Lecture V: Energy Frontier Connections

M.J. Ramsey-Musolf U Mass Amherst

AMHERST CENTER FOR FUNDAMENTAL INTERACTIONS Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst

http://www.physics.umass.edu/acfi/

ACFI NLDBD School 10/31-11/3 2017

Lecture V Goals

- Provide some background on present & prospective opportunities for neutrino physics probes at high energy colliders
- Alert you to the prospects for LNV searches at the high energy frontier
- Illustrate the complementarity with $0\nu\beta\beta$ -decay
- Invite questions !

Lecture V Outline

- I. Context
- II. TeV Scale (and below) LNV
- III. Sterile neutrinos

I. Context

BSM Physics: Where Does it Live ?

Is the mass scale associated with m_v far above M_W ? Near M_W ? Well below $M_{W?}$

BSM Physics: Where Does it Live ?

Energy Frontier

LHC

Future Circular e⁺e⁻ & pp

International Linear Collider

Future Circular e⁺e⁻ & pp

Energy Frontier

LHC / HL-LHC

Future Circular Colliders

Future Circular Colliders

lepton collider parameters						
parameter	FCC-ee (400 MHz) LEP			LEP2		
Physics working point	Z		ww	ZH	tt _{bar}	
energy/beam [GeV]	45.6		80	120	175	105
bunches/beam	30180	91500	5260	780	81	4
bunch spacing [ns]	7.5	2.5	50	400	4000	22000
bunch population [10 ¹¹]	1.0	0.33	0.6	0.8	1.7	4.2
beam current [mA]	1450	1450	152	30	6.6	3
luminosity/IP x 10 ³⁴ cm ⁻² s ⁻¹	210	90	19	5.1	1.3	0.0012
energy loss/turn [GeV]	0.03	0.03	0.33	1.67	7.55	3.34
synchrotron power [MW]	100 22			22		
RF voltage [GV]	0.4	0.2	0.8	3.0	10	3.5
identical FCC-ee baseline optics for all energies FCC-ee: 2 separate rings, LEP: single beam pipe						

Future Circular Collider Study Michael Benedikt FCC Physics Workshop, CERN, 16 January 2017

FCC-he & HE-LHC-ep parameters

parameter	FCC-he	ep at HE-LHC	ep at HL-LHC	LHeC
<i>E_p</i> [TeV]	50	12.5	7	7
E_e [GeV]	60	60	60	60
\sqrt{s} [TeV]	3.5	1.7	1.3	1.3
bunch spacing [ns]	25	25	25	25
protons / bunch [1011]	1	2.5	2.2	1.7
γε _ρ [μm]	2.2	2.5	2.0	3.75
electrons / bunch [109]	2.3	2.3	2.3	1.0
electron current [mA]	15	15	15	6.4
IP beta function β_p^* [m]	15	10	7	10
hourglass factor	0.9	0.9	0.9	0.9
pinch factor	1.3	1.3	1.3	1.3
proton-ring filling factor	0.8	0.8	0.8	0.8
luminosity [10 ³³ cm ⁻² s ⁻¹]	11	9	8	1.3

Hadron collider parameters
r en

parameter	FCC-hh		HE-LHC*	_{ive} (HL) LHC
collision energy cms [TeV]	100		>25	14
dipole field [T]	16		16	8.3
circumference [km]	100		27	27
#IP	2 main & 2		2 & 2	2&2
beam current [A]	0.5		1.12	(1.12) 0.58
bunch intensity [10 ¹¹]	1	1 (0.2)	2.2	(2.2) 1.15
bunch spacing [ns]	25	25 (5)	25	25
beta* [m]	1.1	0.3	0.25	(0.15) 0.55
luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	5	20 - 30	>25	(5) 1
events/bunch crossing	170	<1020 (204)	850	(135) 27
stored energy/beam [GJ]	8.4		1.2	(0.7) 0.36
synchrotr. rad. [W/m/beam]	30		3.6	(0.35) 0.18
Future Circular Collider Study Michael Benedikt FCC Physics Workshop, CERN, 16 January 2017				11

Future Circular Colliders

Possible site of CEPC-SppC

Q. Qin, PANIC 2017, Beijing

- 1. QingHuangDao, Hebei (completed preCDR)
- 2. Huangling, Shaanxi (2017.1 signed contract to exp.)
- 3. ShenShan, Guangdong, (completed in August, 2016)
- 4. ...

