

Welcome to the ACFI!

AMHERST CENTER FOR FUNDAMENTAL INTERACTIONS

Physics at the interface: Energy, Intensity, and Cosmic frontiers
University of Massachusetts Amherst

We seek answers to key open questions about nature's fundamental interactions, such as:

Why is there more matter than anti-matter in the Universe?

What additional forces were active during the first moments after the Big Bang?

How are protons and neutrons put together?

Our mission:

Advancing research in theoretical and experimental physics at the interface of the Energy, Intensity, and Cosmic frontiers.

http://www.physics.umass.edu/acfi/

Activities

- Core Research (in house): ATLAS, EXO, LUX/LZ, DarkSide, J Lab parity & chiral, RHIC Spin, Borexino, Theory
- Targeted Workshops: Hadronic Probes, Lambda & Quasi Lambda, Higgs Portal,...
- **Visiting Researchers:** Ph.D. students (Australia, China), post-docs, faculty & senior researchers

Past Workshops

- Hadronic Probes of Fundamental Symmetries
- Lambda and Quasi-Lambda
- Unlocking the Higgs Portal
- Measuring the Neutron Lifetime
- Fundamental Symmetry Tests w/ Rare Isotopes
- Time-Reversal Tests in Nuclear & Hadronic Processes
- Hadronic Matrix Elements for Probes of CP-Violation
- The CP Nature of the Higgs Boson

- Probing the EW Phase Transition at a Next Gen PP Collider
- LHC Searches for Long-Live BSM Particles
- Neutrino Mass: From the Terrestrial Laboratory to the Cosmos
- Recent Developments in Semiclassical Probes of QFT's
- Northeast Gravity Workshop
- Making the EWPT (Theoretically) Strong
- Neutrinos at the High Energy Frontier
- The Electroweak Box

AMHERST CENTER FOR FUNDAMENTAL INTERACTIONS

Physics at the interface: Energy, Intensity, and Cosmic frontiers
University of Massachusetts Amherst

Neutron Lifetime

arXiv:1410.5311

Determination of the Free Neutron Lifetime

J. David Bowman, ¹ L. J. Broussard, ² S. M. Clayton, ² M. S. Dewey, ³ N. Fomin, ⁴ K. B. Grammer, ⁴ G. L. Greene*, ^{4,1,†} P. R. Huffman, ⁵ A. T. Holley, ⁶ G. L. Jones, ⁷ C.-Y. Liu, ⁸ M. Makela, ² M. P. Mendenhall, ³ C. L. Morris, ² J. Mulholland, ⁴ K. M. Nollett, ^{9,10} R. W. Pattie, Jr., ² S. Penttilä, ¹ M. Ramsey-Musolf, ¹¹ D. J. Salvat, ^{8,2} A. Saunders, ² S. J. Seestrom, ² W. M. Snow, ⁸ A. Steyerl, ¹² F. E. Wietfeldt, ¹³ A. R. Young, ⁵ and A. T. Yue³

AMHERST CENTER FOR FUNDAMENTAL INTERACTIONS

Physics at the interface: Energy, Intensity, and Cosmic frontiers
University of Massachusetts Amherst

EWPT @ 100 TeV arXiv: 1606.09408

CERN-TH-2016-11

ACFI-T16-10

Unlocking the Higgs Portal arXiv: 1604.05324

Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies

The Higgs Portal and Cosmology

Editors:

R. Contino^{1,2}, D. Curtin³, A. Katz^{1,4}, M. L. Mangano¹, G. Panico⁵, M. J. Ramsey-Musolf^{6,7}, G. Zanderighi¹

Ketevi Assamagan,^a Chien-Yi Chen,^{b,c} John Paul Chou,^d David Curtin,^e Michael A. Fedderke,^f Yuri Gershtein,^d Xiao-Gang He,^g Markus Klute,^h Jonathan Kozaczuk,ⁱ Ashutosh Kotwal,^j Steven Lowette,^k Jose Miguel No,^l Tilman Plehn,^m Jianming Qian,ⁿ Michael Ramsey-Musolf,^e Alexei Safonov,^p Jessie Shelton,^g Michael Spannowsky,^r Shufang Su,^s Devin G. E. Walker,^t Stephane Willocq,^e Peter Winslow^e

Long Lived Particles @ LHC

LHC LLP Community White Paper

Collecting the efforts of several workshops

- "Experimental Challenges" KITP May 2016
- LHC LLP Mini-Workshop CERN May 2016 & April 2017

Other Meetings & Events

- International Workshop on Baryon & Lepton Number Violation: 2015
- School on the Physics of Electric Dipole Moments:
 2016
- Nuclear Theory Topical Collaboration: Neutrinoless
 Double Beta Decay & EDMs: 2017

Upcoming Workshops & Schools

- School on Neutrinoless Double Beta Decay (November 1-4, 2017)
- Testing Baryogenesis (Spring 2018)

Support

- Seed funding from UMass Amherst
- Department of Energy Office of Nuclear Physics (2018+)
- National Science Foundation (NLDBD School)

Meeting Logistics

- Wireless Network: UMASS (usr & pw in packet)
- Lunch: on campus
- School Dinner: Tues @ Monkey Bar Bistro, 6:30 pm
 Wed-Thurs: on own in Amherst Center
- Schedule: online
- People: students, post-docs, staff (Brittany Bonenfant)
- Espresso!

This School: Motivation & Goals

- Provide experimentalists an opportunity to go more deeply into the physics of $0\nu\beta\beta$ -decay
- Provide an opportunity to ask lots of questions
- Provide some background on connections to other areas of research: nuclear & hadronic structure, high energy physics, cosmology
- Challenge you to sharpen your presentation of the theoretical side (homework exercise)