Renormalization of CP-odd operators of dimension ≤ 5

Vincenzo Cirigliano
Los Alamos National Laboratory

Outline

- BSM-induced CP violation at dimension 5
- Operator renormalization in RI-S̃OM scheme, suitable for lattice implementation
- Matching RI-S̃MOM and $\overline{M S}$ at one loop
- Future steps and conclusions

Collaborators:
Tanmoy Bhattacharya, Rajan Gupta, Emanuele Mereghetti, Boram Yoon, arXiv:150I.xxxx

BSM-induced CP violation at dimension 5

The CP-odd effective Lagrangian

- $\quad \mathcal{L}_{\text {eff }}$ below weak scale, including leading $(\operatorname{dim}=6) \Delta F=0$ BSM effects:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{eff}} & =\left.\mathcal{L}_{\mathrm{SM}}\right|_{m_{i}=0}-m_{i} \bar{\psi}_{L i} \psi_{R i}-m_{i}^{*} \bar{\psi}_{R i} \psi_{L i}-\frac{g^{2}}{32 \pi^{2}} \theta G \tilde{G} \\
& -\frac{v_{e w}}{2 \Lambda_{\mathrm{BSM}}^{2}} e\left(d_{i}^{(\gamma)} \bar{\psi}_{L i} \sigma_{\mu \nu} F^{\mu \nu} \psi_{R i}+d_{i}^{(\gamma) *} \bar{\psi}_{R i} \sigma_{\mu \nu} F^{\mu \nu} \psi_{L i}\right) \\
& -\frac{v_{e w}}{2 \Lambda_{\mathrm{BSM}}^{2}} g_{s}\left(d_{i}^{(g)} \bar{\psi}_{L i} \sigma_{\mu \nu} G^{\mu \nu} \psi_{R i}+d_{i}^{(g) *} \bar{\psi}_{R i} \sigma_{\mu \nu} G^{\mu \nu} \psi_{L i}\right) \\
& +\frac{d_{G}}{\Lambda_{\mathrm{BSM}}^{2}} f^{a b c} G_{\mu \nu}^{a} \tilde{G}^{\nu \beta, b} G_{\beta}^{\mu, c}+4-\text { quark operators }
\end{aligned}
$$

- Dim 4: CKM + "theta"-term
- Dim 5: quark EDM and CEDM
- Dim 6: gluon CEDM (Weinberg), 4-quark operators

The CP-odd effective Lagrangian

- $\quad \mathcal{L}_{\text {eff }}$ below weak scale, including leading $(\operatorname{dim}=6) \Delta F=0$ BSM effects:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{eff}} & =\left.\mathcal{L}_{\mathrm{SM}}\right|_{m_{i}=0}-m_{i} \bar{\psi}_{L i} \psi_{R i}-m_{i}^{*} \bar{\psi}_{R i} \psi_{L i}-\frac{g^{2}}{32 \pi^{2}} \theta G \tilde{G} \\
& -\frac{v_{e w}}{2 \Lambda_{\mathrm{BSM}}^{2}} e\left(d_{i}^{(\gamma)} \bar{\psi}_{L i} \sigma_{\mu \nu} F^{\mu \nu} \psi_{R i}+d_{i}^{(\gamma) *} \bar{\psi}_{R i} \sigma_{\mu \nu} F^{\mu \nu} \psi_{L i}\right) \\
& -\frac{v_{e w}}{2 \Lambda_{\mathrm{BSM}}^{2}} g_{s}\left(d_{i}^{(g)} \bar{\psi}_{L i} \sigma_{\mu \nu} G^{\mu \nu} \psi_{R i}+d_{i}^{(g) *} \bar{\psi}_{R i} \sigma_{\mu \nu} G^{\mu \nu} \psi_{L i}\right) \\
& +\frac{d_{G}}{\Lambda_{\mathrm{BSM}}^{2}} f^{a b c} G_{\mu \nu}^{a} \tilde{G}^{\nu \beta, b} G_{\beta}^{\mu, c}+4-\text { quark operators }
\end{aligned}
$$

- Focus on $\operatorname{dim} \leq 5$ operators:
- Phenomenological relevance of quark EDM \& CEDM
- dim=6 operators not needed to define finite dim=5 operators

The CP-odd effective Lagrangian

- $\quad \mathcal{L}_{\text {eff }}$ below weak scale, including leading $(\operatorname{dim}=6) \Delta \mathrm{F}=0$ BSM effects:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{eff}} & =\left.\mathcal{L}_{\mathrm{SM}}\right|_{m_{i}=0}-m_{i} \bar{\psi}_{L i} \psi_{R i}-m_{i}^{*} \bar{\psi}_{R i} \psi_{L i}-\frac{g^{2}}{32 \pi^{2}} \theta G \tilde{G} \\
& -\frac{v_{e w}}{2 \Lambda_{\mathrm{BSM}}^{2}} e\left(d_{i}^{(\gamma)} \bar{\psi}_{L i} \sigma_{\mu \nu} F^{\mu \nu} \psi_{R i}+d_{i}^{(\gamma) *} \bar{\psi}_{R i} \sigma_{\mu \nu} F^{\mu \nu} \psi_{L i}\right) \\
& -\frac{v_{e w}}{2 \Lambda_{\mathrm{BSM}}^{2}} g_{s}\left(d_{i}^{(g)} \bar{\psi}_{L i} \sigma_{\mu \nu} G^{\mu \nu} \psi_{R i}+d_{i}^{(g) *} \bar{\psi}_{R i} \sigma_{\mu \nu} G^{\mu \nu} \psi_{L i}\right) \\
& +\frac{d_{G}}{\Lambda_{\mathrm{BSM}}^{2}} f^{a b c} G_{\mu \nu}^{a} \tilde{G}^{\nu \beta, b} G_{\beta}^{\mu, c}+4-\text { quark operators }
\end{aligned}
$$

$$
\left[d_{E}\right]=\frac{v_{\mathrm{eW}}}{\Lambda_{\mathrm{BSM}}^{2}}\left(\begin{array}{ccc}
\operatorname{Im} d_{u}^{(\gamma)} & 0 & 0 \\
0 & \operatorname{Im} d_{d}^{(\gamma)} & 0 \\
0 & 0 & \operatorname{Im} d_{s}^{(\gamma)}
\end{array}\right) \quad\left[d_{M}\right]=\frac{v_{\mathrm{eW}}}{\Lambda_{\mathrm{BSM}}^{2}}\left(\begin{array}{ccc}
\operatorname{Re} d_{u}^{(\gamma)} & 0 & 0 \\
0 & \operatorname{Re} d_{d}^{(\gamma)} & 0 \\
0 & 0 & \operatorname{Re} d_{s}^{(\gamma)}
\end{array}\right)
$$

