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couple to quarks only through a T-conserving pseudosca-
lar vertex:

mq
Q ql p5q

(0) (b) (c)

FIG. 1. Graphs for the potentials of Eqs. (4), (5), and (6). (a)
(Monopole), (b) monopole-dipole, (c) (dipole).

Spero et a/. performed a Cavendish experiment to test
deviations from the Newtonian 1/r potential over the dis-
tance range 2 to 5 cm. Their experiment established an
upper bound for additional Yukawa-type interactions
given by

V(r) =- 6m ~m2 (1+ac ' );—r/A.
r

at their scale of greatest sensitivity A, -3 cm, a was found
to be less than 10 . Since the dimensionless coupling
constant for the gravitational interaction between two nu-
cleons is (mz/mp~) =10, we see that any anomalous
Yukawa coupling at a scale of 3 cm must have a dimen-
sional magnitude of 10 ' or smaller.
The measured g factor of the electron provides a limit

on nonelectromagnetic electron spin-spin interactions.
Since the experimental findings agree with the predictions
of QED to eight digits for experiments using ferromag-
nets, we get a limit for any nonelectromagnetic spin-spin
coupling at a scale of 1 cm of 10 Xa(A,,/1 cm)
=10 ', where A,, is the electron Cornpton wavelength

1and cx:
A limit on photon spin-spin tensor interactions is pro-

vided by Ramsey, based upon studies of the hydrogen
molecule. Ramsey finds that any nonmagnetic interac-
tion must be 4&10 " smaller than that between proton
magnetic moments. Extrapolated to a distance of 1 cm,
this establishes an upper limit on the dimensionless cou-
pling for an r tensor force of 10
Of these various limits, only the anomalous (mono-

pole) interaction limit of 10 ' obtained by Spero et al.
comes close to testing the range of possible strengths for
axion-mediated forces. Furthermore, we know of no obvi-
ous experimental limit on the macroscopic P- and T-
violating monopole-dipole interaction. Thus, the oppor-
tunity is ripe for pushing past known limits and perhaps
finding something new. We shall shortly discuss some ex-
periments which may do so.
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Under a Peccei-Quinn transformation,
—ig/2 i g/2mq~mqe, ql. ~e qL, , qR~e qg,

the phase of the 't Hooft vertex varies as
r

arg g k, gg
q

hence, e' becomes e' + "', where N = number of quark
flavors. Similarly, under chiral U(1),

and the 't Hooft vertex changes as e'e~e'e+ '. Thus, a
combined Peccei-Quinn and chiral U(1) transformation
with v= —q leaves 0 invariant.
To calculate the mass of the axion, we imagine per-

forming a Peccei-Quinn transformation; this leaves the
quark mass terms unchanged, but changes 0 to 0+60.
We now undo this change of 0 by reabsorbing b,8 into the
quark mass sector by the combined chiral SU(N))&U(1)
transformation which minimizes the energy. This gives

where F is the scale of Peccei-Quinn symmetry breaking.
However, a pure Peccei-Quinn transformation changes

the phase multiplying the 't Hooft vertex. It is energeti-
cally unfavorable to change this phase (which requires en-
ergies of the order of the mass of the g'), so the Peccei-
Quinn transformation is compensated for by a combined
chiral U(1) and chiral SU(N) transformation which leaves
the phase invariant and minimizes the energy. Since the
quark masses are not zero, these combined (Peccei-
Quinn) [U(1)q ] [SU(X)~ j transformations cost energy,
and the axion acquires a small mass. If, in addition, the
effective 8 parameter Hcff is not zero, the axion will also
couple to the quarks with T-violating scalar vertices.
To see how this all works, consider the quark-mass and

T-violating sectors,

AXIONS H „=m„uu cosh'„+ m~dd coshO~+ . (10)

A particularly well-motivated proposal for a very light
spin-0 boson is the axion. It arises in models to explain
the smallness of a potentially large P- and T-violating
coupling in QCD.
The axion is the quasi-Nambu-Goldstone boson of a

spontaneously broken Peccei-Quinn quasisymmetry. If
the Peccei-Quinn symmetry were not broken by the
t Hooft vertex associated with fermion emission in in-
stanton fields, the axion would be massless and would

i&q

mj

subject to the constraint 40„+40~+48, +.. . =60.
Since the quark bilinears acquire the vacuum expectation
value (uu)=(dd)= . =V&0, the minimum is found
to be at

Short Range Macroscopic Scalar Forces
(Moody, Wilczek)

• New short range macroscopic forces beyond the SM?

Monopole-Monopole Monopole-Dipole Dipole-Dipole

3

EDM and fifth-force experiments to constrain SD forces is the main focus of this paper.

The axion [14–17], invoked to solve the strong CP problem, is the most familiar example of

a mediator of a new SD force that is constrained by EDM searches. In fact, EDM limits place

upper bounds on the product of axion couplings g1sg
2
p, appearing in Eq.(1), that are several

orders of magnitude more stringent than those derived from fifth-force experiments. This is

a result of the unique properties of the axion and its induced couplings to matter. However,

as we show in this paper, if one considers more general SD forces that are mediated by

light scalars with arbitrary couplings, fifth-force experiments can place significantly tighter

bounds in large regions of parameter space.

A non-zero EDM arises from a term in the Lagrangian of the form

L = −d
i

2
ψ̄ σµνγ5 ψ Fµν . (2)

In the non-relativistic limit, it gives rise to the Hamiltonian

H = −d E⃗ ·
S⃗

S
, (3)

for a particle of spin S⃗ in an electric field E⃗. For a non-zero value of d, CP violation is

apparent from the CPT theorem and the behavior of the Hamiltonian under time-reversal

T (E⃗ · S⃗) = −E⃗ · S⃗. The current bounds for the EDM of the neutron, the electron, and the

diamagnetic Mercury atom are

|dn| < 2.9× 10−13 e fm (90% C.L.) [18],

|de| < 10.5× 10−15 e fm (90% C.L.) [19],

|dHg| < 3.1× 10−16 e fm (95% C.L.) [20], (4)

respectively. If a non-zero EDM is measured, the next logical step is to determine the source

of TVPV responsible for the observed effect. In particular, this paper is concerned with the

possibility of a new macroscopic SD force.

