Displaced RPV SUSY & Baryogenesis

Yanou Cui

Perimeter Institute

Long-lived BSM particles @ LHC workshop
UMass-Amherst, Nov 12, 2015
Displaced SUSY

- **Gauge mediation**: NLSP → gravitino + SM decay suppressed by $1/F^2$, displaced with $F \gtrsim 10^4$ TeV
- **Anomaly mediation**: co-LSP winos decay suppressed by mass degeneracy $\Delta m \sim m_{\tilde{\tau}}$ ⇒ long disappearing track
- **Mini-split spectrum**: NLSP → SM + LSP (RPC) decay suppressed by $1/(m_0)^4 + 3$-body
- **R-parity violation**: decay suppressed by tiny RPV couplings (UDD, LLE, QDL...) (or with mini-split spectrum)
Displaced SUSY

• **Gauge mediation**: NLSP → gravitino + SM decay suppressed by $1/F^2$, displaced with $F \gtrsim 10^4$ TeV

• **Anomaly mediation**: co-LSP winos decay suppressed by mass degeneracy $\Delta m \sim m_\Pi$ → long disappearing track

• **Mini-split spectrum**: NLSP → SM + LSP (RPC) decay suppressed by $1/(m_0)^4 + 3$-body

• **R-parity violation**: decay suppressed by tiny RPV couplings (UDD, LLE, QDL...) (or w/mini-split spectrum)

Generically motivated by cosmology: baryogenesis!
Displaced SUSY

• **Gauge mediation**: NLSP \rightarrow gravitino + SM
 decay suppressed by $1/F^2$, displaced with $F \gtrsim 10^4 \text{TeV}$

• **Anomaly mediation**: co-LSP winos
 decay suppressed by mass degeneracy $\Delta m \sim m_{\Psi}$
 \Rightarrow long disappearing track

• **Mini-split spectrum**: NLSP \rightarrow SM + LSP (RPC)
 decay suppressed by $1/(m_0)^4 + 3$-body

• **R-parity violation**: decay suppressed by tiny RPV couplings (UDD, LLE, QDL…)
 (or w/mini-split spectrum)

- **Generically motivated by cosmology**: baryogenesis!

(see Brock’s talk for more!)
Cosmological Concern with RPV Natural SUSY
Cosmological Concern with RPV Natural SUSY

• Light stop with RPV (\mathcal{B}) *prompt* decay: An important channel of natural SUSY search at the LHC

prompt $\Rightarrow \lambda^{ij} \gtrsim 10^{-7}$ ($L_{\text{decay}} \approx 1 \text{ mm}$)
Cosmological Concern with RPV Natural SUSY

• Light stop with RPV (\mathcal{B}) prompt decay: An important channel of natural SUSY search at the LHC

 \[\text{prompt} \Rightarrow \lambda^{ij} \gtrsim 10^{-7} \quad (L_{\text{decay}} \approx 1 \, \text{mm}) \]

• Assume conventional baryogenesis at $T \gtrsim T_{EW}$

 \[\text{pre-existing baryon abundance efficiently erased by } \mathcal{B} \text{ scatterings, e.g. } \tilde{H}_u t \rightarrow \tilde{d}_i \tilde{d}_j,, \text{ if } \lambda^{ij} \gtrsim 10^{-7} ! \]
Cosmological Concern with RPV Natural SUSY

- Light stop with RPV (\mathcal{B}) prompt decay: An important channel of natural SUSY search at the LHC

 $$\text{prompt} \rightarrow \lambda_{ij} \gtrsim 10^{-7} \quad (L_{\text{decay}} \gtrsim 1 \text{ mm})$$

- Assume conventional baryogenesis at $T \geq T_{EW}$

 Pre-existing baryon abundance efficiently erased by \mathcal{B} scatterings, e.g. $\tilde{H}_u t \rightarrow \tilde{d}_i \tilde{d}_j$, if $\lambda_{ij} \gtrsim 10^{-7}$!
Cosmological Concern with RPV Natural SUSY

- Light stop with RPV (\mathcal{B}) prompt decay: An important channel of natural SUSY search at the LHC
 $\text{prompt} \Rightarrow \lambda_{ij} \gtrsim 10^{-7}$ ($L_{\text{decay}} \gtrsim 1 \text{ mm}$)

- Assume conventional baryogenesis at $T \gtrsim T_{\text{EW}}$

\mathcal{B}-pre-existing baryon abundance efficiently erased by \mathcal{B} scatterings, e.g. $\tilde{H}_u t \rightarrow \tilde{d}_i \tilde{d}_j$, if $\lambda_{ij} \gtrsim 10^{-7}$!