The CP-odd effective Lagrangian

- $\quad \mathcal{L}_{\text {eff }}$ below weak scale, including leading $(\operatorname{dim}=6) \Delta \mathrm{F}=0$ BSM effects:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{eff}} & =\left.\mathcal{L}_{\mathrm{SM}}\right|_{m_{i}=0}-m_{i} \bar{\psi}_{L i} \psi_{R i}-m_{i}^{*} \bar{\psi}_{R i} \psi_{L i}-\frac{g^{2}}{32 \pi^{2}} \theta G \tilde{G} \\
& -\frac{v_{e w}}{2 \Lambda_{\mathrm{BSM}}^{2}} e\left(d_{i}^{(\gamma)} \bar{\psi}_{L i} \sigma_{\mu \nu} F^{\mu \nu} \psi_{R i}+d_{i}^{(\gamma) *} \bar{\psi}_{R i} \sigma_{\mu \nu} F^{\mu \nu} \psi_{L i}\right) \\
& -\frac{v_{e w}}{2 \Lambda_{\mathrm{BSM}}^{2}} g_{s}\left(d_{i}^{(g)} \bar{\psi}_{L i} \sigma_{\mu \nu} G^{\mu \nu} \psi_{R i}+d_{i}^{(g) *} \bar{\psi}_{R i} \sigma_{\mu \nu} G^{\mu \nu} \psi_{L i}\right) \\
& +\frac{d_{G}}{\Lambda_{\mathrm{BSM}}^{2}} f^{a b c} G_{\mu \nu}^{a} \tilde{G}^{\nu \beta, b} G_{\beta}^{\mu, c}+4-\text { quark operators }
\end{aligned}
$$

$$
\left[d_{C E}\right]=\frac{v_{\mathrm{ew}}}{\Lambda_{\mathrm{BSM}}^{2}}\left(\begin{array}{ccc}
\operatorname{Im} d_{u}^{(g} & 0 & 0 \\
0 & \operatorname{Im} d_{d}^{(g)} & 0 \\
0 & 0 & \operatorname{Im} d_{s}^{(g)}
\end{array}\right) \quad\left[d_{C M}\right]=\frac{v_{\mathrm{ew}}}{\Lambda_{\mathrm{BSM}}^{2}}\left(\begin{array}{ccc}
\operatorname{Re} d_{u}^{(g)} & 0 & 0 \\
0 & \operatorname{Re} d_{d}^{(g)} & 0 \\
0 & 0 & \operatorname{Re} d_{s}^{(g)}
\end{array}\right)
$$

- After vacuum alignment (see Tanmoy Bhattacharya's talk)

$$
\delta \mathcal{L}_{C P V}=-\bar{\psi}[\delta \mathcal{M}] i \gamma_{5} \psi-\frac{i e}{2} \bar{\psi} \sigma_{\mu \nu} \gamma_{5} F^{\mu \nu}\left[D_{E}\right] Q \psi-\frac{i g_{s}}{2} \bar{\psi} \sigma_{\mu \nu} \gamma_{5} G^{\mu \nu}\left[D_{C E}\right] \psi
$$

$$
\uparrow \psi=\left(\begin{array}{l}
u \\
d \\
s
\end{array}\right)
$$

The derivation assumes that quark mass is the dominant source of explicit chiral symmetry breaking

- After vacuum alignment (see Tanmoy Bhattacharya's talk)

$$
\delta \mathcal{L}_{C P V}=-\bar{\psi}[\delta \mathcal{M}] i \gamma_{5} \psi-\frac{i e}{2} \bar{\psi} \sigma_{\mu \nu} \gamma_{5} F^{\mu \nu}\left[D_{E}\right] Q \psi-\frac{i g_{s}}{2} \bar{\psi} \sigma_{\mu \nu} \gamma_{5} G^{\mu \nu}\left[D_{C E}\right] \psi
$$

- No PQ mechanism

$$
\psi=\left(\begin{array}{l}
u \\
d \\
s
\end{array}\right)
$$

$$
\mathcal{M}=\left(\begin{array}{ccc}
m_{u} & 0 & 0 \\
0 & m_{d} & 0 \\
0 & 0 & m_{s}
\end{array}\right) \quad m_{*}=\frac{m_{s} m_{d} m_{u}}{m_{s}\left(m_{u}+m_{d}\right)+m_{u} m_{d}} \quad r=\frac{\left\langle\bar{\psi} \sigma^{\mu \nu} g_{s} G_{\mu \nu} \psi\right\rangle}{\langle\bar{\psi} \psi\rangle}
$$

- After vacuum alignment (see Tanmoy Bhattacharya's talk)

$$
\delta \mathcal{L}_{C P V}=-\bar{\psi}[\delta \mathcal{M}] i \gamma_{5} \psi-\frac{i e}{2} \bar{\psi} \sigma_{\mu \nu} \gamma_{5} F^{\mu \nu}\left[D_{E}\right] Q \psi-\frac{i g_{s}}{2} \bar{\psi} \sigma_{\mu \nu} \gamma_{5} G^{\mu \nu}\left[D_{C E}\right] \psi
$$