II. LABORATORY FIFTH-FORCE EXPERIMENTS

There are several high-precision fifth-force experiments that put bounds on the product

of the scalar (gs) and pseudoscalar (gp) nucleon level couplings, as a function of the mass mϕ.

These experiments employ different physical principles [13]. Currently, the most stringent

bounds come from neutron Qbounce experiments [21, 22] for the range λ >∼ 2 × 10−5 m,

corresponding to mϕ
<∼ 10−2 eV. This corresponds to the high mass region of the so called

axion window. For the range λ <∼ 2 × 10−1 m, corresponding to mϕ
>∼ 10−6 eV and the

low mass region of the axion window, the most stringent bounds come from experiments

measuring the precession frequency shift in the presence of an unpolarized mass [11, 12, 23].
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Spin-Dependent Macroscopic Scalar Forces
(Moody, Wilczek)

• CP violating coupling can induce non-zero EDMs.

Monopole-Dipole
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couple to quarks only through a T-conserving pseudosca-
lar vertex:
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FIG. 1. Graphs for the potentials of Eqs. (4), (5), and (6). (a)
(Monopole), (b) monopole-dipole, (c) (dipole).

Spero et a/. performed a Cavendish experiment to test
deviations from the Newtonian 1/r potential over the dis-
tance range 2 to 5 cm. Their experiment established an
upper bound for additional Yukawa-type interactions
given by

V(r) =- 6m ~m2 (1+ac ' );—r/A.
r

at their scale of greatest sensitivity A, -3 cm, a was found
to be less than 10 . Since the dimensionless coupling
constant for the gravitational interaction between two nu-
cleons is (mz/mp~) =10, we see that any anomalous
Yukawa coupling at a scale of 3 cm must have a dimen-
sional magnitude of 10 ' or smaller.
The measured g factor of the electron provides a limit

on nonelectromagnetic electron spin-spin interactions.
Since the experimental findings agree with the predictions
of QED to eight digits for experiments using ferromag-
nets, we get a limit for any nonelectromagnetic spin-spin
coupling at a scale of 1 cm of 10 Xa(A,,/1 cm)
=10 ', where A,, is the electron Cornpton wavelength

1and cx:
A limit on photon spin-spin tensor interactions is pro-

vided by Ramsey, based upon studies of the hydrogen
molecule. Ramsey finds that any nonmagnetic interac-
tion must be 4&10 " smaller than that between proton
magnetic moments. Extrapolated to a distance of 1 cm,
this establishes an upper limit on the dimensionless cou-
pling for an r tensor force of 10
Of these various limits, only the anomalous (mono-

pole) interaction limit of 10 ' obtained by Spero et al.
comes close to testing the range of possible strengths for
axion-mediated forces. Furthermore, we know of no obvi-
ous experimental limit on the macroscopic P- and T-
violating monopole-dipole interaction. Thus, the oppor-
tunity is ripe for pushing past known limits and perhaps
finding something new. We shall shortly discuss some ex-
periments which may do so.
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Under a Peccei-Quinn transformation,
—ig/2 i g/2mq~mqe, ql. ~e qL, , qR~e qg,

the phase of the 't Hooft vertex varies as
r

arg g k, gg
q

hence, e' becomes e' + "', where N = number of quark
flavors. Similarly, under chiral U(1),

and the 't Hooft vertex changes as e'e~e'e+ '. Thus, a
combined Peccei-Quinn and chiral U(1) transformation
with v= —q leaves 0 invariant.
To calculate the mass of the axion, we imagine per-

forming a Peccei-Quinn transformation; this leaves the
quark mass terms unchanged, but changes 0 to 0+60.
We now undo this change of 0 by reabsorbing b,8 into the
quark mass sector by the combined chiral SU(N))&U(1)
transformation which minimizes the energy. This gives

where F is the scale of Peccei-Quinn symmetry breaking.
However, a pure Peccei-Quinn transformation changes

the phase multiplying the 't Hooft vertex. It is energeti-
cally unfavorable to change this phase (which requires en-
ergies of the order of the mass of the g'), so the Peccei-
Quinn transformation is compensated for by a combined
chiral U(1) and chiral SU(N) transformation which leaves
the phase invariant and minimizes the energy. Since the
quark masses are not zero, these combined (Peccei-
Quinn) [U(1)q ] [SU(X)~ j transformations cost energy,
and the axion acquires a small mass. If, in addition, the
effective 8 parameter Hcff is not zero, the axion will also
couple to the quarks with T-violating scalar vertices.
To see how this all works, consider the quark-mass and

T-violating sectors,

AXIONS H „=m„uu cosh'„+ m~dd coshO~+ . (10)

A particularly well-motivated proposal for a very light
spin-0 boson is the axion. It arises in models to explain
the smallness of a potentially large P- and T-violating
coupling in QCD.
The axion is the quasi-Nambu-Goldstone boson of a

spontaneously broken Peccei-Quinn quasisymmetry. If
the Peccei-Quinn symmetry were not broken by the
t Hooft vertex associated with fermion emission in in-
stanton fields, the axion would be massless and would

i&q

mj

subject to the constraint 40„+40~+48, +.. . =60.
Since the quark bilinears acquire the vacuum expectation
value (uu)=(dd)= . =V&0, the minimum is found
to be at

CP violating coupling 

11

V. SPIN-DEPENDENT FORCES FROM A GENERIC LIGHT SCALAR

We saw in the last section that the axion, introduced to solve the Strong CP problem

gives rise to a macroscopic SD force. However, in this case the EDM limits dominate over

the fifth-force limits by several orders of magnitude. This is a result of the precise relation

between the strong CP parameter θind. (see Eqs.(35) and (36)) and its couplings to the

quarks.

However, for more generic light scalars, unrelated to the strong CP problem, the potential

of the SD force is independent of θind. As a result the EDM constraints on θind have no impact

on the size of the macroscopic SD force mediated by the light scalar. In this case, fifth-force

experiments can provide useful bounds on macroscopic SD forces. The presence of such new

macroscopic SD forces can still be bounded from EDM constraints, but the nature of these

constraints will be quite different compared to the axion scenario; in particular, they will

be unrelated to θind. In this paper, we explore the possibility of such new SD forces and

derive the resulting constraints from EDM and fifth-force experiments. Depending on the

region of parameter space, the EDM and fifth force constraints will be competitive or one

will dominate over the other.