★ Estimate of washout: exponential reduction if $\Gamma_w \approx H (T_{\text{EW}})$

$$Y_B(0) = Y_B^{\text{init}} e^{-\int_{T_{\text{ini}}}^{T} \frac{\Gamma_w(T)}{H(T)} \, dT} \sim Y_B^{\text{init}} e^{-\frac{\lambda_{ij}^2 y^2}{g_{*}^{1/2}} \frac{M_{\text{pl}}}{m_{\text{EW}}}}$$
Cosmological Concern with RPV Natural SUSY

- Light stop with RPV (\(\mathcal{B}\)) prompt decay: An important channel of natural SUSY search at the LHC

 \[\lambda^{ij} \gtrsim 10^{-7} \quad (L_{\text{decay}} \gtrsim 1 \text{ mm}) \]

- Assume conventional baryogenesis at \(T \gtrsim T_{\text{EW}}\)

 Pre-existing baryon abundance efficiently erased by \(\mathcal{B}\) scatterings, e.g. \(\tilde{H}_U t \to \tilde{d}_i \tilde{d}_j\), if \(\lambda^{ij} \gtrsim 10^{-7}\)!

★ Estimate of washout: exponential reduction if \(\Gamma_w \approx H (T_{\text{EW}})\)

\[Y_B(0) = Y_B^{\text{ini}} e^{-\int_0^{T_{\text{ini}}} \frac{\Gamma_w(T)}{H(T)} \, dT} \approx Y_B^{\text{ini}} e^{-\frac{\lambda^{ij} y_f^2}{g_*^{1/2}} \frac{M_{\text{pl}}}{m_{\text{EW}}} \, \frac{1}{10^7}} \]
Cosmological Concern with RPV Natural SUSY

• Light stop with RPV (B) prompt decay: An important channel of natural SUSY search at the LHC
 \[\lambda^{ij} \geq 10^{-7} \ (L_{\text{decay}} \approx 1 \ mm) \]

• Assume conventional baryogenesis at \(T \approx T_{EW} \)
 pre-existing baryon abundance efficiently erased by B scatterings, e.g. \(\tilde{H}_u t \rightarrow \tilde{d}_i \tilde{d}_j \), if \(\lambda^{ij} \geq 10^{-7} \)!

★ Estimate of washout: exponential reduction if \(\Gamma_w \approx H \ (T_{EW}) \)

\[
Y_B(0) = Y_B^{\text{init}} e^{-\int_0^{T_{\text{init}}} \frac{\Gamma_w(T)}{H(T)} \frac{dT}{T}} \sim Y_B^{\text{init}} e^{-\frac{\lambda^{ij} y_t^2}{g^* m_{EW}^2} M_{\text{pl}}}
\]

What are possible solutions to this problem?
Avoid the Problem: Suppress RPV Washout

• To ensure successful baryogenesis at $T \gtrsim T_{EW}$ … (?)
Natural SUSY with $\lambda^i \lesssim 10^{-7}$ ⇒ Displaced Stop at LHC!

(Barry, Graham and Rajendran 2013)

★ Good coverage up to $m \sim 1\text{TeV}$ w/recent development at
ATLAS/CMS! (colored, low bkg)

Liu and Tweedie, 2015
Solve the Problem: Baryogenesis from RPV

- Baryogenesis at $T \approx T_{EW}$, after all washout processes decouple ($\Gamma_w \approx H$) ?
 - RPV reset/regenerate Ω_B!? (new ideas...)
Solve the Problem: Baryogenesis from RPV

- Baryogenesis at $T \approx T_{EW}$, after all washout processes decouple ($\Gamma_w \approx H$)?
 — RPV reset/regenerate Ω_B!? (new ideas…)

- Could SUSY shed light on prominent puzzles in modern cosmology?

 $\Omega_{DM} \approx 23\%$, $\Omega_B \approx 5\%$, $\Omega_B \sim \Omega_{DM}$

- Familiar/well-studied case: (RPC) LSP WIMP dark matter, MET+X search @LHC
Solve the Problem: Baryogenesis from RPV

• Baryogenesis at $T \approx T_{EW}$, after all washout processes decouple ($\Gamma_w \approx H$)?
 — RPV reset/regenerate Ω_B!? (new ideas…)

• Could SUSY shed light on prominent puzzles in modern cosmology?