- No PQ mechanism

$$
\psi=\left(\begin{array}{l}
u \\
d \\
s
\end{array}\right)
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Both singlet } \\
\text { and } \\
\text { non-singlet }
\end{array} \\
& \begin{array}{r}
{[\delta \mathcal{M}]=m_{*}\left(\bar{\theta}-\frac{r}{2} \operatorname{Tr}\left[\mathcal{M}^{-1}\left(\left[d_{C E}\right]-m_{*} \bar{\theta} \mathcal{M}^{-1}\left[d_{C M}\right]\right)\right]\right)} \\
\\
+\frac{r}{2}\left(\left[d_{C E}\right]-m_{*} \bar{\theta} \mathcal{M}^{-1}\left[d_{C M}\right]\right) \\
{\left[D_{C E}\right]=\left[d_{C E}\right]-m_{*} \bar{\theta} \mathcal{M}^{-1}\left[d_{C M}\right]} \\
{\left[D_{E}\right]=\left[d_{E}\right]-m_{*} \bar{\theta} \mathcal{M}^{-1}\left[d_{M}\right]}
\end{array} \\
& \begin{array}{c}
\text { Mixture of } \\
\text { electric and } \\
\begin{array}{c}
\text { magnetic s.d. } \\
\text { couplings }
\end{array}
\end{array} \mathcal{M}=\left(\begin{array}{ccc}
m_{u} & 0 & 0 \\
0 & m_{d} & 0 \\
0 & 0 & m_{s}
\end{array}\right) \quad m_{*}=\frac{m_{s} m_{d} m_{u}}{m_{s}\left(m_{u}+m_{d}\right)+m_{u} m_{d}} \quad r=\frac{\left\langle\bar{\psi} \sigma^{\mu \nu} g_{s} G_{\mu \nu} \psi\right\rangle}{\langle\bar{\psi} \psi\rangle}
\end{aligned}
$$

- After vacuum alignment (see Tanmoy Bhattacharya's talk)

$$
\delta \mathcal{L}_{C P V}=-\bar{\psi}[\delta \mathcal{M}] i \gamma_{5} \psi-\frac{i e}{2} \bar{\psi} \sigma_{\mu \nu} \gamma_{5} F^{\mu \nu}\left[D_{E}\right] Q \psi-\frac{i g_{s}}{2} \bar{\psi} \sigma_{\mu \nu} \gamma_{5} G^{\mu \nu}\left[D_{C E}\right] \psi
$$

$$
\psi=\left(\begin{array}{l}
u \\
d \\
s
\end{array}\right)
$$

- Assume PQ mechanism

- After vacuum alignment (see Tanmoy Bhattacharya's talk)

$$
\delta \mathcal{L}_{C P V}=-\bar{\psi}[\delta \mathcal{M}] i \gamma_{5} \psi-\frac{i e}{2} \bar{\psi} \sigma_{\mu \nu} \gamma_{5} F^{\mu \nu}\left[D_{E}\right] Q \psi-\frac{i g_{s}}{2} \bar{\psi} \sigma_{\mu \nu} \gamma_{5} G^{\mu \nu}\left[D_{C E}\right] \psi
$$

- To compute $\mathrm{d}_{\mathrm{n}, \mathrm{p}}\left(\mathrm{d}_{\mathrm{E}}, \mathrm{d}_{\mathrm{CE}}\right)$, need nucleon matrix elements of

$$
\begin{aligned}
& P=\bar{\psi} i \gamma_{5} t^{a} \psi \\
& E=i e \bar{\psi} \sigma_{\mu \nu} \gamma_{5} F^{\mu \nu} Q t^{a} \psi \\
& C=i g_{s} \bar{\psi} \sigma_{\mu \nu} \gamma_{5} G^{\mu \nu} t^{a} \psi
\end{aligned}
$$

- Need renormalization of P, E, and C in a scheme that can be implemented non-perturbatively, e.g. in lattice QCD

Operator renormalization in RI-S̃MOM scheme

Renormalization: generalities

- P: dim=3 quark bilinear, renormalizes multiplicatively
- E: tensor quark bilinear $\times \mathrm{EM}$ field strength. Neglecting effects of $O\left(\alpha_{\mathrm{EM}}\right)$, E renormalizes multiplicatively (as tensor density)

Non-perturbative renormalization well known

Renormalization: generalities

- P: dim=3 quark bilinear, renormalizes multiplicatively
- E: tensor quark bilinear $\times \mathrm{EM}$ field strength. Neglecting effects of $O\left(\alpha_{\mathrm{EM}}\right)$, E renormalizes multiplicatively (as tensor density)

- C: self-renormalization + mixing with E and P

Even richer mixing structure in subtraction schemes that involve off-shell quarks/gluons and non-zero momentum injection at vertex

Operator basis (I)

- $C=i g_{s} \bar{\Psi} \sigma_{\mu v} \gamma_{5} G^{\mu \nu} \mathrm{t}^{\mathrm{a}} \Psi$ can mix with two classes of operators:

$$
\binom{O}{N}_{\mathrm{ren}}=\left(\begin{array}{cc}
Z_{O} & Z_{O N} \\
0 & Z_{N}
\end{array}\right)\binom{O}{N}_{\mathrm{bare}}
$$

- O: gauge-invariant operators with same symmetry properties of C , not vanishing by equations of motion (EOM)
- N : operators allowed by solution of BRST Ward Identities. Vanish by EOM, need not be gauge invariant.
Needed to extract Z_{0}, but do not affect physical matrix elements

Operator basis (II)

- Flavor structure of operators: use "spurion" method
- $\mathcal{L}_{\mathrm{QED}}+\mathcal{L}_{\mathrm{QCD}}-\mathrm{i}\left(\mathrm{g}_{\mathrm{s}} / 2\right) \bar{\Psi} \sigma_{\mu v} \gamma_{5} \mathrm{G}^{\mu \nu}\left[\mathrm{D}_{\mathrm{CE}}\right] \Psi$ invariant under

- Allow only invariant operators, and eventually set

$$
\left[D_{C E}\right] \rightarrow t^{a} \quad(a=0,3,8) \quad t^{0}=\frac{1}{\sqrt{6}} I_{3 \times 3}, \quad t^{3,8}=\frac{\lambda^{3,8}}{2}
$$

Operator basis (III)

- Dimension-3: I operator

$$
O^{(3)} \equiv P=\bar{\psi} i \gamma_{5} t^{a} \psi
$$

- Dimension-4: no operators if chiral symmetry is respected
- Dimension-5: $10+4$ operators

$$
\begin{aligned}
& O_{1}^{(5)} \equiv C=i g \bar{\psi} \tilde{\sigma}^{\mu \nu} G_{\mu \nu} t^{a} \psi \\
& O_{2}^{(5)} \equiv \partial^{2} P=\partial^{2}\left(\bar{\psi} i \gamma_{5} t^{a} \psi\right) \\
& O_{3}^{(5)} \equiv E=\frac{i e}{2} \bar{\psi} \tilde{\sigma}^{\mu \nu} F_{\mu \nu}\left\{Q, t^{a}\right\} \psi \\
& \tilde{\sigma}^{\mu \nu} \equiv \frac{1}{2}\left(\sigma^{\mu \nu} \gamma_{5}+\gamma_{5} \sigma^{\mu \nu}\right)
\end{aligned}
$$