The possibility of new SD forces can be realized in a microscopic theory via the quark-level

Lagrangian

Lϕqq = gqs ϕ q̄q + gqp ϕ q̄iγ5q, (37)

where the light scalar mediator is denoted by ϕ and gqs and gqp denote the scalar and pseu-

doscalar couplings to a quark of flavor q. These quark-level couplings, in turn induce the

effective scalar and pseudoscalar couplings to the nucleons (N) denoted by gs and gp respec-

tively

LϕNN = gs ϕN̄N + gp ϕN̄iγ5N. (38)

In principle, the nucleon couplings can take on different values for the neutron and proton.

For simplicity, we neglect this possibility and assume isospin symmetric couplings to the

nucleon isospin doublet N . These effective couplings of ϕ to nucleons, in turn generate ef-

fective couplings to nuclei whose charges add up to give rise to a coupling to macroscopic test

objects. In particular, the product of couplings g1sg
2
p in the potential between macroscopic

test objects in Eq.(1) can be obtained in this manner.

In general, one can also consider couplings of ϕ to leptons which will contribute to

the effective coupling to an atom. Once again, for the sake of simplicity, we neglect this

possibility. We note that these simplifying assumptions do not affect main conclusions about

using EDM and fifth-force experiments to constrain SD forces in a complementary manner.

2

I. INTRODUCTION

Tests of the fundamental discrete symmetries of charge conjugation C, parity P , and

time-reversal T have played a vital role in developing the underlying structure of the Stan-

dard Model (SM). For example, the discovery of parity-violation led to the formulation of

the electroweak sector of the SM as a chiral gauge theory, where fermonic matter fields

are understood as appropriate combinations of left- and right-handed chiral multiplets in

different representations of the electroweak gauge group. The phenomena of CP violation

or equivalently T violation, as dictated by the CPT theorem for local quantum field theo-

ries, has been extensively studied in various systems within the SM and beyond. CP and

P violation, which we denote TVPV (T-violation and P-violation), can be indicative of a

new macroscopic spin-dependent (SD) force arising from a light mediator particle associated

with physics beyond the SM. Through its CP-odd couplings, the same mediator particle can

induce non-zero electric dipole moments (EDMs) in electrons, hadrons, and nuclei. In this

paper, we exploit this connection and explore EDM tests as a complementary probe of new

macroscopic SD forces.

There are a host of ‘fifth-force’ experiments [1–9] devoted to direct searches of new SD

forces. For example, one of the more recent techniques [10] looks for a shift in the spectrum

of gravitational quantum states of ultracold bouncing polarized neutrons that can arise from

new SD forces. In another set of experiments a search for NMR frequency shifts is performed

when an unpolarized mass is moved near and far from an ensemble of polarized 129Xe and
131Xe gas [11], or polarized 3He gas [12].

A SD force mediated by a scalar ϕ of mass mϕ, will give rise to a potential of the form

V (r) = g1sg
2
p

σ⃗2 · r̂
8πM2

[mϕ

r
+

1

r2

]

e−mϕr, (1)

where g1s is the effective scalar charge of the unpolarized test object, g2p,M2, σ⃗2 denote the

effective pseudo-scalar charge, mass, and spin of the polarized test object, and r̂ = r⃗/r is the

unit vector from the unpolarized particle to the polarized particle. Precision measurements

in fifth-force experiments constrain the size of this potential, giving rise to upper limits on

the product of couplings g1sg
2
p as a function of mϕ. A summary and detailed discussion of

such limits from various experiments using different techniques can be found in Ref. [13].

The existence of a new SD force necessarily gives rise to TVPV. The search for non-zero

electric dipole moments (EDMs) in electrons, nuclei, and atoms provides one powerful test

of TVPV. Comparing the analysis of EDM searches with those of fifth-force experiments

can be a useful way to distinguish TVPV arising from new SD forces. This may not always

be possible depending on the parameter space spanned by the mass and couplings of the

SD force mediator. In this paper, we examine this question and identify the regions in

parameter space that are most sensitive to either EDM limits or fifth-force limits and those

regions where the two types of limits are competitive. Such a comparative study between



Introduction Experiments Axions Scalar w/o PQ Symmetry Conclusions Outlook Collaboration

1. "Fifth-Force" Experiments: nQ-bouncer

i�
5
gp

gs

m'

n

mirror

�V (r) = gsgp
~�n · ~er
8⇡mn

✓
m'

r
+

1

r2

◆
e
�m'r =) � (z;�n)

only gsgp violates P and T (and hence CP if CPT holds)

Laboratory Tests

2

I. INTRODUCTION

Tests of the fundamental discrete symmetries of charge conjugation C, parity P , and

time-reversal T have played a vital role in developing the underlying structure of the Stan-

dard Model (SM). For example, the discovery of parity-violation led to the formulation of

the electroweak sector of the SM as a chiral gauge theory, where fermonic matter fields

are understood as appropriate combinations of left- and right-handed chiral multiplets in

different representations of the electroweak gauge group. The phenomena of CP violation

or equivalently T violation, as dictated by the CPT theorem for local quantum field theo-

ries, has been extensively studied in various systems within the SM and beyond. CP and

P violation, which we denote TVPV (T-violation and P-violation), can be indicative of a

new macroscopic spin-dependent (SD) force arising from a light mediator particle associated

with physics beyond the SM. Through its CP-odd couplings, the same mediator particle can

induce non-zero electric dipole moments (EDMs) in electrons, hadrons, and nuclei. In this

paper, we exploit this connection and explore EDM tests as a complementary probe of new

macroscopic SD forces.

There are a host of ‘fifth-force’ experiments [1–9] devoted to direct searches of new SD

forces. For example, one of the more recent techniques [10] looks for a shift in the spectrum

of gravitational quantum states of ultracold bouncing polarized neutrons that can arise from

new SD forces. In another set of experiments a search for NMR frequency shifts is performed

when an unpolarized mass is moved near and far from an ensemble of polarized 129Xe and
131Xe gas [11], or polarized 3He gas [12].

