2)/g_1$
$\ln \frac{ \text{ME}(g_1=1,g_2=1-i,g_4=0) ^2}{ \text{ME}(g_1=1,g_2=1+i,g_4=0i) ^2}$	$\Im(g_2)/g_1$

 $g_1(g_4)$ is effectively the same as $(a_1) a_3$

Final State	Signal	Background
4 <i>e</i>	871	474
4μ	1186	641
$2e2\mu$	1035	574
2µ2e	867	431

Constraints on CP violating interactions

- Likelihood scan in real and imaginary projection of g_4/g_1
 - extending templates' dimensionality a la CMS
 - magnitude & phase of anomalous couplings

Luminosity	$ g_4 /g_1$	$\Re(g_4)/g_1$	$\Im(g_4)/g_1$	$ g_2 /g_1$	$\Re(g_2)/g_1$	$\Im(g_2)/g_1$	Ī
$300 \ {\rm fb}^{-1}$	1.03	(-1.01, 1.01)	(-1.02, 1.02)	1.39	(-0.88, 0.38)	(-1.13, 1.13)	3
$3000 \ {\rm fb}^{-1}$	0.49	(-0.34, 0.26)	(-0.34, 0.48)	0.81	(-0.33, 0.11)	(-0.73, 0.75)	_3

ATLAS-PHYS-PUB-2013-013

• KD fits show that phase of anomalous couplings can play an important role - note this can also be parameterized by

• 8D - correlation less between the real and imaginary projections - simultaneously parameterizes kinematics in term of

Comparison

- ATLAS analysis also produced likelihood scan as a function of $f_{ai} \& \phi_i$
- $f_{a3} = f_{g4}$ comparable results between ATLAS and CMS $(f_{a3} < 0.04 @ 95\% C.L.)$

NOTE: the parameterization used in CMS is equivalent to the ATLAS modulus sensitive variable

Summary of results

Observed 95% C.L Limits

Conclusions

- CMS & ATLAS have mature programs for constraining the tensor structure of HVV interactions (HZZ, HWW, H $\gamma\gamma$, and HZ γ)
 - advanced techniques used to exploit all of the decay kinematics of the 4-body final states
 - measurements still limited by statistical uncertainties
 - constraining $a_2^{\gamma\gamma}$ ($a_2^{\gamma\gamma}$) from $a_3^{Z\gamma}$ ($a_3^{Z\gamma}$) couplings with high integrated luminosity is possible
- full HL-LHC integrated luminosity

• Projections show that ZZ anomalous couping constraints can be improved by a factor of 10 with the

BACKUP

41 analyses CMS

- 2 pairs of opposite-sign same flavor leptons (e or μ) (sub)leading lepton pT>20 (10 GeV) mII >= 4 GeV (all combinations) 40 < m1 (closest to Z mass) < 120 GeV $12 < m^2 < 120 \text{ GeV}$
- SM ZZ contributions taken from NLO MC sim.
- Z+X backgrounds estimated from a loose ID control region

Channel	4e		4	μ	2e2µ	
Energy	7 TeV	8 TeV	7 TeV	8 TeV	7 TeV	2
$q\overline{q} \to ZZ$	0.84 ± 0.10	2.94 ± 0.33	1.80 ± 0.11	7.65 ± 0.49	2.24 ± 0.28	8.8
gg ightarrow ZZ	0.03 ± 0.01	0.20 ± 0.05	0.06 ± 0.02	0.41 ± 0.10	0.07 ± 0.02	0.5
Z + X	0.62 ± 0.14	2.77 ± 0.62	0.22 ± 0.09	1.19 ± 0.48	1.06 ± 0.29	4.2
Bkg.	1.49 ± 0.17	5.91 ± 0.71	2.08 ± 0.14	9.25 ± 0.69	3.37 ± 0.40	13.
Signal	0.70 ± 0.11	3.09 ± 0.47	1.24 ± 0.14	5.95 ± 0.71	1.67 ± 0.26	7.6
Observed	1	9	3	15	6	