$\Omega_{DM} \approx 23\%, \Omega_B \approx 5\%, \Omega_B \sim \Omega_{DM}$

- Familiar/well-studied case: (RPC) LSP WIMP dark matter, MET+X search @LHC
- Potential addressing $\Omega_B, \Omega_B \sim \Omega_{DM}$ w/RPV?

\Rightarrow (again) Displaced vertices @LHC!
Let’s start a journey beyond SUSY, then come back…
Let’s start a journey beyond SUSY, then come back…

Mini-Review of Baryogenesis

• Origin of Ω_B? = Where do we ourselves come from?

Initial $B - \bar{B}$ asymmetry

$$\eta_B = (n_B - n_{\bar{B}})/n_\gamma \sim 10^{-10}$$

symmetric component annihilated away

Asymmetric Ω_B today
Let’s start a journey beyond SUSY, then come back…

Mini-Review of Baryogenesis

- Origin of Ω_B? = Where do we ourselves come from?

Sakharov Conditions (1967):
- Baryon number violation
- C- , CP-violation
- Out-of equilibrium (CPT)

\[n_B^{eq} = n_{\bar{B}}^{eq}, \quad \langle B \rangle_{eq} = 0 \]
Let’s start a journey beyond SUSY, then come back…

Mini-Review of Baryogenesis

- **Origin of \(\Omega_B \) ? = Where do we ourselves come from?**

 Initial \(B - \bar{B} \) asymmetry

 \[
 \eta_B = \frac{n_B - n_{\bar{B}}}{n_\gamma} \sim 10^{-10}
 \]

 Sakharov Conditions (1967):
 - Baryon number violation
 - C-, CP-violation
 - Out-of equilibrium (CPT) \(n^\text{eq}_B = n^\text{eq}_{\bar{B}}, \langle B \rangle_{\text{eq}} = 0 \)

 Asymmetric \(\Omega_B \) today

 \(\Omega_B \approx 5\%: \)
 - Need BSM Physics!

\(- \text{provided by RPV SUSY ?…} \)
Let’s start a journey beyond SUSY, then come back…

Mini-Review of Baryogenesis

- Origin of Ω_B? = Where do we ourselves come from?

Initial $B - \bar{B}$ asymmetry

$$\eta_B = (n_B - n_{\bar{B}})/n_\gamma \sim 10^{-10}$$

Sakharov Conditions (1967):

- Baryon number violation
- C-, CP-violation
 (- provided by RPV SUSY ?…)
- Out-of equilibrium (CPT)
 $$n_B^{eq} = n_{\bar{B}}^{eq}, \quad \langle B \rangle_{eq} = 0$$

- Existing baryogenesis mechanisms: (leptogenesis, EWBG…)
 Most involve high M or/and T, *direct* experimental test impossible (c.f. WIMP DM for Ω_{DM})

$\Omega_B \approx 5\%$:

Need BSM Physics!
Baryogenesis from Out-of-Equilibrium Decay

A general class of baryogenesis models (e.g. leptogenesis)

- Assume a massive neutral particle χ
- Baryon asymmetry can be produced in its decay (B-, CP-violating)

\[
\Gamma(\chi \to f) \neq \Gamma(\chi \to \bar{f})
\]

\[
n_f - n_{\bar{f}} \neq 0
\]

- Typically, the inverse processes efficiently erase the asymmetry
- But, if χ is **long-lived**, and **decays only after** $T_f < M_\chi$:

 Inverse decay: Boltzmann suppressed

 \[
e^{-M_\chi/T_{\text{decay}}}\]

 Out-of-equilibrium decay \rightarrow **Sakharov conditions ✓**
Baryogenesis from Out-of-Equilibrium Decay

- Asymmetry is **robustly preserved** if \((H: \text{Hubble expansion rate})\)
 \[\Gamma_\chi < H(T = M_\chi) \] Weak washout scenario

An intriguing observation (YC, Sundrum 2012; YC, Shuve, 2014)

- If \(\chi\) has mass at **weak scale** (the new energy frontier LHC is exploring!), numerology gives
 \[c \tau_\chi^{-1} < H(T_{EW}) \sim 10^{-13} \text{ GeV} \]

- Converting to decay length:
 \[c \tau_\chi \gtrsim \text{mm} \] Displaced vertex regime @LHC!
Displaced Vertices Motivated by Baryogenesis

\[\Gamma_\chi < H(T = M_\chi) \quad \text{and} \quad c\tau_\chi \gtrsim \text{mm} \]

- A generic connection between cosmological slow rates at \(T \sim 100 \text{ GeV} \) and displaced vertices at colliders.
- The universe around EW phase transition was just slightly bigger than LHC tracking resolution!

\[H(100 \text{ GeV}) \sim 10^{-14} \text{ GeV} \sim (1.3 \text{ cm})^{-1} \]
\[10 \text{ GeV} \rightarrow (1.3 \text{ m})^{-1} \]
\[1 \text{ TeV} \rightarrow (0.13 \text{ mm})^{-1} \]
Displaced Vertices Motivated by Baryogenesis

• Production at the LHC?