A SD force mediated by a scalar ϕ of mass mϕ, will give rise to a potential of the form

V (r) = g1sg
2
p

σ⃗2 · r̂
8πM2

[mϕ

r
+

1

r2

]

e−mϕr, (1)

where g1s is the effective scalar charge of the unpolarized test object, g2p,M2, σ⃗2 denote the

effective pseudo-scalar charge, mass, and spin of the polarized test object, and r̂ = r⃗/r is the

unit vector from the unpolarized particle to the polarized particle. Precision measurements

in fifth-force experiments constrain the size of this potential, giving rise to upper limits on

the product of couplings g1sg
2
p as a function of mϕ. A summary and detailed discussion of

such limits from various experiments using different techniques can be found in Ref. [13].

The existence of a new SD force necessarily gives rise to TVPV. The search for non-zero

electric dipole moments (EDMs) in electrons, nuclei, and atoms provides one powerful test

of TVPV. Comparing the analysis of EDM searches with those of fifth-force experiments

can be a useful way to distinguish TVPV arising from new SD forces. This may not always

be possible depending on the parameter space spanned by the mass and couplings of the

SD force mediator. In this paper, we examine this question and identify the regions in

parameter space that are most sensitive to either EDM limits or fifth-force limits and those

regions where the two types of limits are competitive. Such a comparative study between

• Shifts in quantum gravitational states of ultracold bouncing 
   neutrons.

• NMR frequency shifts when unpolarized mass is moved from 
   and towards polarized gas. (Youdin et. al, Bulatowicz et. al., 

Petukhov et. al)

(Abele et. al.)

• Neutron diffraction (see talk by Ben Heacock)
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simulation for a fixed neutron velocity of vx ¼ 6 m=s and the red
curve shows the same simulation for neutrons with a velocity
range of vx ¼ ð671Þm=s and a triangular velocity probability
function how it can be approximately defined by collimating
blades in our measurements. On the right side, the same
simulations are shown for a 1 cm longer neutron mirror
corresponding to a different time evolution of the system. The
result of the classical and the quantum mechanical calculation
differs significantly, mostly visible in some quantum fringes.

To measure the spatial probability distribution of the neutrons
we need a detector for ultracold neutrons with a high spatial
resolution of about ð122Þmm. For this purpose, we use 10B-coated
organic substrates. Neutrons impinging the coating lead to a
nuclear reaction. As the reaction products are emitted back-to-
back, one particle leaves a track in the substrate. Using an etching
process, the radii of the tracks can be enlarged to the micron scale,
which is feasible for optical readout with a microscope. The tracks
can be identified and the position of the impinging neutrons
determined in an automated procedure.

The efficiency of these detectors is approximately 90%, their
resolution about 1:5mm. First results of the spatial resolution
detector can be found in Refs. [12,13,3].

In order to avoid vibrations and inclination in our experiment,
a heavy granite table installed on active and passive stabilization
control units is used.

In comparison to previous experiments we improved the setup
significantly in this respect. We tested the setup to be stable
against possible vibrations and inclination due to external
influences at the beam position. The undisturbed setup is
permanently stable at an inclination level of s ¼ 0:6mrad. Until
now, the control system has been able to handle all critical
influences, especially due to the heavy cranes close to the
experiment, still being in the operating range. The active vibration
control damps all vibrations in the critical range sufficiently.

Furthermore, the whole setup is shielded against magnetic
fields to the mT-level. The whole setup is placed in a vacuum
chamber (p $ 10% 2 mbar).

In July 2008, the described setup was installed at the beam
position PF2 at ILL. The evolution of the quantum bouncing ball
was measured at four different times corresponding to four
different mirror lengths. Fig. 3 shows a very first result with the
raw data for two measurements at x ¼ 0 cm (without step) and
x ¼ 6 cm. For the latter, only 30% of the track detector have been
read out so far. The statistics of the full measurement will be
sufficient to resolve the quantum nature of the quantum bouncing
ball. Moreover, no background has been subtracted yet. The solid
lines show the theoretical prediction for the geometry of the
measurements. The spatial resolution of the track detectors was
taken into account via a convolution with a Lorentzian function
with a half width of 2mm.

3. Sensitivity to non-Newtonian gravity

On the assumption that the form of the non-Newtonian
potential is given by a Yukawa expression, the generalized gravity
potential VðrÞ with the distance r between two bodies with
masses mi and mj takes the form

V 0ðrÞ ¼ % G
mi &mj

r
ð1 þ a & e% l=rÞ: ð1Þ

The strength of the non-Newtonian interaction is called a, its
range l.

In our case we consider the neutron mirrors as infinite half
spaces. Replacing the mass mj by the integral over its mass density
r the potential gives

VðrÞ ¼ 2pal2Gmnre% z=l: ð2Þ

This shows that a coating of our neutron mirrors with a heavy
material such as gold, tungsten, platinum or uranium in a

Detector

Neutron mirrors
Scatterer

Active anti vibration control

Collimating system
UCN - Beam pipe

Granite table
Vacuum chamber

Magnetic shielding

Fig. 1. Sketch of the setup used for the measurements at the ILL in 2008.
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Quantum Bouncing UltraCold Neutrons 
in a Gravitational Field

(Jenke, Stadler,Abele,Geltenbort)

• Look for the effect of the monopole-dipole interaction 
on the flux of neutrons as a function of the height of the 
scatterer.

• Look for the effect of the monopole-dipole interaction 
on the neutron wave function in a gravitational field. 
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Quantum Bounce ?
ColdͲSource�at�40�K

Hydrogen�Atom
Ͳ Electron bound in�proton

potential

Ͳ Bohr�radius <r>�=�1�A

Ͳ Ground state energy of 13�eV

Ͳ 3�dim.

Ͳ Schrödinger Equ.

Ͳ Legrendre�Polynomials

System�Neutron�&�Earth
Ͳ Neutron�bound in�the gravity

potential�of the earth

Ͳ <r>�=�6�µm

Ͳ Ground state energy of 1.4�peV

Ͳ 1�dim.

Ͳ Schrödinger Equ.