 $105.6 < m_{4\ell} < 140.6 \text{ GeV}$

41 analyses ATLAS

- two pairs of opposite-sign same flavor leptons three leading leptons pT>20, 15, 10 GeV 50 < m12 (closest to Z mass) < 106 GeV 12 < m34 < 115 GeV
- SM ZZ contributions taken from NLO MC sim.
- Z+X backgrounds estimated from a loose ID control region

		Signal	ZZ^*	$t\bar{t}, Z + jets$	Observed	
	$\sqrt{s} = 7 \text{ TeV}$					
Ŭ	4μ	1.02 ± 0.10	0.65 ± 0.03	0.14 ± 0.06	3	
\overline{O}	$2\mu 2e$	0.47 ± 0.05	0.29 ± 0.02	0.53 ± 0.12	1	
\widetilde{O}	$2e2\mu$	0.64 ± 0.06	0.45 ± 0.02	0.13 ± 0.05	2	
	4 <i>e</i>	0.45 ± 0.04	0.26 ± 0.02	0.59 ± 0.12	2	
V	Total	2.58 ± 0.25	1.65 ± 0.09	1.39 ± 0.26	8	
14t	$\sqrt{s} = 8 \text{ TeV}$					
	4μ	5.81 ± 0.58	3.36 ± 0.17	0.97 ± 0.18	13	
\vee	$2\mu 2e$	3.00 ± 0.30	1.59 ± 0.10	0.52 ± 0.12	8	
51	$2e2\mu$	3.72 ± 0.37	2.33 ± 0.11	0.84 ± 0.14	9	
	4 <i>e</i>	2.91±0.29	1.44 ± 0.09	0.52 ± 0.11	7	
	Total	15.4 ± 1.5	8.72 ± 0.47	2.85 ± 0.39	37	
-						

Fermilab

Observables

• An example of a complete set of observables describing the higgs decay kinematics

$$m_{4l} = (q_{11}+q_{12}+q_{21}+q_{22})^{2}$$

$$m_{z1} = (q_{11}+q_{12})^{2}$$

$$m_{Z2} = (q_{21}+q_{22})^{2}$$

$$\cos(\theta^{*}) = (q_{11}+q_{12})\cdot z/|q_{11}+q_{12}|$$

$$\Phi = \frac{q_{1} \cdot (\hat{n}_{1} \times \hat{n}_{2})}{|q_{1} \cdot (\hat{n}_{1} \times \hat{n}_{2})|} \times \cos^{-1}(-\hat{n}_{1} \cdot \hat{n}_{2})$$

$$\Phi_{1} = \frac{q_{1} \cdot (\hat{n}_{1} \times \hat{n}_{sc})}{|q_{1} \cdot (\hat{n}_{1} \times \hat{n}_{sc})|} \times \cos^{-1}(\hat{n}_{1} \cdot \hat{n}_{sc})$$

$$\theta_{t} = \cos^{-1}\left(-\frac{q_{2} \cdot q_{11}}{|q_{1} \cdot (\hat{n}_{1} \times \hat{n}_{sc})|}\right)$$

$$\theta_{1} = \cos^{-1} \left(-\frac{\mathbf{q}_{2} \ \mathbf{q}_{11}}{|\mathbf{q}_{2}||\mathbf{q}_{11}|} \right)$$
$$\theta_{2} = \cos^{-1} \left(-\frac{\mathbf{q}_{1} \cdot \mathbf{q}_{21}}{|\mathbf{q}_{1}||\mathbf{q}_{21}|} \right)$$

 other variables, pT & η, are sensitive to NLO effects & insensitive to CP

ATLAS distributions

Other production modes

- associated production and VBF production channels

VH & VBF

• Kinematic distribution for 0+ (red), 0- (blue), 50-50 mixture (green & magenta)

Prospects other production modes

- Projections out to 300/fb & 3000/fb show strong sensitivity to CP-violating HVV interactions
 - Associated production: assuming only $Z \rightarrow Z(II)H(bb)$
 - VBF production: assuming $H(\gamma\gamma) + H(ZZ)$