No conflict between a small decay rate and a large production rate

• Long lifetime due to approximate symmetry (e.g. Z_2 parity)

• Recover MET signal for DM in the limit of exact symmetry!
Displaced Vertices Motivated by Baryogenesis

- Production at the LHC?

No conflict between a small decay rate and a large production rate

- Long lifetime due to approximate symmetry (e.g. Z_2 parity)

- Recover MET signal for DM in the limit of exact symmetry!
Displaced Vertices Motivated by Baryogenesis

- Production at the LHC?

No conflict between a small decay rate and a large production rate

- Long lifetime due to approximate symmetry (e.g. Z_2 parity)

- Recover MET signal for DM in the limit of exact symmetry!
Displaced Vertices Motivated by Baryogenesis

- Production at the LHC?

No conflict between a **small** decay rate and a **large** production rate

- Long lifetime due to approximate symmetry (e.g. Z_2 parity)

- Recover MET signal for DM in the limit of exact symmetry!

Concrete, motivated baryogenesis models as example?
Baryogenesis from WIMPs

- YC, JHEP 1312 (2013) 067
• The familiar story of a stable WIMP

WIMP DM χ

WIMP DM χ

X

X
• The familiar story of a stable WIMP

\[\text{WIMP DM } \chi \rightarrow \text{X} \rightarrow \text{thermal freeze out} \rightarrow \Omega_{\text{DM}} \rightarrow \text{out-of-equilibrium} \]
• The familiar story of a stable WIMP

WIMP DM χ \rightarrow X, thermal freeze out \rightarrow Ω_{DM}, out-of-equilibrium

• A different story of a (general) WIMP?

WIMP χ \rightarrow X, thermal freeze out, out-of-equilibrium, Stable χ_{DM}, Ω_{DM}
• The familiar story of a stable WIMP

WIMP DM χ \rightarrow X \rightarrow thermal freeze out \rightarrow out-of-equilibrium \rightarrow Ω_{DM}

WIMP DM χ \rightarrow X \rightarrow thermal freeze out \rightarrow out-of-equilibrium \rightarrow Ω_{DM}

• A different story of a (general) WIMP?

WIMP χ \rightarrow X \rightarrow thermal freeze out \rightarrow ? \rightarrow Stable χ_{DM}, Ω_{DM}

WIMP χ \rightarrow X \rightarrow thermal freeze out \rightarrow ? \rightarrow Metastable χ_B?

Diverse lifetimes: generic in nature

(symmetry, mass/coupling hierarchy)

e.g. long lifetime of b-quark, muon

($m_W \gg m_b, m_\mu$), SUSY WIMP w/RPV
• The familiar story of a stable WIMP

WIMP DM χ

X

thermal freeze out

out-of-equilibrium

WIMP DM χ

X

Ω_{DM}

• A different story of a (general) WIMP?

WIMP χ

X

thermal freeze out

out-of-equilibrium

WIMP χ

X

Ω_{DM}

Stable χ_{DM}, Ω_{DM}

Metastable χ_{B}?

(later decay)

 Kü

Diverse lifetimes: generic in nature

(symmetry, mass/coupling hierarchy)

e.g. long lifetime of b-quark, muon

($m_W \gg m_b, m_\mu$), SUSY WIMP w/RPV

YC and Sundrum 2012;
YC 2013
Baryogenesis from Metastable WIMP Decay

- A new baryogenesis mechanism w/weak scale new physics:
 A WIMP miracle for baryons, can occur well below T_{EW}

- If + A stable WIMP DM
 new path addressing $\Omega_B \sim \Omega_{DM}$
- A generalized WIMP miracle!

A generalized WIMP miracle!

- A new baryogenesis mechanism w/weak scale new physics:
 A WIMP miracle for baryons, can occur well below T_{EW}

- If + A stable WIMP DM
 new path addressing $\Omega_B \sim \Omega_{DM}$
- A generalized WIMP miracle!

\[\Omega_B = \epsilon_{CP} \frac{M_p}{M_{WIMP}} \Omega_{WIMP} \to \infty \]
A Minimal Model Example
(easy embedding in RPV natural SUSY!)