Operator basis (III)

- Dimension-3: I operator

$$
O^{(3)} \equiv P=\bar{\psi} i \gamma_{5} t^{a} \psi
$$

- Dimension-4: no operators if chiral symmetry is respected
- Dimension-5: $10+4$ operators

$$
\begin{aligned}
O_{4}^{(5)} & \equiv(m F \tilde{F})=\operatorname{Tr}\left[\mathcal{M} Q^{2} t^{a}\right] \frac{1}{2} \epsilon^{\mu \nu \alpha \beta} F_{\mu \nu} F_{\alpha \beta} \\
O_{5}^{(5)} & \equiv(m G \tilde{G})=\operatorname{Tr}\left[\mathcal{M} t^{a}\right] \frac{1}{2} \epsilon^{\mu \nu \alpha \beta} G_{\mu \nu}^{b} G_{\alpha \beta}^{b} \\
O_{6}^{(5)} & \equiv(m \partial \cdot A)_{1}=\operatorname{Tr}\left[\mathcal{M} t^{a}\right] \partial_{\mu}\left(\bar{\psi} \gamma^{\mu} \gamma_{5} \psi\right) \\
O_{7}^{(5)} & \equiv(m \partial \cdot A)_{2}=\frac{1}{2} \partial_{\mu}\left(\bar{\psi} \gamma^{\mu} \gamma_{5}\left\{\mathcal{M}, t^{a}\right\} \psi\right)-\operatorname{trace}
\end{aligned}
$$

Operator basis (III)

- Dimension-3: I operator

$$
O^{(3)} \equiv P=\bar{\psi} i \gamma_{5} t^{a} \psi
$$

- Dimension-4: no operators if chiral symmetry is respected
- Dimension-5: $10+4$ operators

$$
\begin{aligned}
& O_{8}^{(5)} \equiv\left(m^{2} P\right)_{1}=\frac{1}{2} \bar{\psi} i \gamma_{5}\left\{\mathcal{M}^{2}, t^{a}\right\} \psi \\
& O_{9}^{(5)} \equiv\left(m^{2} P\right)_{2}=\operatorname{Tr}\left[\mathcal{M}^{2}\right] \bar{\psi} i \gamma_{5} t^{a} \psi \\
& O_{10}^{(5)} \equiv\left(m^{2} P\right)_{3}=\operatorname{Tr}\left[\mathcal{M} t^{a}\right] \bar{\psi} i \gamma_{5} \mathcal{M} \psi
\end{aligned}
$$

Operator basis (III)

- Dimension-3: I operator

$$
O^{(3)} \equiv P=\bar{\psi} i \gamma_{5} t^{a} \psi
$$

- Dimension-4: no operators if chiral symmetry is respected
- Dimension-5: $10+4$ operators

$$
\begin{aligned}
O_{11}^{(5)} & \equiv P_{E E}=i \bar{\psi}_{E} \gamma_{5} t^{a} \psi_{E} \\
O_{12}^{(5)} & \equiv \partial \cdot A_{E}=\partial_{\mu}\left[\bar{\psi}_{E} \gamma^{\mu} \gamma_{5} t^{a} \psi+\bar{\psi} \gamma^{\mu} \gamma_{5} t^{a} \psi_{E}\right] \\
O_{13}^{(5)} & \equiv A_{\partial}=\bar{\psi} \gamma_{5} \not \partial t^{a} \psi_{E}-\bar{\psi}_{E} \overleftarrow{\not \partial} \gamma_{5} t^{a} \psi \\
O_{14}^{(5)} & \equiv A_{A(\gamma)}=\frac{i e}{2}\left(\bar{\psi}\left\{Q, t^{a}\right\} A^{(\gamma)} \gamma_{5} \psi_{E}-\bar{\psi}_{E}\left\{Q, t^{a}\right\} A^{(\gamma)} \gamma_{5} \psi\right)
\end{aligned}
$$

Mixing structure

	C	$\partial^{2} P$	E	$m F \tilde{F}$	$m G \tilde{G}$	$(m \partial \cdot A)_{1}$	$(m \partial \cdot A)_{2}$	$\left(m^{2} P\right)_{1}$	$\left(m^{2} P\right)_{2}$	$\left(m^{2} P\right)_{3}$	$P_{E E}$	$\partial \cdot A_{E}$	A_{θ}	$A_{A}(\gamma)$
C	x	x	x	x	x	x	x	x	x	x	x	x	x	x
$\partial^{2} P$		x												
E		x												
$m F \tilde{F}$			x											
$m G \tilde{G}$				x	x									
$(m \partial \cdot A)_{1}$					x									
$(m \partial \cdot A)_{2}$						x								
$\left(m^{2} P\right)_{1}$							x							
$\left(m^{2} \hat{P}\right)_{2}$								x						
$\left(m^{2} \hat{P}\right)_{3}$									x					
$P_{E E}$										x	x	x	x	
$\partial^{2} \cdot A_{E}$											x			
A_{θ}										x	x	x	x	
$A_{A(\gamma)}$													x	

Valid in any scheme \Leftarrow dimensional analysis, momentum injection, EOM

Mixing structure

	C	$\partial^{2} P$	E	$m F \tilde{F}$	$m G \tilde{G}$	$(m \partial \cdot A)_{1}$	$(m \partial \cdot A)_{2}$	$\left(m^{2} P\right)_{1}$	$\left(m^{2} P\right)_{2}$	$\left(m^{2} P\right)_{3}$	$P_{E E}$	$\partial \cdot A_{E}$	A_{∂}	$A_{A^{(\gamma)}}$
C	X	X	X	X	X	X	X	X	X	X	X	X	X	X
$\partial^{2} P$		X												
E			X											
$m F \tilde{F}$				X										
$m G \tilde{G}$					X	X								
$(m \partial \cdot A)_{1}$						X								
$(m \partial \cdot A)_{2}$							X							
$\left(m^{2} P\right)_{1}$								X						
$\left(m^{2} \hat{P}\right)_{2}$									X					
$\left(m^{2} \hat{P}\right)_{3}$										X				
$P_{E E}$											X	X	X	X
$\partial \cdot A_{E}$												X		
A_{∂}											X	X	X	X
$A_{A(\gamma)}$														X