→dominant sensitivity from associated and VBF production mechanisms!

$$f_{CP} = \frac{|a_3|^2 \sigma_3^{H \to ZZ}}{\sum |a_i|^2 \sigma_i^{H \to ZZ}}$$
$$e.g. \quad \frac{\sigma_3^{H \to ZZ}}{\sigma_1^{H \to ZZ}} \sim 0.160$$

potential @ LHC & e+e- collider 10 H→ZZ 10-2 ب⁰-10⁻³ Д 10⁻⁴ .V.V.---Ą 10⁻⁵ 10⁻⁶ ee 350 GeV, 350 fb1 ee 500 GeV, 500 fb1 Pp 14 TeV, 300 fb1 ee 250 GeV, 250 fb1 ee 1 TeV, 1000 fb1 arXiv:1310.8361v2

Summary of projections for discovery

ATLAS monte carlo

signals modeled using *Powheg-Box Monte Carlo* - includes both ggF and VBF up to NLO in QCD - pT spectrum reweighted to NNLO and NNLL predictions

	Process	MC generator
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	POWHEG+PYTHIA8 POWHEG+PYTHIA8 PYTHIA8
	$\begin{array}{c} WW \\ q\bar{q} \rightarrow WW \text{ and } qg \rightarrow WW \\ gg \rightarrow WW \\ (q\bar{q} \rightarrow W) + (q\bar{q} \rightarrow W) \\ q\bar{q} \rightarrow WW \\ VBS \ WW + 2 \text{jets} \end{array}$	POWHEG+PYTHIA6 GG2VV+HERWIG PYTHIA8 SHERPA SHERPA
(v)W($\begin{array}{c} {\rm Top~quarks} \\ t\bar{t} \\ Wt \\ tq\bar{b} \\ t\bar{b} \end{array}$	POWHEG+PYTHIA6 POWHEG+PYTHIA6 ACERMC+PYTHIA6 POWHEG+PYTHIA6
	$\begin{array}{ll} \text{Other dibosons } (VV) \\ W\gamma & (p_{\mathrm{T}}^{\gamma} > 8\mathrm{GeV}) \\ W\gamma^{*} & (m_{\ell\ell} \leq 7\mathrm{GeV}) \\ WZ & (m_{\ell\ell} > 7\mathrm{GeV}) \\ \mathrm{VBS} \; WZ + 2\mathrm{jets} \\ & (m_{\ell\ell} > 7\mathrm{GeV}) \\ Z\gamma & (p_{\mathrm{T}}^{\gamma} > 8\mathrm{GeV}) \\ Z\gamma^{*} & (\mathrm{min.} \; m_{\ell\ell} \leq 4\mathrm{GeV}) \\ ZZ & (m_{\ell\ell} > 4\mathrm{GeV}) \\ ZZ \to \ell\ell\nu\nu\;(m_{\ell\ell} > 4\mathrm{GeV}) \end{array}$	ALPGEN+HERWIG SHERPA POWHEG+PYTHIA8 SHERPA SHERPA POWHEG+PYTHIA8 POWHEG+PYTHIA8
	$\begin{array}{ll} \text{Drell-Yan} \\ Z & (m_{\ell\ell} > 10 \text{GeV}) \\ \text{VBF} \ Z + 2 \text{jets} \\ & (m_{\ell\ell} > 7 \text{GeV}) \end{array}$	ALPGEN+HERWIG 1 SHERPA