- We add to the Standard Model Lagrangian \((\mathcal{B}, \mathcal{CP})\):

\[
\Delta \mathcal{L} = \lambda_{ij} \phi d_i d_j + \varepsilon_i \chi \bar{u}_i \phi + M_{\chi}^2 \chi^2 + y_i \psi \bar{u}_i \phi + M_{\psi}^2 \psi^2 \\
+ \alpha \chi^2 S + \beta |H|^2 S + M_S^2 S^2 + \text{h.c.}
\]

\(\phi\): di-quark scalar w/same charges as SM u-quark;

\(\chi, \psi\): SM singlet Majorana fermions;

\(\varepsilon_i \ll 1\): small breaking of a \(\chi\)-parity \(\Rightarrow\) long-lived \(\chi\)

\(\chi \equiv \chi_B\), the WIMP parent for baryogenesis.

\(S\): singlet scalar, mediate WIMP annihilation \(\chi\chi \rightarrow \text{SM}\) via h-portal.
A Minimal Model Example

• Out-of-equilibrium decay of $\chi \rightarrow \Omega_B$

• Interference of tree- & loop-level decay

\rightarrow CP asymmetry $\epsilon_{CP} \equiv \frac{\Gamma(\chi \rightarrow \phi^* u) - \Gamma(\chi \rightarrow \phi \bar{u})}{\Gamma(\chi \rightarrow \phi^* u) + \Gamma(\chi \rightarrow \phi \bar{u})}$

• Check other constraints ($n \rightarrow \bar{n}$ oscillation, neutron EDM...)

\rightarrow With weak scale masses, new particles couple mostly to heaviest quarks (b, t) (just like the Higgs boson!)
Coming back to RPV SUSY vs. baryogenesis…

Meeting Particle Physics Frontier — Embedding in Supersymmetry (SUSY)

- Our mechanism: **generic** low scale baryogenesis
 Embed in motivated theory framework, e.g. SUSY?

Favored viable SUSY models after LHC runs:

- “Natural” SUSY: light stop \(m_{\tilde{t}} \ll m_{\tilde{q}_{1,2}} \) and/or B-(L-) violation
- (Mini-)Split SUSY \(m_{\text{gauginos}} \ll m_{\text{sfermions}} \)
Embedding in Natural SUSY: Model

Our minimal model: direct “blueprint”

- Promote singlets χ, S to chiral superfields, add to the MSSM. B superpotential:
 \[W = \lambda_{ij} T D_i D_j + \epsilon' \chi H_u H_d + y_t Q H_u T + +\mu \chi^2 \]
 \[+ \mu H_u H_d + \mu_S S^2 + \alpha \chi^2 S + \beta S H_u H_d. \]

- Assume SUSY pattern: scalar χ and $\tilde{q}_{1,2}$ heavy, decoupled, as in “natural SUSY”

- Mapping: (minimal model \rightarrow SUSY model)
 - Diquark $\phi \rightarrow$ light \tilde{t}_R in superfield T
 - Baryon parent singlet $\chi \rightarrow$ fermion singlet χ
 - Majorana $\psi \rightarrow$ MSSM gaugino
 - Singlet scalar $S \rightarrow$ singlet S, mixes with H_u, enables χ annihilation
 - Small parameter $\varepsilon \rightarrow \varepsilon'$, enables late decay $\chi \rightarrow \tilde{t}\tilde{t}$ via $\chi - \tilde{H}_u$ mixing
Embedding in Mini-Split SUSY
(Cui, JHEP 1312 (2013) 067)

Interesting (surprising) finding: successful baryogenesis from minimal SUSY standard model (WIMP decay)!

\[\tilde{B} \rightarrow \Delta B \]

Sakharov\#1: out-of equilibrium \(\checkmark \)

Split SUSY+ O(1) RPV: Natural long life-time of gauginos

Split spectrum \(\mathcal{O}(100 - 1000) \text{TeV} \sim m_{\text{scalar}} \gg m_{\text{gaugino}} \sim \text{TeV} + \text{RPV} \)

Late decay automatic! e.g. \(\chi \rightarrow udd \) (heavy mediator, 3-body...)

\[\begin{array}{c}
\tilde{B} \\
\tilde{d}^+ \\
u_k
\end{array} \rightarrow
\begin{array}{c}
d_i \\
d_j
\end{array} \]
Embedding in Mini-Split SUSY
(Cui, JHEP 1312 (2013) 067)

Interesting (surprising) finding: successful baryogenesis
from minimal SUSY standard model (WIMP \tilde{B} decay)!