••••••	0	0.01
Peak Lu	uminosity	/

2 x 120 GeV

2

>2 x 10³⁴/cm²/s

No. of IP

12

Parameter	Unit		Value	
		PreCDR	CDR	Ultimate
Circumference	km	54.4	100	100
C.M. energy	TeV	70.6	75	125-150
Dipole field	Т	20	12	20-24
Injection energy	TeV	2.1	2.1	4.2
Number of IPs		2	2	2
Nominal luminosity per IP	$cm^{-2}s^{-1}$	1.2×10^{35}	1.0x10 ³⁵	-
Beta function at collision	m	0.75	0.75	-
Circulating beam current	А	1.0	0.7	-
Bunch separation	ns	25	25	-
Bunch population		2.0×10^{11}	1.5x10 ¹¹	-
SR power per beam	MW	2.1	1.1	-
SR heat load per aperture @arc	W/m	45	13	-

ILC

ILC Acc. Design Overview (in TDR)

Example of luminosity and energy evolution

ILC Site Candidate Location in Japan: Kitakami

Shin Michizono, PANIC 2017, Beijing

Compact Linear Collier (CLIC)

2013 - 2019 Development Phase

Development of a Project Plan for a staged CLIC implementation in line with LHC results: technical developments with industry, performance studies for accelerator parts and systems, detector technology demonstrators

2020 - 2025 Preparation Phase

Finalisation of implementation parameters, preparation for industrial procurement, Drive Beam Facility and other system verifications, Technical Proposal of the experiment, site authorisation

2026 - 2034 Construction Phase

Construction of the first CLIC accelerator stage compatible with implementation of further stages; construction of the experiment; hardware commissioning

2019 - 2020 Decisions

Update of the European Strategy for Particle Physics; decision towards a next CERN project at the energy frontier

2025 Construction Start Ready for construction; start of excavations

Getting ready for data taking by the time the LHC programme reaches completion

2035 First Beams

R. Franceschini, LLP Trieste, October 2917

ACFI Workshop: July 2017

-
\mathbf{X}

AMMERST CENTER FOR FUNDAMENTAL INTERACTIONS

Physics at the interface: Energy, Intensity, and Cosmic frontiers University of Massachusetts Amherst

Home About

Research Areas

People

Seminars & Workshops

Partners

Visiting

UMass Physics

Neutrinos at the High Energy Frontier

Date: Tuesday, July 18, 2017 - 9:00am to Thursday, July 20, 2017 - 5:00pm Location: LGRT 419B

Given that neutrino mass is so far the only laboratory evidence for physics beyond the Standard Model, understanding its origin could provide a key to unlock the secrets of the new physics. In the LHC era and in anticipation of exciting developments of future colliders, it is timely to discuss how effectively the neutrino mass physics could be probed at the high energy frontier. The workshop will bring together theorists and experimentalists to develop a roadmap for neutrino physics at the high energy frontier. Attention will be given to possibilities for new searches at the LHC, opportunities with prospective future e+e-, pp, and ep colliders, and their complementarity. The complementarity with the low-energy experiments at the intensity frontier, as well as the implications for other outstanding puzzles such as the matter-antimatter asymmetry and dark matter, will also be touched upon. We anticipate these discussions will lead to a white paper for energy frontier neutrino physics.

Co-organizers:

Alain Blondel, CERN Bhupal Dev, Washington University Julia Harz. Paris LPTHE Pilar Hernandez, Valencia University and CERN Miha Nemevsek, Stefan Institute Michael Ramsey-Musolf, UMass Amherst

Upcoming Seminars

ACFI Seminar

Dirac Attack! Searching for Light Dark Matter with Dirac Materials Tue, Oct 31, 2017 - 2:30pm Yonatan Kahn LGRT 1033

ACFI Seminar

TBA Tue, Nov 7, 2017 - 2:30pm Graham White LGRT 419B

ACFI Seminar

Gravitational Wave Memory effect in all dimensions

Thu, Nov 9, 2017 - 10:45am Gautam Satishchandran LGRT 419B

All upcoming ACFI seminars

II. TeV Scale (and below) LNV

LNV Mass Scale & *0vββ*-Decay

LNV Mass Scale & *0vββ*-Decay

Two parameters: Effective coupling & effective heavy particle mass

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

- Majorana mass generated at the TeV scale
 - Low-scale see-saw
 - Radiative m_v
- *m_{MIN}* << 0.01 eV but 0vββ-signal accessible with tonne-scale exp'ts due to heavy Majorana particle exchange