Ͳ Airy Functions

(Abele, et. al.)
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Trapping UCN‘s in the 
earth‘s gravitational field
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Most experiments look for new forces between electrons. More recently, much progress was made in searches for new
forces between nucleons. Comparisons between the coupling strengths for electrons and nucleons require a particular model
of the new interaction; therefore it is not given here. We summarize present searches in the following exclusion plots. Fig. 2
shows the exclusion for new interactions between electrons (a chapter in the recent review [50] has been devoted to this);
the distance scale λ on this plot is chosen to be equal to that in Fig. 3 in order to facilitate comparison. Fig. 3 shows the
exclusion for new interactions between nucleons. The range for the λ values shown here is given by optimum sensitivity of
neutron and polarized 3He experiments.

This article is organized as follows: Theoretical motivations to short-range interactions are overviewed in Section 2.
Casimir force studies are analyzed in Section 3. Measurements of atom–surface van der Waals interaction and test of
non-Newtonian gravitational interaction by atom interferometry are presented in Section 4. GRANIT constraints for Stan-
dard Model extensions are mentioned in Section 5. Eventual constraints for spin-dependent short-range forces from the
GRANIT experiment are derived in Section 6. A torsion pendulum searches for axion and exotic forces are overviewed in
Section 7, in particular a new large improvement for constraints for such forces is presented. New experimental constraints

Fig. 3. Searches for short-range nucleon spin-dependent interactions. Each line is excluding the region to the top. The limit from [54] (1, black solid line)
was achieved by comparing the precession frequencies of atomic magnetometers made from either 199Hg or Cs atoms in presence of a 475 kg source
mass made from lead. The sensitivity of the experiment with polarized 3He, described in Section 9, is indicated in (2, thin dotted blue line). The limit
from Ref. [55] (3, blue solid line) was derived from the spin relaxation rate in polarized 3He cells; after subtraction of known causes of relaxation, the
new interaction would constitute an extra relaxation channel. An even more constraining limit from experiments on storage of polarized 3He has been
proposed [56] but the validity of the method used is being questioned [57]. The limit in Ref. [58] (4, thin green dash-dotted line) was derived from the
study of gravitationally bound states of ultra-cold neutrons; the publication [58] triggered much of the recent experimental activity on spin-dependent
short-range nucleon–nucleon interaction presented in the present proceedings. The limit from Ref. [59] (5, thick green dashed line, proposed in [60]) was
derived from comparison of the precession frequencies of ultra-cold neutrons in chambers in a vertical magnetic field, where the chamber bottom plate
is made from a more dense material than top plate and vice versa. A force as in Eq. (2) changes the precession frequency with a sign which depends on
the position of the denser plate. The limit from Ref. [61] (6, thick green solid line, criticized in Ref. [62]) was derived from the fact that a new short-range
spin-dependent force would cause spin relaxation of ultra-cold neutrons in vicinity of a reflecting surface; limits on the depolarization probability were
turned into limits on new forces of that kind. The transmission of polarized neutrons through a horizontal slit with an absorber at the top would look
differently from the measurement if a sufficiently strong new interaction given by Eq. (2) would modify the wave functions of the gravitational bound
states in dependence of their spin, as in a Stern–Gerlach experiment. We add projected sensitivities of different stages of the study of gravitationally bound
quantum states: The constraint 7 is from a proposal to measure the neutron spin-dependent change of the transmission of UCNs through a horizontal slit
made from an absorber and a mirror with GRANIT. This proposal was discussed in Ref. [164] (7, thin purple dotted line). The ultimate goal of GRANIT is
to measure energy difference between quantum states of stored ultra-cold neutrons. Assuming an accuracy of 10−6, which is achieved if the precision is
just the natural line-width of the transition, and assuming this line width is limited only by the neutron beta decay lifetime, we get the second project
limit (8, thin purple dotted line). In Ref. [63], a more optimistic scenario where a precision better than the size of the natural line width with the help
of a Ramsey technique is discussed. An analogous method based on spin precession in a setup measuring neutron EDM and not requiring gravitational
quantum states of neutrons is proposed in Ref. [64]. Finally, note that although most constraints presented on this figure are bound to the distance range
corresponding approximately to the “axion window” there are no formal limitations for extending the range when considering axion-like particles; thus
one should remember about experimental constraints at even shorter distances as those presented in Section 12.

Bounds on Spin-Dependent Fifth Forces

C. R. Physique 12 (2011) 755–778
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We consider theoretical motivations to search for extra short-range fundamental forces
as well as experiments constraining their parameters. The forces could be of two types:
1) spin-independent forces; 2) spin-dependent axion-like forces. Different experimental
techniques are sensitive in respective ranges of characteristic distances. The techniques
include measurements of gravity at short distances, searches for extra interactions on
top of the Casimir force, precision atomic and neutron experiments. We focus on neutron
constraints, thus the range of characteristic distances considered here corresponds to the
range accessible for neutron experiments.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous considérons les motivations théoriques pour rechercher des forces fondamentales
supplémentaires à courte portée ainsi que des expériences contraignant leurs paramètres.
Les forces peuvent être de deux types : 1) les forces indépendantes du spin ; 2) les forces
dépendant du spin, de type axion. Différentes techniques expérimentales sont sensibles
dans des domaines différents de distances caractéristiques. Les expériences incluent des
mesures de gravité à courte distance, la recherche d’interactions supplémentaires en
plus de la force de Casimir, des expériences atomiques et neutroniques de précision.
Comme nous mettons l’accent sur les contraintes neutroniques, la gamme de distances
caractéristiques considérées ici correspond à la plage accessible pour les expériences avec
les neutrons.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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• Summary of bounds from various fifth-force experiments
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of the degenerate core before helium ignition, and in par-
ticular reveals [12]

gep <
∼

3× 10−13 . (1)

This limit pertains to particles with mφ
<
∼

10 keV so that
their emission is not suppressed by threshold effects.
White-dwarf cooling would be accelerated by φ emis-

sion [13]. Isern and collaborators have found that the
white-dwarf luminosity function fits better with a small
amount of anomalous energy loss that can be interpreted
in terms of φ emission with gep ∼ 2 × 10−13 [14]. The
period decrease of the pulsating white dwarf G117-B15A
also favors some amount of extra cooling [15]. The inter-
pretation in terms of φ emission is of course speculative
and we adopt Eq. (1) as our nominal limit.
For completeness we mention that the scalar electron

coupling can be similarly constrained [10, 16]

ges <
∼

1.3× 10−14 . (2)

This limit is more restrictive because the emission process
does not suffer from electron spin flip.