Sakharov#1: out-of equilibrium ✓

Split SUSY+ O(1) RPV: Natural long life-time of gauginos

Split spectrum $\mathcal{O}(100 - 1000) \text{TeV} \sim m_{\text{scalar}} \gg m_{\text{gaugino}} \sim \text{TeV} + \text{RPV}$

Late decay automatic! e.g. $\chi \rightarrow udd$ (heavy mediator, 3-body...)

$\tilde{B} \rightarrow \Delta B$!
Embedding in Mini-Split SUSY

★ Sakharov #2, #3 (CP-, B/L-violation) ✓
rich CPV sources in SUSY (e.g. Majorana gaugino masses), $\mathcal{B} (\mathcal{L})$ from RPV couplings (safer w/ heavy scalars)

★ WIMP parent χ for baryons with “would-be” over-abundance ✓: Bino \tilde{B}! (not desirable if it is DM in RPC SUSY...)

★ Nanopoulos-Weinberg Theorem for Baryogenesis:

additional \mathcal{B} source in the interference loop ✓
Another Majorana fermion in MSSM? \tilde{W}, \tilde{g}!

Minimal model (MSSM+RPV) gives everything needed for baryogenesis!
Embedding in Mini-split SUSY

- **Key processes:**

 Thermal annihilation:

 \[\tilde{B} \rightarrow \text{--} \rightarrow \text{--} H \]

 \[\tilde{B} \rightarrow \tilde{H} \rightarrow \text{--} \rightarrow \text{--} H^* \]

 Tree-level RPV decay:

 Interference loop:

 (RPC decays also included in analysis)
Numerical Results, examples

Include cosmological constraints: \(\Omega_{\Delta B} \) …

\[\text{mini-split: } m_{\text{scalar}} \sim O(100 - 1000) \text{TeV} \]

Figure 7: Cosmologically allowed regions of parameter space for (a) baryogenesis and (b) leptogenesis models. We set RPV couplings \(\lambda' = \lambda'' = 0.2, \phi = \frac{\pi}{2} \). Cyan region provides baryon abundance \(10^{-2} < \Omega_{\Delta B} < 4 \cdot 10^{-2} \).

In the case of leptogenesis the brown region is excluded by decay after EWPT at \(T_c \approx 100 \text{ GeV} \). The pink region is excluded by our simple basic assumption that bino decays after freezeout. Yellow region is excluded by requiring that washout processes are suppressed \((T_d < M_{\tilde{B}}) \). Yellow region is in fact all included in the pink region (so appear to be orange in the overlapped region).
Baryogenesis from Out-of-equilibrium Decays

— Collider Phenomenology

YC and Shuve, arxiv:1409.6729, JHEP

★ Strategy/results generally applicable to other new physics search via displaced vertices
Simplified Models

- Classify parity-invariant production modes (analogy to DM search @LHC!), e.g.

- Classify decay modes (unlike DM search), e.g.
Simplified Models

- Classify parity-invariant production modes (analogy to DM search @LHC!), e.g.

 Charged under SM gauge interactions:
 - wino/gluino-like (state in interference loop)

![Diagram](image)

- Classify decay modes (unlike DM search), e.g.
Simplified Models

- Classify parity-invariant production modes (analogy to DM search @LHC!), e.g.

 Charged under SM gauge interactions:
 wino/gluino-like (state in interference loop)

 $$g/W/Z$$

- Classify decay modes (unlike DM search), e.g.

 Higgs portal:
 singlet-like (e.g. $$M_\chi = 150 \text{ GeV}$$)
Simplified Models

- Classify parity-invariant production modes (analogy to DM search @LHC!), e.g.

Charged under SM gauge interactions:
- wino/gluino-like (state in interference loop)
 - fixed coupling, study mass reach

Higgs portal:
- singlet-like (e.g. $M_\chi = 150$ GeV)
 - fix mass, study coupling reach

- Classify decay modes (unlike DM search), e.g.
Simplified Models

- Classify parity-invariant production modes (analogy to DM search @LHC!), e.g.

 Charged under SM gauge interactions:
 - wino/gluino-like (state in interference loop)
 - fixed coupling, study mass reach

 ![Diagram showing charged state under SM gauge interactions](attachment:diagram.png)

- Classify decay modes (unlike DM search), e.g.