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

- Majorana mass generated at the TeV scale
 - Low-scale see-saw
 - Radiative m_v
- *m_{MIN}* << 0.01 eV but 0vββ-signal accessible with tonne-scale exp'ts due to heavy Majorana particle exchange

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

- Majorana mass generated at the TeV scale
 - Low-scale see-saw
 - Radiative m_{v}
- *m_{MIN}* << 0.01 eV but 0vββ-signal accessible with tonne-scale exp'ts due to heavy Majorana particle exchange

d

 \overline{u}

X

24

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

TeV Scale LNV

Can it be discovered with combination of $0\nu\beta\beta$ & LHC searches ?

Simplified models

Simplified Models: Illustrative Case

$$\mathcal{L}_{\text{INT}} = g_1 \bar{Q}_i^{\alpha} d^{\alpha} S_i + g_2 \epsilon^{ij} \bar{L}_i F S_j^* + \text{H.c.}$$

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

LHC: $pp \rightarrow jj e^-e^-$

TeV Scale LNV

Effective operators:

$$\begin{split} \mathcal{L}_{\mathrm{LNV}}^{\mathrm{eff}} &= \frac{C_1}{\Lambda^5} \mathcal{O}_1 + \mathrm{h.c.} \\ \mathcal{O}_1 &= \bar{Q} \tau^+ d \bar{Q} \tau^+ d \bar{L} L^C \end{split}$$

$$C_1 = g_1^2 g_2^2$$

27

u

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

LHC: $pp \rightarrow jj e^-e^-$

 $d \xrightarrow{\qquad e^{-}} u$ $d \xrightarrow{\qquad u^{-}} u$ $d \xrightarrow{\qquad s^{+}} e^{-}$ $d \xrightarrow{\qquad S^{+}} u$ $d \xrightarrow{\qquad e^{-}} e^{-}$ $d \xrightarrow{\qquad s^{+}} u$ u

d

TeV Scale LNV

Effective operators:

$$\begin{split} \mathcal{L}_{\mathrm{LNV}}^{\mathrm{eff}} &= \frac{C_1}{\Lambda^5} \mathcal{O}_1 + \mathrm{h.c.} \\ \mathcal{O}_1 &= \bar{Q} \tau^+ d \bar{Q} \tau^+ d \bar{L} L^C \end{split}$$

$$g_{\rm eff} = C_1(\Lambda)^{1/4}$$

28

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

 $\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

$0v\beta\beta$ -Decay: TeV Scale LNV & m_v

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c}$$

Dirac Majorana

Implications for m_{v} :

Schecter-Valle: non-vanishing Majorana mass at (multi) loop level Simplified model: possible (larger) one loop Majorana mass 33

$0v\beta\beta$ -Decay: TeV Scale LNV & m_v

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.} \qquad \mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Dirac Majorana

Implications for m_{v} :

A hypothetical scenario

0vββ / LHC Interplay: Matrix Elements

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

0vββ / LHC Interplay: Matrix Elements

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

0vββ-Decay / LHC Comparison: Details

- LHC: Backgrounds
- LHC energy scale $\rightarrow 0\nu\beta\beta$ -decay scale: running
- *0vββ*-decay: hadronic & nuclear matrix elements

LHC Backgrounds: Charge Flip

e⁺ transfers most of p_T to conversion e⁻; Z / γ^* + jets \rightarrow apparent e⁻ e⁻ jj event

38

LHC Backgrounds: Charge Flip

Looks like SS dilepton

e⁺ transfers most of p_T to conversion e⁻; Z / γ^* + jets \rightarrow apparent e⁻ e⁻ jj event

39

LHC Backgrounds: Jet Fakes

Jet depositing energy in EM calorimeter

Energy Scale Evolution

LHC: $pp \rightarrow jj e^{-}e^{-}$

 $0\nu\beta\beta$ - decay

Energy Scale Evolution

Low energy: QCD Running

 $\begin{aligned} \mathcal{O}_1 &= (\bar{u}_L d_R) (\bar{u}_L d_R) (\bar{e}_L e_R^c), \\ \mathcal{O}_2 &= (\bar{u}_L \sigma^{\mu\nu} d_R) (\bar{u}_L \sigma_{\mu\nu} d_R) (\bar{e}_L e_R^c), \\ \mathcal{O}_3 &= (\bar{u}_L t^a d_R) (\bar{u}_L t^a d_R) (\bar{e}_L e_R^c), \\ \mathcal{O}_4 &= (\bar{u}_L t^a \sigma^{\mu\nu} d_R) (\bar{u}_L t^a \sigma_{\mu\nu} d_R) (\bar{e}_L e_R^c). \end{aligned}$