Physically relevant block Z_{o}

Mixing structure

- To identify $\left[Z_{o}\right]_{\mathrm{ij}}$, need to study the following Green's functions:

$\mathrm{O}_{5}^{(5)}=\mathrm{mG} \widetilde{G}$

$\mathrm{O}_{\mathrm{n}}^{(5)}$
$n=2,3,6-10$

Renormalization schemes

- $\overline{\mathrm{MS}}$ scheme: use dim-reg and subtract poles in I/(d-4)
- Simple, widely used in calculations of Wilson coefficients
- Subtlety: need to specify scheme for γ_{5}
- NDR: $\left\{\gamma_{\mu}, \gamma_{5}\right\}=0 \quad \forall \mu$
- HV: $\left\{\gamma_{\mu}, \gamma_{5}\right\}=0$ for $\mu=0-3$, otherwise $\left[\gamma_{\mu}, \gamma_{5}\right]=0$

Renormalization schemes

- $\overline{\mathrm{MS}}$ scheme: use dim-reg and subtract poles in I/(d-4)
- Simple, widely used in calculations of Wilson coefficients
- Subtlety: need to specify scheme for γ_{5}
- NDR: $\left\{\gamma_{\mu}, \gamma_{5}\right\}=0 \quad \forall \mu$
- HV: $\left\{\gamma_{\mu}, \gamma_{5}\right\}=0$ for $\mu=0-3$, otherwise $\left[\gamma_{\mu}, \gamma_{5}\right]=0$
- RI-SMOM class of schemes: fix finite parts by conditions on quark and gluon amputated Green's functions in a given gauge, at nonexceptional momentum configurations, such as

- Regularization independent: can be implemented on the lattice

RI-S̃MOM scheme

- Require conditions on $\mathrm{C}(\mathrm{I} 4), \mathrm{mG} \widetilde{\mathrm{G}}(2), \mathrm{O}_{2,3,6-10}$ (one each)

RI-S̃MOM scheme

- Require conditions on C (14), $\mathrm{mG} \widetilde{\mathrm{G}}(2), \mathrm{O}_{2,3,6-10}$ (one each)
- On the lattice, first subtract power-divergence ($\mathrm{C} \leftrightarrow \mathrm{P}$ mixing) :

$$
C^{L} \rightarrow C=C^{L}-Z_{C-P} P
$$

RI-S̃MOM scheme

- Require conditions on $C(14), m G \widetilde{G}(2), \mathrm{O}_{2,3,6-10}$ (one each)
- Conditions on C: amputated 2-pt functions

$$
\begin{array}{cc}
* * & \gamma_{5} t^{\mathrm{a}}, \quad \sigma_{\mu v} \gamma_{5} \mathrm{P}^{\mu} \mathrm{P}^{\prime v} \mathrm{t}^{\mathrm{a}}, \quad q^{\mu} \gamma_{\mu} \gamma_{5} M \mathrm{t}^{\mathrm{a}}, \quad q^{\mu} \gamma_{\mu} \gamma_{5} \operatorname{Tr}\left[M \mathrm{t}^{\mathrm{a}}\right], \\
\gamma_{5} M^{2} \mathrm{t}^{\mathrm{a}}, \quad \gamma_{5} \mathrm{t}^{\mathrm{a}} \operatorname{Tr}\left[M^{2}\right], \quad \gamma_{5} M \operatorname{Tr}\left[M \mathrm{t}^{\mathrm{a}}\right]
\end{array}
$$

RI-S̃MOM scheme

- Require conditions on $C(14), m G \widetilde{G}(2), \mathrm{O}_{2,3,6-10}$ (one each)
- Conditions on C: amputated 2-pt functions

Coefficients of 7 spin-flavor structures**

I condition for gluons,
I condition for photons

RI-S̃MOM scheme

- Require conditions on C (14), $\mathrm{mG} \mathbb{G}(2), \mathrm{O}_{2,3,6-10}$ (one each)
- Conditions on C : amputated 3-pt functions (q-q-gluon)

[^0]
RI-S̃MOM scheme

- Require conditions on $C(14), m G \widetilde{G}(2), \mathrm{O}_{2,3,6-10}$ (one each)
- Conditions on C: amputated 3-pt functions (q-q-gluon)

\widetilde{S} point: can't have $s=u=t=-\Lambda^{2}$ but $\mathrm{s}=\mathrm{u}=-\Lambda^{2}$ and conditions on 2 pt function eliminate non-IPI diagrams

RI-S̃MOM scheme

- Require conditions on $C(14), m G \widetilde{G}(2), \mathrm{O}_{2,3,6-10}$ (one each)
- Conditions on C: amputated 3-pt functions (q-q-photon)

Kinematics:

$$
\begin{aligned}
& s=(p+q)^{2} \\
& u=(p-k)^{2} \\
& t=\left(p-p^{\prime}\right)^{2}
\end{aligned}
$$

${ }^{*} * 2$ spin-flavor structures: $\sigma_{\mu v} \gamma_{5} \mathrm{k}^{\vee} \mathrm{t}^{\mathrm{a}}, \quad \gamma_{5}\left(\mathrm{p}^{+} \mathrm{p}^{\prime}\right){ }_{\mu} \mathrm{t}^{\mathrm{a}}$

RI-S̃MOM scheme

- Require conditions on $\mathrm{C}(\mathrm{I} 4), \mathrm{mG} \widetilde{\mathrm{G}}(2), \mathrm{O}_{2,3,6-10}$ (one each)
- Conditions on (mGG): amputated 2-pt functions

I condition

RI-S̃MOM scheme

- Require conditions on $\mathrm{C}(14), \mathrm{mG} \widetilde{\mathrm{G}}(2), \mathrm{O}_{2,3,6-10}$ (one each)
- Conditions on $E,(m \partial A)_{1,2}$ and $\left(m^{2} P\right)_{1,2,3}$ amputated 2-pt functions

Conditions are equivalent to RI-SMOM conditions on $\mathrm{A}, \mathrm{P}, \mathrm{T}$