 Baryon number violating:
 \[\chi \rightarrow u_i d_j d_k \]

- **Higgs portal:**
 - singlet-like (e.g. \(M_\chi = 150 \text{ GeV} \))
 - fix mass, study coupling reach

 ![Diagram showing Higgs portal](attachment:diagram.png)
Simplified Models

- Classify parity-invariant production modes (analogy to DM search @LHC!), e.g.

 Charged under SM gauge interactions:
 - wino/gluino-like (state in interference loop)
 - fixed coupling, study mass reach

- Classify decay modes (unlike DM search), e.g.

 Baryon number violating:
 \[\chi \rightarrow u_i d_j d_k \]

 Higgs portal:
 - singlet-like (e.g. \(M_\chi = 150 \text{ GeV} \))
 - fix mass, study coupling reach

 Lepton number violating:
 \[\chi \rightarrow L_i Q_j \bar{d}_k \]
 \[\chi \rightarrow L_i L_j \bar{E}_k \]
Simplified Models

- Classify parity-invariant production modes (analogy to DM search @LHC!), e.g.

 Charged under SM gauge interactions:
 - wino/gluino-like (state in interference loop)
 - fixed coupling, study mass reach

 Higgs portal:
 - singlet-like (e.g. $M_\chi = 150$ GeV)
 - fix mass, study coupling reach

- Classify decay modes (unlike DM search), e.g.

 Baryon number violating:
 - $\chi \rightarrow u_i d_j d_k$

 Lepton number violating:
 - $\chi \rightarrow L_i Q_j \bar{d}_k$
 - $\chi \rightarrow L_i L_j \bar{E}_k$

Later comprehensive analyses in RPV SUSY: Liu, Tweedie 2015; Csaki et.al 2015; Zwanne 2015
Experimental Searches

• Focus on displaced decay in tracking volume
 - Near lower bound $c\tau_x \gtrsim \text{mm}$ & better sensitivity, easier to model!
 (decay in other parts of detector important too…)

24
Experimental Searches

• Focus on displaced decay in tracking volume
 - Near lower bound $c\tau_\chi \gtrsim \text{mm}$ & better sensitivity, easier to model!
 (decay in other parts of detector important too…)

• Two concrete examples (light-flavour only):

 Baryon number violating:
 $$\chi \rightarrow 3q$$
 displaced jets (all-hadronic)

 CMS, arXiv:1411.6530
Experimental Searches

• Focus on displaced decay in tracking volume
 - Near lower bound \(c\tau_\chi \gtrsim \text{mm} \) & better sensitivity, easier to model!
 (decay in other parts of detector important too…)

• Two concrete examples (light-flavour only):

 Baryon number violating:
 \[\chi \to 3q \]
 displaced jets (all-hadronic)
 CMS, arXiv:1411.6530

 Lepton number violating:
 \[\chi \to \ell + 2q \]
 displaced muon + hadrons
 ATLAS-CONF-2013-092
Experimental Searches

• Focus on displaced decay in tracking volume
 - Near lower bound \(c\tau \chi \gtrsim \text{mm} \) & better sensitivity, easier to model!
 (decay in other parts of detector important too…)

• Two concrete examples (light-flavour only):

 Baryon number violating:
 \[\chi \to 3q \]
 displaced jets (all-hadronic)
 CMS, arXiv:1411.6530

 Lepton number violating:
 \[\chi \to \ell + 2q \]
 displaced muon + hadrons
 ATLAS-CONF-2013-092

• Goal of our analysis:
 - What is the coverage for our simplified models based on benchmarks chosen by the collaborations?
 - What advice can we provide for general experimental improvement?
Fully hadronic displaced vertices

wino

8 TeV:

\[\sigma_{\chi\chi} \text{ CL (fb)} \]

- \[<L_{xy}> = 3 \text{ cm} \]
- \[<L_{xy}> = 30 \text{ cm} \]
- \[<L_{xy}> = 300 \text{ cm} \]
- \[\sigma_{\chi\chi} \text{ (NLO)} \]

CMS displaced dijet, arXiv:1411.6530
Fully hadronic displaced vertices

8 TeV:

![Graph showing wino production](image)

- wino → 3j, $\sqrt{s} = 8$ TeV
- $L_{xy} = 3$ cm
- $L_{xy} = 30$ cm
- $L_{xy} = 300$ cm
- $\sigma_{\chi \chi}$ (NLO)

(we study a challenging case: $M_\chi = 150$ GeV, moderately off-shell!)

