TRIUMF

Time-reversal violation \mathcal{T} in radiative β decay: experimental progress

- **\mathcal{T} Motivation**
- Our geometry and simulation for $\beta\nu\gamma$ correlation
- Parasitic test $^{92}\text{Rb} 0^- \rightarrow 0^+$

TRIUMF Neutral Atom Trap:

A. Gorelov
J.A. Behr
J. McNeil

D. Melconian

T. Valencic (UG Caltech SURF)

University of Manitoba

M. Anholm
G. Gwinner

D. Ashery

Support: NSERC, NRC through TRIUMF, US DOE, Israel Science Foundation
T, CP, and baryon asymmetry

Sakharov JETP Lett 5 24 (1967) used CP to generate the universe’s excess of matter:

- CP,
- baryon nonconservation, and
- nonequilibrium.

But known CP in the standard model is too small by 10^{10} to generate us.

Caveats: can use CPT

(Dolgov Phys Rep 222 (1992) 309)

We need more CP in the early universe, not necessarily now.

→ ● We should look for CP i.e. T violation where we can
3-momentum T correlation: Our example

When $t \rightarrow -t$:

$\vec{r} \rightarrow \vec{r}$ \hspace{1cm} $\vec{p} \sim \frac{d\vec{r}}{dt} \rightarrow -\vec{p}$

$\vec{p}_\nu \cdot \vec{p}_\beta \times \vec{p}_\gamma = -\vec{p}_{\text{recoil}} \cdot \vec{p}_\beta \times \vec{p}_\gamma$

$t \rightarrow -t$

$\vec{p}_{\text{recoil}} \cdot \vec{p}_\beta \times \vec{p}_\gamma$

- We can test symmetry of apparatus with coincident pairs
- Not exact: outgoing particles interact \rightarrow ‘final-state’ fake T
3-momentum T correlations: Other examples

Don’t depend directly on spin,
so only generate EDM’s in higher order

- **Medium energy T 3-momentum correlation:**

 $K^- \rightarrow \pi^0 e^- \bar{\nu}_e \gamma$ INR Moscow 2007,
 $A_{TRV} = -0.015 \pm 0.021$

 Three progressively better calculations of the final-state effects were done (Khriplovich+Rudenko 1012.0147 Phys Atomic Nuclei 2011)

- **3-momentum correlations (no γ) at LHCb and BABAR, 0 ± 0.003 (Martinelli arXiv 1411.4140)**

- **General formalism for triple product momentum asymmetries Bevan 1408.3813**

 Proposed T in $\pi^\pm \rightarrow e^\pm \nu_e e^+ e^-$ [Flagg Phys Rev 178 2387 (1969)] never done:

 Ours would be unique measurement in 1st generation of particles
$\gamma\beta\nu\mathcal{T} : A$ model

Harvey Hill, PRL 99 261601
combine in SM QCD+electroweak interaction in the nucleon’s \mathcal{L}

Gardner, He, PRD 2013 $\mathcal{L} \rightarrow \begin{array}{c} \frac{-4c_5}{m_{\text{nucleon}}} \frac{eG_F V_{ud}}{\sqrt{2}} \epsilon^{\sigma \mu \nu \rho} \bar{p} \gamma_\sigma n \bar{\psi}_e \gamma_\mu \psi_\nu L F_{\nu \rho} \\
\end{array}$

interference with SM vector current gives \mathcal{T} decay contribution

$|\mathcal{M}_{c5}|^2 \propto \frac{\text{Im}(c_5 g_V)}{M^2} \frac{E_e}{p_e k} (\vec{p}_e \times \vec{k}_\gamma) \cdot \vec{p}_\nu$

- \mathcal{T} 250x larger in ^{38m}K decay than neutron
- final state fake effect 8×10^{-4}

- $n \rightarrow p \beta\nu\gamma$ branch (Nico Nature 06, Bales PRL 16)

$\Rightarrow \frac{\text{Im}(c_5)}{M^2} \leq 8 \text{MeV}^{-2} \Rightarrow \text{Asym can be } \sim 1$