B. Nucleon coupling

The pseudoscalar nucleon coupling, defined analogous
to the electron coupling, allows for the bremsstrahlung
process N + N → N + N + φ in a collapsed supernova
core. However, the measured neutrino signal of SN 1987A
reveals a signal duration of some 10 s and thus excludes
excessive new energy losses [17]. The emission rate suf-
fers from significant uncertainties related to dense nuclear
matter effects [18] and amounts to an educated dimen-
sional analysis [11]. Assuming equal φ couplings to pro-
tons and neutrons one finds [10]

gNp <
∼

3× 10−10 . (3)

In typical axion models, the interaction with neutrons
can actually vanish.
The scalar interaction is not well constrained by this

method because nucleon velocities are relatively small.
Moreover, if the neutron and proton couplings are equal,
nonrelativistic bremsstrahlung of scalars vanishes. The
most restrictive astrophysical limit arises from the en-
ergy loss of globular-cluster stars through the process
γ + 4He → 4He + φ [10, 16, 19]

gNs <
∼

0.5× 10−10 . (4)

This limit is quite restrictive because the electric charges
and the scalar nucleon couplings each add coherently.

III. SCALAR BARYON INTERACTIONS

We next consider a long-range Yukawa force mediated
by a scalar φ that couples with equal strength gNs to

protons and neutrons. For small mφ, restrictive limits
derive from precision tests of Newton’s inverse square
law. The new Yukawa potential is traditionally expressed
as a correction to Newton’s potential in the form

V = −
GNm1m2

r

(

1 + α e−r/λ
)

, (5)

where, in terms of the atomic mass unit mu,

α =

(

gNs
)2

4πGNm2
u
= 1.37× 1037

(

gNs
)2

. (6)

The force range is

λ = m−1

φ = 19.73 cm
µeV

mφ
. (7)

In the literature, one usually finds plots of the limiting α
as a function of λ; for a recent review see Ref. [9].
New scalar interactions with nucleons can be probed

in different ways. Stellar energy-loss arguments are most
effective for boson masses so large that the interaction
range is too short for laboratory tests. Next one can
search for deviations from the inverse-square law (ISL)
behavior of the overall force between bodies. At the
largest distances, tests of the weak equivalence principle
(WEP) are most effective, i.e. one searches for force dif-
ferences on bodies with different composition and in this
way isolates the non-gravitational part [9]. The results
of such experiments can be interpreted in different ways,
depending on the assumed property of the new force. We
only consider scalar forces interacting with baryon num-
ber, but of course one can go through the same arguments
for other assumptions.

10!8 10!6 10!4 10!2 100 102 104 106 108
10!24

10!22

10!20

10!18

10!16

10!14

10!12

10!10

Λ !m"

Sc
al
ar
ba
ry
on

co
up
lin
g
gN s

1
2

3

4

5

6
7

8

FIG. 1: Limits on the scalar φ coupling to baryons. Curve 1
derives from stellar energy loss [10, 16]. Curves 2–6 depend
on tests of Newton’s inverse square law [20–24]. Curves 7–8
derive from testing the weak equivalence principle [25, 26].
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FIG. 1: Limits on the scalar φ coupling to baryons. Curve 1
derives from stellar energy loss [10, 16]. Curves 2–6 depend
on tests of Newton’s inverse square law [20–24]. Curves 7–8
derive from testing the weak equivalence principle [25, 26].

• Energy loss is stellar cooling constrains pseudoscalar coupling
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for other assumptions.
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FIG. 1: Limits on the scalar φ coupling to baryons. Curve 1
derives from stellar energy loss [10, 16]. Curves 2–6 depend
on tests of Newton’s inverse square law [20–24]. Curves 7–8
derive from testing the weak equivalence principle [25, 26].

• Lab tests on Newton’s inverse  square law and WEP constrain   
  the scalar coupling

(Raffelt)

(Raffelt)
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Following the numbers of curves in Fig. 1, at the short-
est distances (1) the stellar energy-loss limit of Eq. (4)
beats laboratory limits. (2) At distances around 10−7 m,
the Casimir measurements of Decca et al. (2007) are most
relevant [20], (3) followed around the µm scale by those of
Sushkov et al. (2011) at Yale [21]. (4) At the 10 µm scale,
Geraci et al. (2008) of the Stanford group have reported
limits on deviations from Newton’s law using cryogenic
micro-cantilevers [22]. (5) Torsion-balance tests of the
inverse-square law conducted by the Eöt-Wash Collab-
oration (Kapner et al. 2007) provide the best limits in
the 10 µm–few mm range [23]. (6) In the cm range,
the Irvine group’s (Hoskins et al. 1985) torsion balance
inverse-square tests dominate [24]. For larger distances,
one has to rely on tests of the equivalence principle where
we assume that φ couples only to baryon number. (7) In
the sub-meter range, we use the Eöt-Wash limits of Smith
et al. (1999) [25] and (8) at yet larger distances those of
Schlamminger et al. (2008) [26].

IV. MONOPOLE-DIPOLE FORCES

A. Electron-Nucleon Interaction

The most restrictive limit on gNs gep arises from the long-
range force limits on gNs shown in Fig. 1 and the astro-
physical limit on gep limit of Eq. (1). We show the prod-
uct as the lower thin black line in Fig. 2. We recall that
for deriving the limits on gNs it was assumed that the
scalar coupling applies only to baryon number, whereas
the pseudoscalar coupling applies to electrons.
Constraints from searches for monopole-dipole forces

with torsion pendulums using polarized electrons are
shown in Fig. 2. (1) The most recent constraints in the
mm range were derived by Hoedl et al. (2011) with a
dedicated apparatus [27]. (2) In the cm range, the best
constraints are from the older measurements of the Tsing
Hua University group (Ni et al. 1999) using a paramag-
netic salt in a rotating copper mass [28]. (3) At 10 cm we
show constraints derived by Youdin et al. (1996) by com-
paring the relative precession frequencies of Hg and Cs
magnetometers as a function of the position of two 475 kg
lead masses with respect to an applied magnetic field [29].
(4) In the meter-range and above, the torsion pendulum
measurements of the Eöt-Wash Collaboration (Heckel et
al. 2008) provide the most restrictive limits [30], except in
a gap at 10–1000 km. (5) Here we fall back on stored-ion
spectroscopy (Wineland et al. 1991) [31].