CMS displaced dijet, arXiv:1411.6530

singlet-like (Higgs portal)

No bound @ 8 TeV 20 fb$^{-1}$!
Fully hadronic displaced vertices

wino

8 TeV:

\[\text{wino} \rightarrow 3j, \sqrt{s} = 8 \text{ TeV}\]

\[\begin{align*}
\langle L_{xy} \rangle &= 3 \text{ cm} \\
\langle L_{xy} \rangle &= 30 \text{ cm} \\
\langle L_{xy} \rangle &= 300 \text{ cm}
\end{align*}\]

\[\sigma_{\chi\chi} \text{ (NLO)}\]

\[\begin{align*}
\sigma_{\chi\chi} &\text{ 95\% CL (fb)} \\
M_{\chi} &\text{ (GeV)} \quad 200 \quad 400 \quad 600 \quad 800 \quad 1000
\end{align*}\]

No bound @ 8 TeV 20 fb\(^{-1}\)!

13 TeV:

\[\text{wino} \rightarrow 3j, \text{ 2 DV, luminosity for 3 events, } \sqrt{s} = 13 \text{ TeV}\]

\[\begin{align*}
2 \text{ DV} \\
1 \text{ DV, 10\% syst.} \\
1 \text{ DV, 30\% syst.}
\end{align*}\]

\[\begin{align*}
\text{luminosity (fb}^{-1}) \\
M_{\chi} &\text{ (GeV)} \quad 1000 \quad 1500 \quad 2000 \quad 2500
\end{align*}\]

\[\begin{align*}
m_{\chi} &= 150 \text{ GeV} \\
\lambda_{S\chi\chi} \sin(2\alpha) \quad 0.5 \quad 1.0 \quad 1.5 \quad 2.0
\end{align*}\]

(we study a challenging case: \(M_{\chi} = 150 \text{ GeV, moderately off-shell!}\))

singlet-like (Higgs portal)

CMS displaced dijet, arXiv:1411.6530
Displaced muon + hadrons

wino

wino $\rightarrow \mu +$ tracks, $\sqrt{s} = 8$ TeV

8 TeV

13 TeV: M~2.5 TeV
Displaced muon + hadrons

8 TeV

wino

\(\text{wino} \rightarrow \mu + \text{tracks} \), \(\sqrt{s} = 8 \text{ TeV} \)

- \(<L_{xy}> = 0.3 \text{ cm} \)
- \(<L_{xy}> = 3 \text{ cm} \)
- \(<L_{xy}> = 30 \text{ cm} \)
- \(\sigma_{\chi\chi} \) (NLO)

\[\sigma_{95\% \text{ CL}} \text{ (fb)} \]

\[\text{vs. } M_{\chi} \text{ (GeV)} \]

singlet (Higgs portal)

(singlet-like, \(M_{\chi} = 150 \text{ GeV} \))

No bound @ 8 TeV 20 fb\(^{-1}\)

- 13 TeV: \(\sigma_{S} \sim 10 \text{ ab for } L_{xy} \sim 1 \text{ cm}! \)

13 TeV:

\(M \sim 2.5 \text{ TeV} \)

Higgs portal \(\chi \rightarrow \mu + \text{tracks}, 1 \text{ DV, luminosity for 3 events, } \sqrt{s} = 13 \text{ TeV} \)

\[\text{luminosity (fb}\^{-1}) \]

\[\text{vs. } M_{\chi} \text{ (GeV)} \]

\[m_{\chi} = 150 \text{ GeV} \]

\[\text{luminosity (fb}\^{-1}) \]

\[\lambda_{S_{xy}} \sin(2\alpha) \]
Conclusion/Outlook-1

- A general conflict between RPV natural SUSY with prompt decay vs. conventional baryogenesis at $T \gtrapprox T_{EW}$

- Passive solution: suppress RPV \Rightarrow displaced stop (good coverage)

- Natural alternative: (new) baryogenesis at $T \lessapprox T_{EW}$

- WIMP baryogenesis ($\Omega_B (+)\Omega_B \sim \Omega_{DM}$) & RPV SUSY \Rightarrow displaced singlino/wino (sample high multiplicity DV, improve trigger/sensitivity for all-hadronic final states...)
• Baryogenesis from metastable weak scale particle decay:
 • A robust cosmological motivation for DV searches at the LHC
 • Exciting opportunity to reproduce the early universe BG @LHC! (cf. WIMP DM search)
• w/ATLAS displaced jets working group: working on implementing our simplified models as a benchmark example in official analysis w/LHC Run 2 data…