Bales b.r. = $(3.35 \pm 0.16) \times 10^{-3}, 1.7 \sigma$ higher than theory 3.08×10^{-3}
radiative β decay and EDMs

No spin \rightarrow different physics at lowest order, but Ng, Vos private comm.: ‘$\text{Im}(c_5)$’ interaction + S.M. β decay \rightarrow n EDM at 2 loops

‘Naive Dimensional Analysis’:

$$d_n \sim \frac{\text{Im}(c_5) G_F e}{M^2} \frac{G_F m_n^5}{(16\pi^2)^2}$$

$$\sim \frac{10^{-22} e\text{-cm}}{M^2} \text{[MeV}^{-2}]$$

$$d_n[\text{exp}] < 3 \times 10^{-26} \text{e-cm (Baker 2006 PRL)}$$

null n EDM $\Rightarrow \frac{\text{Im}(c_5)}{M^2} < 3 \times 10^{-4} \text{[MeV}^{-2}] \rightarrow 10^{-3} \text{ asym}$

We can still reach this sensitivity

Since n_{edm} usually targets other physics, it would be good to know independently if this is there

[Some $\gamma\beta\nu$ interactions make at 1 loop a n_{EDM}]
Geometry: simplest addition to TRINAT

- Added BGO detectors with SiPM readout
- Tested parasitic to $^{92}\text{Rb }\nu$ spectrum
- Sep 2018
- [J. McNeil CN.00005 now Kohala 4]

Total, photopeak efficiency:

<table>
<thead>
<tr>
<th>Material</th>
<th>815 keV</th>
<th>2.17 MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 KHz LYSO</td>
<td>0.59</td>
<td>0.28</td>
</tr>
<tr>
<td>Best Z BGO</td>
<td>0.60</td>
<td>0.34</td>
</tr>
<tr>
<td>Bright, low Z NaI</td>
<td>0.26</td>
<td>0.10</td>
</tr>
<tr>
<td>90ns, 50K γ/MeV GAGG</td>
<td>$>$ NaI</td>
<td>$>>$ NaI</td>
</tr>
</tbody>
</table>
Generic phase space for $\gamma\beta\nu\Upsilon$

- Classical bremsstrahlung $\propto 1/E_\gamma$
- Any time-reversal violating interaction involves β, ν and γ and produces a 4-body phase space $\propto E_\gamma (Q - E_\gamma)^3$

Sensitivity to $\sim 5\%$ of SM bremsstrahlung rate

We are concentrating on $E_\gamma > 511$ keV and the ‘opposite’ β^+
Test with $^{92}\text{Rb} \ 0^- \rightarrow ^{92}\text{Sr} \ 0^+ + \beta^- \nu\gamma$

Online $\beta-\gamma$ doubles:
511 keV from E&M showers
Shoulder of 3-6% 815 keV γ from ^{92}Rb decay

East and west-going ions
Ion TOF spectrum similar for top and bottom β
Test with $^{92}\text{Rb} \, 0^- \rightarrow ^{92}\text{Sr} \, 0^+ + \beta^- \nu \gamma$

- γ spectrum & β^- & ions ‘west’ vs. ‘east’.
- 5×10^6 ion-β coincidences: Sensitivity to few % γ branch

- Top and bottom β + GEANT4 may disentangle radiative γ, showers (511!), discrete 815 keV γ’s and new $\gamma\beta\nu$

No vector current, so no c_5 interaction: Sensitive to pseudoscalar T? Pseudoscalar quark \rightarrow nucleon form factor is 350 (Gonzalez-Alonso and Camalich PRL 2014)
\textbf{T} \gamma\beta\nu: Experimental progress

- Unique to 1st generation of particles
- Sensitive to MeV-scale \(T \)
- Complementary to \(K^- \to \pi^0 e^- \bar{\nu}_e \gamma \)

INR Moscow 2007,
\(A_{TRV} = -0.015 \pm 0.021 \)