B. Nucleon-Nucleon Interaction

The most restrictive limit on gNs gNp also arises from
the long-range force limits of Fig. 1 together with the
SN 1987A limit on the pseudoscalar coupling of Eq. (3).
We show the product as a thin black line in Fig. 3.
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FIG. 2: Upper limits on gNs gep. The thin black line repre-
sents the gNs limits of Fig. 1 multiplied with the astrophysical
gep limit of Eq. (1). The experimental curves 1–5 constrain
monopole-dipole forces [27–31].
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FIG. 3: Upper limits on gNs gNp . The thin black line represents
the gNs limits of Fig. 1 multiplied with the SN 1987A limit on
gNp of Eq. (3). Curve 1 is the experimental limit from 3He
depolarization [32], curve 2 from mercury precession [29], and
curve 3 from ultra-cold neutrons [33].

The most restrictive direct experimental limit at short
distances arises from measurements of the depolarization
of the 3He nucleus. We show the limits of Petukhov et al.
(2010) [32] as curve 1 in Fig. 3. (2) In the cm range and
above, the precession of Hg and Cs (Youdin et al. 1996)
provide the best limits [29]. (3) We also show constraints
from the precession and depolarization of ultra-cold neu-
trons (Serebrov et al. 2010) [33].
Constraints from gravitational bound states of ultra-

cold neutrons [34] are at the moment not competitive,
but may hold significant promise for the future [35].

(Raffelt)
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• Note that combining separate tests of Newton’s inverse square law/ WEP tests 
bonds on gsN and astrophysical constraints on gpN, currently gives stronger 
bounds than fifth-force experiments.
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EDM and fifth-force experiments to constrain SD forces is the main focus of this paper.

The axion [14–17], invoked to solve the strong CP problem, is the most familiar example of

a mediator of a new SD force that is constrained by EDM searches. In fact, EDM limits place

upper bounds on the product of axion couplings g1sg
2
p, appearing in Eq.(1), that are several

orders of magnitude more stringent than those derived from fifth-force experiments. This is

a result of the unique properties of the axion and its induced couplings to matter. However,

as we show in this paper, if one considers more general SD forces that are mediated by

light scalars with arbitrary couplings, fifth-force experiments can place significantly tighter

bounds in large regions of parameter space.

A non-zero EDM arises from a term in the Lagrangian of the form

L = −d
i

2
ψ̄ σµνγ5 ψ Fµν . (2)

In the non-relativistic limit, it gives rise to the Hamiltonian

H = −d E⃗ ·
S⃗

S
, (3)

for a particle of spin S⃗ in an electric field E⃗. For a non-zero value of d, CP violation is

apparent from the CPT theorem and the behavior of the Hamiltonian under time-reversal

T (E⃗ · S⃗) = −E⃗ · S⃗. The current bounds for the EDM of the neutron, the electron, and the

diamagnetic Mercury atom are

|dn| < 2.9× 10−13 e fm (90% C.L.) [18],

|de| < 10.5× 10−15 e fm (90% C.L.) [19],

|dHg| < 3.1× 10−16 e fm (95% C.L.) [20], (4)

respectively. If a non-zero EDM is measured, the next logical step is to determine the source

of TVPV responsible for the observed effect. In particular, this paper is concerned with the

possibility of a new macroscopic SD force.

II. LABORATORY FIFTH-FORCE EXPERIMENTS

There are several high-precision fifth-force experiments that put bounds on the product

of the scalar (gs) and pseudoscalar (gp) nucleon level couplings, as a function of the mass mϕ.

These experiments employ different physical principles [13]. Currently, the most stringent

bounds come from neutron Qbounce experiments [21, 22] for the range λ >∼ 2 × 10−5 m,

corresponding to mϕ
<∼ 10−2 eV. This corresponds to the high mass region of the so called

axion window. For the range λ <∼ 2 × 10−1 m, corresponding to mϕ
>∼ 10−6 eV and the

low mass region of the axion window, the most stringent bounds come from experiments

measuring the precession frequency shift in the presence of an unpolarized mass [11, 12, 23].
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EDMs

• Non-zero EDM arises from term of the form

• In the non-relativistic limit, the EDM interaction with an 
external field is given by
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EDM and fifth-force experiments to constrain SD forces is the main focus of this paper.

The axion [14–17], invoked to solve the strong CP problem, is the most familiar example of

a mediator of a new SD force that is constrained by EDM searches. In fact, EDM limits place

upper bounds on the product of axion couplings g
1
s
g
2
p
, appearing in Eq. (1), that are several

orders of magnitude more stringent than those derived from fifth-force experiments. This is

a result of the unique properties of the axion and its induced couplings to matter. However,

as we show in this paper, if one considers more general SD forces that are mediated by

light scalars with arbitrary couplings, fifth-force experiments can place significantly tighter

bounds in large regions of parameter space.

A non-zero EDM arises from a term in the Lagrangian of the form

L = �d
i

2
 ̄ �

µ⌫
�5  Fµ⌫ . (2)

In the non-relativistic limit, it gives rise to the Hamiltonian

H = �d ~E ·

~S

S
, (3)

for a particle of spin ~S in an electric field ~E. For a non-zero value of d, CP violation is

apparent from the CPT theorem and the behavior of the Hamiltonian under time-reversal

T ( ~E · ~S) = � ~E · ~S. The current bounds for the EDM of the neutron, the electron, and the

diamagnetic Mercury atom are

|dn| < 2.9⇥ 10�13 e fm (90% C.L.) [18],

|de| < 10.5⇥ 10�15 e fm (90% C.L.) [19],

|dHg| < 3.1⇥ 10�16 e fm (95% C.L.) [20], (4)

respectively. If a non-zero EDM is measured, the next logical step is to determine the source

of TVPV responsible for the observed e↵ect. In particular, this paper is concerned with the

possibility of a new macroscopic SD force.

II. LABORATORY FIFTH-FORCE EXPERIMENTS

There are several high-precision fifth-force experiments that put bounds on the product

of the scalar (gs) and pseudoscalar (gp) nucleon level couplings, as a function of the mass m'.