Matching RI-S̃MOM and MS at one loop

One-loop calculations

- Insertions of C

$$
\begin{gathered}
Z_{\ln } \\
n=2,6-10, I I-13
\end{gathered}
$$

Z_{15}

One-loop calculations

- Insertions of $\mathrm{mG} \widetilde{G}$

Z_{55}, Z_{56}
- Insertions of $\mathrm{E} \sim \mathrm{T},(\mathrm{m} \partial \mathrm{A})_{1,2}$ and $\left(\mathrm{m}^{2} \mathrm{P}\right)_{1,2,3}$

$$
Z_{n n} \quad n=2,3,6-10
$$

One-loop calculations

- Schematic form of all I-loop results

$$
\Gamma=\sum_{i}(\text { spin } \otimes \text { flavor })_{i}\left[d_{i}(\xi)\left(\frac{2}{4-d}+\log \frac{\mu^{2}}{\Lambda^{2}}\right)+f_{i}(\xi)\right]
$$

Depends on scheme adopted for γ_{5} (HV, NDR)
Time-consuming part of the calculation
Work in covariant gauge: Landau gauge $(\xi=0)$ can be implemented on the lattice

- Determine Z_{o}

$$
\begin{aligned}
Z_{i j}^{\overline{\mathrm{MS}}} & =\delta_{i j}+\frac{1}{\epsilon} \frac{\alpha_{s}}{4 \pi} z_{i j} \\
Z_{i j}^{\mathrm{RI}-\tilde{\mathrm{SMOM}}} & =\delta_{i j}+\frac{\alpha_{s}}{4 \pi}\left[\frac{z_{i j}}{\epsilon}+c_{i j}\right]
\end{aligned}
$$

One-loop calculations

- Schematic form of all I-loop results

$$
\Gamma=\sum_{i}(\operatorname{spin} \otimes \text { flavor })_{i}\left[d_{i}(\xi)\left(\frac{2}{4-d}+\log \frac{\mu^{2}}{\Lambda^{2}}\right)+f_{i}(\xi)\right]
$$

Depends on scheme adopted for $\gamma_{5}(H V, N D R)$
Time-consuming part of the calculation
Work in covariant gauge: Landau gauge $(\xi=0)$ can be implemented on the lattice

- Determine Z_{o}

$$
\begin{aligned}
Z_{i j}^{\overline{\mathrm{MS}}} & =\delta_{i j}+\frac{1}{\epsilon} \frac{\alpha_{s}}{4 \pi} Z_{i j} \\
Z_{i j}^{\mathrm{RI}-\tilde{\mathrm{SMOM}}} & =\delta_{i j}+\frac{\alpha_{s}}{4 \pi}\left[\frac{z_{i j}}{\epsilon}+c_{i j}\right]^{\swarrow \text {-independent }}
\end{aligned}
$$

One-loop results (I)

- Z in $\overline{M S}$

$$
\begin{aligned}
z_{11} & =5 C_{F}-2 C_{A} \\
z_{12} & =0 \\
z_{13} & =4 C_{F} \\
z_{14} & =0 \\
z_{15} & =-2 \\
z_{16} & =C_{F}-\frac{1}{4} C_{A} \\
z_{17} & =3 C_{F}-\frac{3}{4} C_{A} \\
z_{18} & =6 C_{F}+\frac{3}{2} C_{A} \\
z_{19} & =0 \\
z_{1,10} & =0
\end{aligned}
$$

$$
\begin{aligned}
& z_{22}=-3 C_{F} \\
& z_{33}=C_{F} \\
& z_{44}=3 C_{F} \\
& z_{55}=-\frac{11 C_{A}-4 T_{F} n_{F}}{3}+3 C_{F} \\
& z_{56}=6 C_{F} \\
& z_{66}=z_{77}=z_{88}=z_{99}=z_{10,10}=3 C_{F}
\end{aligned}
$$

$$
C_{F}=\frac{N_{C}^{2}-1}{2 N_{C}} \quad C_{A}=N_{C} \quad T_{F}=\frac{1}{2}
$$

One-loop results (II)

- C-matrix connecting $\overline{M S}$ and RI-SMOM

$$
O_{i}^{\mathrm{RI}-\tilde{\mathrm{S} M O M}}=C_{i j} O_{j}^{\overline{\mathrm{MS}}}
$$

$$
C_{i j}=\left(Z^{\mathrm{RI}-\tilde{\mathrm{S} M O M}} \cdot\left(Z^{\overline{\mathrm{MS}}}\right)^{-1}\right)_{i j} \equiv \delta_{i j}+\frac{\alpha_{s}}{4 \pi} c_{i j}
$$

One-loop results (II)

- C-matrix connecting $\overline{\mathrm{MS}}$ and RI-S̃MOM

$$
\begin{aligned}
& c_{11}=\frac{C_{A}(23+9 \xi)-32 C_{F}}{12} \psi+\frac{C_{A}-2 C_{F}}{2}(1-\xi) K-\frac{C_{A}-2 C_{F}}{2}(1+\xi) \log 2 \\
& +\frac{10}{9} n_{F} T_{F}+C_{F}\left(\frac{31}{3}-\frac{1}{2} \xi\right)+\frac{C_{A}}{72}\left(-646-36 \xi+9 \xi^{2}\right) \\
& c_{12}=\left(4 C_{F}-\frac{C_{A}}{6}(3+\xi)\right) \psi+\left(C_{A}-2 C_{F}\right)(1-\xi) K+\left(C_{A}-2 C_{F}\right)(1+\xi) \log 2 \\
& +C_{F}(2-\xi)+\frac{C_{A}}{4}(-5+2 \xi) \\
& c_{13}=\left(-\frac{8}{3} C_{F}+\frac{C_{A}}{12}(3+\xi)\right) \psi-\frac{1}{2}\left(C_{A}-2 C_{F}\right)(1-\xi) K-\frac{1}{2}\left(C_{A}-2 C_{F}\right)(1+\xi) \log 2 \\
& +C_{F}\left(\frac{25}{3}+\frac{1}{2} \xi\right)+\frac{C_{A}}{8}(5-2 \xi) \\
& c_{14}=0 \\
& c_{15}=-4 \\
& c_{16}=3 c_{17} \\
& c_{17}=\frac{C_{A} \xi}{6} \psi+\left(C_{A}-2 C_{F}\right)(1-\xi) K-\frac{1}{2}\left(C_{A}-2 C_{F}\right)(1-\xi) \log 2 \\
& +C_{F}(8-\xi)+C_{A}\left(-\frac{13}{4}+\frac{1}{2} \xi\right) \\
& c_{18}=\frac{8 C_{F}-C_{A}(1+\xi)}{2} \psi-\left(C_{A}-2 C_{F}\right)(1-\xi) K+2\left(C_{A}-2 C_{F}\right) \log 2 \\
& +C_{F}\left(\frac{10}{3}+\xi\right)+C_{A}\left(\frac{21}{4}-\frac{1}{2} \xi\right) \\
& c_{19}=0 \\
& c_{22}=c_{88}=c_{99}=c_{10,10}=\frac{C_{F}}{2}(3+\xi) \psi-C_{F}(12+\xi) \\
& c_{33}=C_{F}\left[(1-\xi)\left(\frac{4}{3}-\frac{1}{2} \psi\right)+\xi\right] \\
& c_{55}=2 C_{A}\left(1+\frac{1}{3} \xi\right) \psi+\frac{C_{A}}{36}\left(-403-18 \xi+9 \xi^{2}\right)+\frac{20}{9} n_{F} T_{F} \\
& c_{56}=-2 C_{F}(3+2 \psi) \\
& c_{66}=c_{77}=-4 C_{F} \\
& \text { Loop expressed in terms of Ist } \\
& \text { derivatives of Digamma function: } \\
& \psi=\frac{2}{3}\left(\psi^{(1)}\left(\frac{1}{3}\right)-\frac{2}{3} \pi^{2}\right) \\
& K=\frac{1}{8}\left(\psi^{(1)}\left(\frac{1}{4}\right)-\pi^{2}\right) \\
& c_{1,10}=0
\end{aligned}
$$