CMS discriminant details

$$\begin{split} \mathcal{P}_{\rm SM} &= \mathcal{P}_{\rm SM}^{\rm kin}(m_1, m_2, \vec{\Omega} | m_{4\ell}) \times \mathcal{P}_{\rm sig}^{\rm mass}(m_{4\ell} | m_{\rm H}), \\ \mathcal{P}_{J^{\rm p}} &= \mathcal{P}_{J^{\rm p}}^{\rm kin}(m_1, m_2, \vec{\Omega} | m_{4\ell}) \times \mathcal{P}_{\rm sig}^{\rm mass}(m_{4\ell} | m_{\rm H}), \\ \mathcal{P}_{J^{\rm p}}^{\rm int} &= \left(\mathcal{P}_{\rm SM+J^{\rm p}}^{\rm kin}(m_1, m_2, \vec{\Omega} | m_{4\ell}) - \mathcal{P}_{J^{\rm p}}^{\rm kin}(m_1, m_2, \vec{\Omega} | m_{4\ell}) - \mathcal{P}_{\rm SM}^{\rm kin}(m_1, m_2, \vec{\Omega} | m_{4\ell}) \right), \\ \mathcal{P}_{J^{\rm p}}^{\rm int\perp} &= \left(\mathcal{P}_{\rm SM+J^{\rm p}\perp}^{\rm kin}(m_1, m_2, \vec{\Omega} | m_{4\ell}) - \mathcal{P}_{J^{\rm p}}^{\rm kin}(m_1, m_2, \vec{\Omega} | m_{4\ell}) - \mathcal{P}_{\rm SM}^{\rm kin}(m_1, m_2, \vec{\Omega} | m_{4\ell}) \right), \\ \mathcal{P}_{q\bar{q}ZZ} &= \mathcal{P}_{q\bar{q}ZZ}^{\rm kin}(m_1, m_2, \vec{\Omega} | m_{4\ell}) \times \mathcal{P}_{q\bar{q}ZZ}^{\rm mass}(m_{4\ell}), \\ \mathcal{P}_{ggZZ} &= \mathcal{P}_{ggZZ}^{\rm kin}(m_1, m_2, \vec{\Omega} | m_{4\ell}) \times \mathcal{P}_{ggZZ}^{\rm mass}(m_{4\ell}), \end{split}$$

$$\begin{split} \mathcal{D}_{\mathrm{bkg}} &= \frac{\mathcal{P}_{\mathrm{SM}}}{\mathcal{P}_{\mathrm{SM}} + c \times \mathcal{P}_{\mathrm{q}\overline{\mathrm{q}}\mathrm{ZZ}}} = \left[1 + c(m_{4\ell}) \times \frac{\mathcal{P}_{\mathrm{q}\overline{\mathrm{q}}\mathrm{ZZ}}^{\mathrm{kin}}(m_{1}, m_{2}, \vec{\Omega} | m_{4\ell}) \times \mathcal{P}_{\mathrm{q}\overline{\mathrm{q}}\mathrm{ZZ}}^{\mathrm{mass}}(m_{4\ell} | m_{\mathrm{H}})}{\mathcal{P}_{\mathrm{SM}}^{\mathrm{kin}}(m_{1}, m_{2}, \vec{\Omega} | m_{4\ell})} \right]^{-1}, \\ \mathcal{D}_{J^{p}} &= \frac{\mathcal{P}_{\mathrm{SM}}}{\mathcal{P}_{\mathrm{SM}} + \mathcal{P}_{J^{p}}} = \left[1 + \frac{\mathcal{P}_{J^{p}}^{\mathrm{kin}}(m_{1}, m_{2}, \vec{\Omega} | m_{4\ell})}{\mathcal{P}_{\mathrm{SM}}^{\mathrm{kin}}(m_{1}, m_{2}, \vec{\Omega} | m_{4\ell})} \right]^{-1}, \\ \mathcal{D}_{\mathrm{int}} &= \frac{\mathcal{P}_{\mathrm{SM}}^{\mathrm{int}}(m_{1}, m_{2}, \vec{\Omega} | m_{4\ell})}{\mathcal{P}_{\mathrm{SM}}^{\mathrm{kin}} + \mathcal{P}_{J^{p}}^{\mathrm{kin}}}. \end{split}$$