- Adding \(\gamma \)'s to TRINAT's \(\beta\nu \) detection
 Focus on \(E_\gamma > 0.511 \) MeV and 'opposite' \(\beta^+ \)

\(^{92}\text{Rb} \ 0^- \to 0^+ \) test: possible sensitivity to \(T \) pseudoscalar

- Vector current mechanism of Gardner and He:
 Projection for 40,000 atoms \(^{37,38}\text{mK} \) trapped and a week:
 If new physics has 3\% branch, 5 days for 1\% on \(T \) asym.
 Sensitivity to 5\% of SM bremsstrahlung \(\to 10\% \) on \(T \) asym
TRIUMF Neutral Atom Trap at ISAC

- Main TRIUMF cyclotron
 - ‘world’s largest’
 - 500 MeV H⁻ (0.5 Tesla)

- 37K 8x10⁷/s
- TiC target
- 1750°C
- 70 µA protons
TRINAT efficiency, ISAC yields for $\gamma\beta\nu X$

ISAC 8×10^7/s 37K from TiC 2014
0.5 Zr catcher release 900°C
5×10^{-4} Collection
0.65 Decay before transfer
0.75 Transfer efficiency
→ 10,000 atoms 37K demonstrated

0.01 β detection ϵ
0.15 Ar ion fraction
0.5 MCP ion ϵ
0.8 Counting duty cycle
(Polarized+Unpolarized)
ISAC 4x more 38mK

Behr et al.
HI 225 115 (2014)
Swanson
JOSA B 15 2641 (1998)
Past radiative nuclear β^- decay experiments

6He Bienlein and Pleasanton NP 1965

35S vector current $\mathcal{O}(10^{-2})$
Boehm and Wu
PR 93 518 (1954)

Fig. 3. Internal bremsstrahlung of 35S.

For axial vector current

Powar and Singh
JPG 2 43 (1976)

5-10% discrepancies allowed
\mathcal{T} in radiative β decay and EDMs

Dekens, Vos 1502.04629: dim 6 operators at TeV scale

$$\mathcal{L}_{\text{eff}}^6 = -\frac{8i c_w}{g v^2} V_{ud} \text{Re} C_k \bar{W}_B (\Lambda) \varepsilon^{\mu \nu \alpha \beta} (\bar{u}_L \gamma_\mu u_L) (\bar{e}_L \gamma_\nu e_L) F_{\alpha \beta}$$

$\rightarrow 10^{-10}$ asymmetries if constants ~ 1.

Also generates EDMs \Rightarrow constants ~ 0.01

So TeV-scale general dim 6 ops can make $\mathcal{T} \gamma \nu \beta$ and EDMs, but don't make measurable nuclear radiative β decay; effects $\sim p_{\text{lepton}}^2 / \text{scale}^2$.

The QCD-like MeV-scale example of Gardner and He is tuned to maximize contribution to neutron β decay and avoid other experiments. E.g. direct searches by colliders are masked by jets.

EDMs constrain the Gardner term anyway \rightarrow
Vector current needs \(\beta^+ \) emitter

- \(\beta^- \) decays with vector current:
 - n, \(^3\)H, (not easy)

‘isospin-forbidden Fermi’ amplitudes with \(\log(ft) \sim 5 - 6 \) (e.g. \(^{35}\)S)

But isobaric analogs usually lie high in excitation for \(\beta^- \)

E.g. \(^{24}\)Na \(4^+ \rightarrow ^{24}\)Mg \(4^+ \), \(\log(ft) = 6 \) (famous for the analog transition from \(^{24}\)Al), feeds 2 subsequent \(\gamma \)s so does not help.

\(^{92}\)Rb \(0^- \rightarrow 0^+ \) is ‘first-forbidden G-T’ which does not have the vector current,

nor does first-forbidden unique \(^{42}\)K \(2^- \rightarrow 0^+ \)

Other first-forbidden can have vector current contributions times some other operator (\(^{93}\)Rb) but these have a lot of \(\gamma \)s

- The interference with SM term requires this vector current to produce the Gardner-He term.