Assuming $C_k = 1$ at $\mu = 5$ GeV \rightarrow Effective DBD amplitude for O_1 substantially weaker for given LHC constraints

Hadronic & Nuclear Matrix Elements

Quarks & leptons

Hadrons & leptons

Nuclei

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

$$\mathcal{L}_{\text{mass}} = y \bar{L} \tilde{H} \nu_R + \text{h.c.}$$

Dirac

$$\mathcal{L}_{\text{mass}} = \frac{y}{\Lambda} \bar{L}^c H H^T L + \text{h.c.}$$

Majorana

- Majorana mass generated at the TeV scale
 - Low-scale see-saw
 - Radiative m_{v}
- *m_{MIN}* << 0.01 eV but 0vββ-signal accessible with tonne-scale exp'ts due to heavy Majorana particle exchange

 W_R - N_R

LHC Production & $0\nu\beta\beta$ -Decay

Helo et al, PRD 88.011901, 88.073011

48

M. Nemevsek ACFI '17

M. Nemevsek ACFI '17

Note: flavor handle at colliders !

51

LRSM Scalars: Future Colliders

LRSM Scalars: Future Colliders

III. RH Neutrinos

LNV Mass Scale & *0vββ*-Decay

RH Sterile Neutrinos

RH Sterile Neutrinos

Systematic assessment of heavy neutrino signatures at colliders

E. Cazzato

57

RH Sterile Neutrinos: LHC Prompt

Systematic assessment of heavy neutrino signatures at colliders

E. Cazzato

RH Sterile Neutrinos: LHC Prompt

% CL Obs

5% CL Expected limit

1500

5% CL Observed limit

95% CL Expected limit

1500

2000

(c)

2500

5% CL Expected limit ±

2000

(a)

5% CL Expected limit + 1 σ

ATLAS

LRSM

3000

ATLAS

3000

m_w, [GeV]

m_w [GeV]

3500

2500

 $pp \rightarrow \ell \ell j j$

59

3500

Type I see-saw: vSM

$$U_{\alpha N} \sim \frac{m_D}{M_N}$$

Type I & II see-saw: LRSM

$$U_{\alpha N} \sim \sqrt{\frac{v_L}{v_R} - \frac{m_\nu}{M_N}}$$

61

BAU from Leptogenesis

- Drewes et al '16
- *Lower bound* < 10⁻¹⁰

63

 μ^+

μ

 $|V_{aN}|^2$

e

 $\overline{
u}_e$

RH Sterile Neutrinos: Future Colliders

"First looks" at FCC-hh sensitivities

RH Sterile Neutrinos: Future Colliders

Summary

- Systematic assessment of heavy neutrino signatures at colliders.
- First looks at FCC-hh and FCC-eh sensitivities.
- Golden channels:
 - FCC-hh: LFV signatures and displaced vertex search
 - **FCC-eh:** LFV signatures and displaced vertex search
 - **FCC-ee:** Indirect search via EWPO and displaced vertex search

E. Cazzato

RH Sterile Neutrinos

Summary: FCC-ee sensitivities

▶ Displaced vertex searches test $|\theta|^2 \sim 10^{-11}$ for $M \leq m_W$.

 EWPOs test |θ|² ~ 10⁻⁵ up to M ~ 60 TeV with O(1) Yukawa couplings.

O. Fischer, ACFI '17 Workshop

RH Sterile Neutrinos

Global analysis and cosmology

plot to be updated in MaD/Garbrecht/Gueter/Klaric 1609.09069 [references to origin of sensitivity estimates given therein]

M. Drewes

Lecture V Summary

- High energy colliders provide a powerful means of probing dynamics of neutrino mass generation if it is associated with physics at or below the TeV scale
- The LHC along with future e^+e^- and pp colliders provide LNV probes that are complementary to $0\nu\beta\beta$ -decay
- The observation of LNV in both 0vββ-decay and high energy collider searches would indicate the energy scale for neutrino mass generation lies at or below the TeV scale
- The collider discovery of other ingredients in neutrino mass models would help unravel one of the key open problems in fundamental interaction physics