ATLAS discriminant details

$\frac{2\Re(ME(\kappa_{\rm SM}\neq 0;\kappa_{HV}))}{ M }$	$O_1(\kappa_{HVV}) =$
$\frac{ N }{ N }$	$O_2(\kappa_{HVV}) =$
2ℜ(ME(κ _{SM} ≠0; κ _{HVV} №	$O_1(\kappa_{AVV}, \alpha) =$
<u> M</u> M	$O_2(\kappa_{AVV}, \alpha) =$

$$\frac{\langle \kappa_{AVV}=0; \alpha=0\rangle^* \cdot ME(\kappa_{HVV}\neq0; \kappa_{SM}, \kappa_{AVV}=0; \alpha=0)}{E(\kappa_{SM}\neq0; \kappa_{HVV}, \kappa_{AVV}=0; \alpha=0)|^2}$$

$$\frac{E(\kappa_{HVV}\neq0; \kappa_{SM}, \kappa_{AVV}=0; \alpha=0)|^2}{E(\kappa_{SM}\neq0; \kappa_{HVV}, \kappa_{AVV}=0; \alpha=0)|^2},$$

$$\frac{\kappa_{AVV}=0; \alpha=0)^* \cdot ME(\kappa_{AVV}\neq0; \kappa_{SM}, \kappa_{HVV}=0; \alpha=\pi/2)}{E(\kappa_{SM}\neq0; \kappa_{HVV}, \kappa_{AVV}=0; \alpha=0)|^2}$$

$$\frac{E(\kappa_{AVV}\neq0; \kappa_{SM}, \kappa_{HVV}=0; \alpha=\pi/2)|^2}{E(\kappa_{SM}\neq0; \kappa_{HVV}, \kappa_{AVV}=0; \alpha=0)|^2}.$$

CMS summary

-				
-	Parameter	Observed	Expected	$f_{ai}^{VV} = 1$
-	$f_{\Lambda 1} \cos(\phi_{\Lambda 1})$	$0.22^{+0.10}_{-0.16}$ [-0.25, 0.37]	$0.00^{+0.16}_{-0.87}$ [-1.00, 0.27]	1.1% (16%)
			$\cup [0.92, 1.00]$	
	$f_{a2}\cos(\phi_{a2})$	$0.00^{+0.41}_{-0.06} \left[-0.66, -0.57 ight]$	$0.00^{+0.38}_{-0.08} \left[-0.18, 1.00 ight]$	5.2% (5.0%)
		$\cup [-0.15, 1.00]$		
	$f_{a3}\cos(\phi_{a3})$	$0.00^{+0.14}_{-0.11}$ [-0.40, 0.43]	$0.00^{+0.33}_{-0.33}$ [-0.70, 0.70]	0.02% (0.41%)
	$f_{\Lambda 1}^{ m WW}\cos(\phi_{\Lambda 1}^{ m WW})$	$0.21^{+0.18}_{-1.21}$ [-1.00, 1.00]	$0.00^{+0.34}_{-1.00} \left[-1.00, 0.41 ight]$	78% (67%)
			$\cup [0.49, 1.00]$	
	$f_{a2}^{WW}\cos(\phi_{a2}^{WW})$	$-0.02^{+1.02}_{-0.16}$ [-1.00, -0.54]	$0.00^{+1.00}_{-0.12}$ [-1.00, -0.58]	42% (46%)
		$\cup [-0.29, 1.00]$	$\cup [-0.22, 1.00]$	
	$f_{a3}^{WW}\cos(\phi_{a3}^{WW})$	$-0.03^{+1.03}_{-0.97}$ [-1.00, 1.00]	$0.00^{+1.00}_{-1.00} \left[-1.00, 1.00 ight]$	34% (49%)
	$f_{\Lambda 1}^{Z\gamma}\cos(\phi_{\Lambda 1}^{Z\gamma})$	$-0.27^{+0.34}_{-0.49}$ [-1.00, 1.00]	$0.00^{+0.83}_{-0.53}$ [-1.00, 1.00]	26% (16%)
	$f_{a2}^{\bar{Z}\bar{\gamma}}\cos(\phi_{a2}^{\bar{Z}\bar{\gamma}})$	$0.00^{+0.14}_{-0.20}$ [-0.49, 0.46]	$0.00^{+0.51}_{-0.51}$ [-0.78, 0.79]	<0.01% (0.01%)
	$f_{a3}^{Z\gamma}\cos(\phi_{a3}^{Z\gamma})$	$0.02^{+0.21}_{-0.13}$ [-0.40, 0.51]	$0.00^{+0.51}_{-0.51}$ [-0.75, 0.75]	<0.01% (<0.01%)
	$f_{a2}^{\gamma\gamma}\cos(\phi_{a2}^{\gamma\gamma})$	$0.12^{+0.20}_{-0.11}[-0.04, +0.51]$	$0.00^{+0.11}_{-0.09}$ [-0.32, 0.34]	<0.01% (<0.01%)
_	$f_{a3}^{\gamma\gamma}\cos(\phi_{a3}^{\gamma\gamma})$	$-0.02^{+0.06}_{-0.13}$ [-0.35, 0.32]	$0.00^{+0.15}_{-0.11}$ [-0.37, 0.40]	<0.01% (<0.01%)