Impact on phenomenology

- Goal: evaluate hadronic CP-odd couplings from

$$
\left(\delta \mathcal{L}_{C P V} \sim c_{P}^{\overline{\mathrm{MS}}} P^{\overline{\mathrm{MS}}}+c_{E}^{\overline{\mathrm{MS}}} E^{\overline{\mathrm{MS}}}+c_{C E}^{\overline{\mathrm{MS}}} C^{\overline{\mathrm{MS}}}\right.
$$

Impact on phenomenology

- Goal: evaluate hadronic CP-odd couplings from

$$
\left(\delta \mathcal{L}_{C P V} \sim c_{P}^{\overline{\mathrm{MS}}} P^{\overline{\mathrm{MS}}}+c_{E}^{\overline{\mathrm{MS}}} E^{\overline{\mathrm{MS}}}+c_{C E}^{\overline{\mathrm{MS}}} C^{\overline{\mathrm{MS}}}\right.
$$

$$
O_{i}^{\overline{\mathrm{MS}}}=\left[C^{-1}\right]_{i j} O_{j}^{\mathrm{RI}-\text { SूMOM }}
$$

Corrections range from few \% to > 30%

Impact on phenomenology

- Goal: evaluate hadronic CP-odd couplings from

$$
\left(\delta \mathcal{L}_{C P V} \sim c_{P}^{\overline{\mathrm{MS}}} P^{\overline{\mathrm{MS}}}+c_{E}^{\overline{\mathrm{MS}}} E^{\overline{\mathrm{MS}}}+c_{C E}^{\overline{\mathrm{MS}}} C^{\overline{\mathrm{MS}}}\right.
$$

$$
O_{i}^{\overline{\mathrm{MS}}}=\left[C^{-1}\right]_{i j} O_{j}^{\mathrm{RI}-\text { S̃MOM }}
$$

$c_{P}^{\overline{\mathrm{MS}}} C_{P}^{-1} P^{\mathrm{RI}-\tilde{\mathrm{S} M O M}}+c_{E}^{\overline{\mathrm{MS}}} C_{T}^{-1} E^{\mathrm{RI}-\tilde{\mathrm{S} M O M}}+c_{C E}^{\overline{\mathrm{MS}}} \sum_{n} C_{1 n}^{-1} O_{n}^{\mathrm{RI}-\tilde{\mathrm{SMOM}}}$

$$
n=1,3,5,8-10
$$

Only C, E, mG $\widetilde{G},\left(\mathrm{~m}^{2} \mathrm{P}\right)_{1,2,3}$ contribute to $\langle n| J_{\mathrm{EM}}^{\mu} \int d^{4} x O_{i}(x)|n\rangle$ Need tensor charge (E) + P, C insertions

Steps towards LQCD implementation

- Neutron EDM from quark EDM (E): tensor charge (see B. Mon' talk)
- Neutron EDM from quark CEDM operator (C):
I. Carry out non-perturbative renormalization: requires qq, gg, qqg correlation functions with insertion of $\mathrm{O}_{\mathrm{i}}, \mathrm{i}=\mathrm{I}, \mathrm{l} 4$.

2. Extract CPV form factor: tensor charge + correlation of P and C with Jam in the nucleon

$$
\langle n| J_{\mathrm{EM}}^{\mu} \int d^{4} x O_{i}(x)|n\rangle
$$

Conclusions

- Defined RI-S̃MOM scheme for CEDM and other CP-odd operators of $\operatorname{dim} \leq 5$, suitable for implementation in LQCD
- Computed one-loop matching factors between $\overline{M S}$ and RI-S̃MOM
- First step towards LQCD calculation of $\mathrm{d}_{\mathrm{n}}\left(\mathrm{d}_{\mathrm{CE}}\right)$. Future work:
- Exploratory studies on the lattice, estimate resources
- CMDM renormalization (vs CEDM), relevant to the extraction π NN CP-odd couplings
- Look at dim-6 operators

Backup slides

Axial Ward Identities

- In a given scheme, operators satisfy renormalized PCAC relation

$$
\bar{C}_{1}\left(g^{2}\right)[\partial \cdot A]=\bar{C}_{2}\left(g^{2}\right) 2 i[m P]+\bar{C}_{3}\left(g^{2}\right) \frac{n_{F}}{16 \pi^{2}}\left[g^{2} G \tilde{G}\right]+i P_{E}
$$

$$
A_{\mu}=\bar{\psi}(1 / 2)\left[\gamma_{\mu}, \gamma_{5}\right] \psi \quad(m P) \equiv \bar{\psi} \mathcal{M} \gamma_{5} \psi \quad P_{E}=\bar{\psi}_{E} \gamma_{5} \psi+\bar{\psi} \gamma_{5} \psi_{E}
$$