Cross sections for fai Conversion

Interaction	Anomalous	Coupling	Effective	Translation
	Coupling	Phase	Fraction	Constant
	Λ_1	$\phi_{\Lambda 1}$	$f_{\Lambda 1}$	$\sigma_1/\tilde{\sigma}_{\Lambda 1} = 1.45 \times 10^4 \mathrm{TeV^{-4}}$
HZZ	<i>a</i> ₂	ϕ_{a2}	f _{a2}	$\sigma_1 / \sigma_2 = 2.68$
	<i>a</i> ₃	ϕ_{a3}	f _{a3}	$\sigma_1 / \sigma_3 = 6.36$
HWW	Λ_1^{WW} a_2^{WW} a_3^{WW} $\Lambda_1^{Z\gamma}$	$\phi_{\Lambda 1}^{WW}$ ϕ_{a2}^{WW} ϕ_{a3}^{WW} $\phi_{\Lambda 1}^{Z\gamma}$	$f^{\rm WW}_{\Lambda 1} f^{\rm WW}_{a2} f^{\rm WW}_{a3} f^{\rm WW}_{a3} f^{Z\gamma}_{\Lambda 1}$	$\sigma_1^{WW} / \tilde{\sigma}_{\Lambda 1}^{WW} = 1.87 \times 10^4 \text{TeV}^{-4}$ $\sigma_1^{WW} / \sigma_2^{WW} = 1.25$ $\sigma_1^{WW} / \sigma_3^{WW} = 3.01$ $\sigma_1' / \tilde{\sigma}_{\Lambda 1}^{Z\gamma} = 5.76 \times 10^3 \text{TeV}^{-4}$
$\mathrm{HZ}\gamma$	$a_2^{Z\gamma} a_3^{Z\gamma}$	$ \phi^{Z\gamma}_{a2} \\ \phi^{Z\gamma}_{a3} $	$\begin{array}{c} f_{a2}^{Z\gamma} \\ f_{a2}^{Z\gamma} \\ f_{a3}^{Z\gamma} \end{array}$	$\sigma_1' / \sigma_2^{Z\gamma} = 22.4 \times 10^{-4}$ $\sigma_1' / \sigma_3^{Z\gamma} = 27.2 \times 10^{-4}$
$\mathrm{H}\gamma\gamma$	$a_2^{\gamma\gamma} a_3^{\gamma\gamma}$	$ \phi^{\gamma\gamma}_{a2} \\ \phi^{\gamma\gamma}_{a3} $	$\begin{array}{c} f_{a2}^{\gamma\gamma} \\ f_{a3}^{\gamma\gamma} \end{array}$	$\sigma_1' / \sigma_2^{\gamma \gamma} = 28.2 \times 10^{-4}$ $\sigma_1' / \sigma_3^{\gamma \gamma} = 28.8 \times 10^{-4}$