Axial Ward Identities

- In a given scheme, operators satisfy renormalized PCAC relation

$$
\begin{aligned}
& \bar{C}_{1}\left(g^{2}[\partial \cdot A]=\bar{C}_{2}\left(g^{2}\right) 2 i[m P]+\bar{C}_{3}\left(g^{2}\right) \frac{n_{F}}{16 \pi^{2}}\left[g^{2} G \tilde{G}\right]+i P_{E}\right. \\
& A_{\mu}=\bar{\psi}(1 / 2)\left[\gamma_{\mu}, \gamma_{5}\right] \psi \quad(m P) \equiv \bar{\psi} \mathcal{M} \gamma_{5} \psi \quad P_{E}=\bar{\psi}_{E} \gamma_{5} \psi+\bar{\psi} \gamma_{5} \psi_{E}
\end{aligned}
$$

- $\overline{\mathrm{C}}_{\mathrm{i}}\left(\mathrm{g}^{2}\right) \neq \mathrm{I}$ are finite coefficients related to Z_{ij} and α, β, γ

$$
\bar{X}=X+\alpha \partial \cdot A+\beta 2 i(m P)+\gamma G \tilde{G}
$$

Evanescent operator: its insertions vanish when

$$
X=\frac{1}{2} \bar{\psi}\left\{\gamma_{5}, \vec{D}-\overleftarrow{D}\right\} \psi
$$

Explicit form of X in dim-reg
removing regulator
α, β, γ calculable (non)-perturbatively

Axial Ward Identities

- In a given scheme, operators satisfy renormalized PCAC relation

$$
A_{\mu}=\bar{\psi}(1 / 2)\left[\gamma_{\mu}, \gamma_{5}\right] \psi \quad(m P) \equiv \bar{\psi} \mathcal{M} \gamma_{5} \psi \quad P_{E}=\bar{\psi}_{E} \gamma_{5} \psi+\bar{\psi} \gamma_{5} \psi_{E}
$$

Finite rescaling leads to properly normalized WI

$$
\begin{aligned}
{\left[A^{\mu}\right]_{\mathrm{WI}} } & =\bar{C}_{1}\left(g^{2}\right)\left[A^{\mu}\right] \\
{[m P]_{\mathrm{WI}} } & =\bar{C}_{2}\left(g^{2}\right)[m P] \\
{\left[g^{2} G \tilde{G}\right]_{\mathrm{WI}} } & =\bar{C}_{3}\left(g^{2}\right)\left[g^{2} G \tilde{G}\right]
\end{aligned}
$$

$$
\partial \cdot[A]_{\mathrm{WI}}=2 i[m P]_{\mathrm{WI}}+\frac{n_{F}}{16 \pi^{2}}\left[g^{2} G \tilde{G}\right]_{\mathrm{WI}}+i P_{E}
$$

$[m P]_{\mathrm{WI}}\left[g^{2} G \tilde{G}\right]_{\mathrm{WI}}$ have no anomalous dimension, while $\quad \gamma_{A_{W I}}=\frac{\alpha_{s}}{4 \pi} \gamma_{G \tilde{G}, \partial \cdot A}$

Axial Ward Identities

- In a given scheme, operators satisfy renormalized PCAC relation

$$
A_{\mu}=\bar{\psi}(1 / 2)\left[\gamma_{\mu}, \gamma_{5}\right] \psi \quad(m P) \equiv \bar{\psi} \mathcal{M} \gamma_{5} \psi \quad P_{E}=\bar{\psi}_{E} \gamma_{5} \psi+\bar{\psi} \gamma_{5} \psi_{E}
$$

- Explicit scheme-dependent rescaling:

$$
\begin{aligned}
& \bar{C}_{1}=1-4 C_{F} \frac{\alpha_{s}}{4 \pi}+O\left(\alpha_{s}^{2}\right) \\
& \bar{C}_{2}=1-8 C_{F} \frac{\alpha_{s}}{4 \pi}+O\left(\alpha_{s}^{2}\right) \\
& \bar{C}_{3}=1+O\left(\alpha_{s}^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \bar{C}_{1}=1+O\left(\alpha_{s}^{2}\right) \\
& \bar{C}_{2}=1+O\left(\alpha_{s}^{2}\right) \\
& \bar{C}_{3}=1+\left.\frac{Z_{g}^{2}}{Z_{\mathrm{G}}}\right|_{\mathrm{RI}-\mathrm{SMOM}}
\end{aligned}
$$

RI-SMOM

Extraction of $n E D M$ from qCEDM

- Extraction of the CPV form factor

$$
\langle n| J_{\mu}^{\mathrm{EM}}|n\rangle \sim d_{n} \bar{\psi}_{n} \sigma_{\mu \nu} \gamma_{5} q^{\nu} \psi_{n}
$$

$$
J_{\mu}^{\mathrm{EM}}=\frac{2}{3} \bar{u} \gamma_{\mu} u-\frac{1}{3} \bar{d} \gamma_{\mu} d-\frac{1}{3} \bar{s} \gamma_{\mu} s
$$

- Requires 4-point function

$$
\langle n| J_{\mu}^{\mathrm{EM}} \int d^{4} x O_{i}(x)|n\rangle
$$

Extraction of nEDM from qCEDM

- Extraction of the CPV form factor

$$
\langle n| J_{\mu}^{\mathrm{EM}}|n\rangle \sim d_{n} \bar{\psi}_{n} \sigma_{\mu \nu} \gamma_{5} q^{\nu} \psi_{n}
$$

$$
J_{\mu}^{\mathrm{EM}}=\frac{2}{3} \bar{\psi} \gamma_{\mu} u-\frac{1}{3} \bar{d} \gamma_{\mu} d-\frac{1}{3} \overline{3} \gamma_{\mu} s
$$

- Or 3-point function in external background E field

$$
\langle n| J_{\mu}^{\mathrm{EM}} \int d^{4} x O_{i}(x)|n\rangle=\frac{\partial}{\partial A_{\mu}}\langle n| \int d^{4} x O_{i}(x)|n\rangle_{E}
$$

[^0]: ** 3 spin-flavor structures: $\sigma_{\mu \nu} \gamma_{5} k^{v} t^{a}, \quad \sigma_{\mu \nu} \gamma_{5}\left(p-p^{\prime}\right)^{v} t^{a}, \quad \gamma_{5}\left(p+p^{\prime}\right) \mu t^{a}$