These experiments employ di↵erent physical principles [13]. Currently, the most stringent

bounds come from neutron Qbounce experiments [21, 22] for the range � >
⇠ 2 ⇥ 10�5 m,

corresponding to m'
<
⇠ 10�2 eV. This corresponds to the high mass region of the so called

axion window. For the range � <
⇠ 2 ⇥ 10�1 m, corresponding to m'

>
⇠ 10�6 eV and the

low mass region of the axion window, the most stringent bounds come from experiments

measuring the precession frequency shift in the presence of an unpolarized mass [11, 12, 23].

EDMs and CP Violation

• Interaction is T-odd:

• By CPT theorem, a non-zero EDM implies CP violation.

• Any new sources of CP violation can contribute to EDMs.

• How can short range spin-dependent macroscopic forces 
contribute to EDMs?



The usual paradigm to connect 
BSM CP violation  to EDMs

BSM CPV
SUSY, GUTs, Extra Dim…

EW Scale Operators

Had Scale Operators
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Baryon Asymmetry
Early universe CPV
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Particle spectrum; also
scalars for baryon asym

QCD Matrix Elements
 dn , gπNN , …

Nuclear & atomic MEs
Schiff moment, other P- &
T-odd moments, e-nucleus
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Energy
Scale

Figure 1: Electric dipole moments and the interplay of various scales. For purposes of
illustration, only the impact of dimension six CPV operators is shown. Below the weak
scale, some operators, such as the fermion EDMs and quark chromo EDMs are e↵ectively
dimension five, carrying an explicit factor of the Higgs vacuum expectation value hH0i. A
summary of the operators of interest to this article appears in Table 1. See text for a full
discussion.

Section 2, we briefly review the conventions and definitions, drawing on the notation of the introductory
article. Section 3 contains a discussion of physics at the hadronic scale, including the running of the
weak-scale operators to the hadronic scale, the various hadronic interactions cast in the context of
chiral symmetry, and a summary of sensitivities of these hadronic quantities to the weak-scale operator
coe�cients. In Section 4, we review the status and open questions related to computations at the nuclear
and atomic scales, including P- and T-odd nuclear moments such as the Schi↵ moment. We follow this
discussion with an illustrative overview of the high-scale physics that may give rise to the weak-scale
operators in Section 6. A discussion and outlook appears in Section 7. Throughout the article, we refer
to other recent reviews [11, 12, 13, 14] when appropriate, endeavoring to avoid excessively duplicating
material that is amply covered elsewhere but updating when necessary. We also do not discuss other
tests of CP and T violation, given the limitations of space for this review (for a discussion of T violation
in neutron and nuclear �-decay, see the companion article in this issue on charged current processes).

5

• Effective operators at hadronic scale. CP violation encoded 
in Wilson coefficients.

(Engel, Ramsey-Musolf, Van Kolck)



The usual paradigm to connect CP violation 
sources to EDMs

• New physics corresponds to a new ultralight degree of freedom.
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VI. EDMS INDUCED BY A GENERIC LIGHT SCALAR

Most sensitive test Experiments typically study EDMs in three types of systems: (1) nu-

cleons and hadrons, (2) nuclei, and (3) paramagnetic and diamagnetic atoms and molecules.

The calculation of EDMs in terms of the underlying microscopic sources of CP violation is

complicated by the interplay of atomic, nuclear, and hadronic physics. In particular, here we

are interested in being able to obtain the dependence of the induced EDMs on the quark or

nucleon level couplings gq
s
, g

q

p
and gs, gp respectively. For specificity, we focus on estimating

the contribution to the EDM (dHg) of the diamagnetic mercury atom. The current bound

on dHg is given in Eq. (4).

Reviews [41, 46] are now available that describe the steps and associated theoretical issues

in calculating EDMs. Typically, the underlying motivation in such calculations is to detect

the e↵ects on EDMs of new CP-violating sources that lie beyond the electroweak scale. In

such cases, one starts with an e↵ective Lagrangian just above the hadronic scale ⇠ 1 GeV, in

terms of the light quark and gluon degrees freedom, obtained after integrating out all heavier

degrees of freedom in the SM and beyond. The e↵ects of the CP-violating sources beyond

the electroweak scale are contained in the Wilson coe�cients (Ci) of the operators (Oi) in

the e↵ective Lagrangian. For example, the quark EDMs and chromo-EDMs (CEDMs) are

described by the e↵ective Lagrangian

L = �
i

2

X

q=u,d,s

dq q̄�µ⌫�
5
q F

µ⌫
�

i

2

X

q=u,d,s

d̃q q̄�µ⌫q G
µ⌫
, (39)

where the coe�cients dq and d̃q give the magnitudes of the induced EDM and CEDM respec-

tively. A complete list of such e↵ective operators can be found in Ref. [46]. These include

e↵ective nucleon-nucleon, electron-electron, and electron-nucleon interactions. In addition,

nucleon-nucleon interactions are typically dominated by low momentum pion exchanges.

This requires one to take into account the e↵ect of CP-odd pion-nucleon couplings (ḡ⇡NN)

that could be induced via CP-odd quark and gluon interactions. Obtaining nuclear and

atomic EDMs starting from such an e↵ective Lagrangian and the pion-nucleon couplings

involves highly non-trivial nuclear and atomic calculations.

The calculation of the contribution of the new light scalar ' to the EDM of the diamag-

netic mercury atom dHg cannot be formulated in terms of an e↵ective Lagrangian above

the hadronic scale, as is usually done for contributions of physics beyond the SM. This can

be understood by noting that the scalar mass m' ⌧ ⇤QCD, so that its e↵ects cannot be

integrated out into Wilson coe�cients above the hadronic scale. Instead, one must treat

the light scalar ' as a fully propagating dynamical degree of freedom in the nuclear calcu-

lations. Such a calculation is beyond the scope of the present work. Here we will only give

order of magnitude estimates with the aim of demonstrating the complementarity of EDM

constraints with fifth-force experiments.

• Effective operator approach no longer applicable.

• For macroscopic short forces:

• EDM calculations need to incorporate the new light propagating 
  degree of freedom in nuclear and atomic calculations.



EDM Sources in the SM

• Two sources of CP violation in the SM:

- CKM phase

- QCD 

5

confirmed and studied in great detail through the mixing and decay properties of K- and

B-mesons. The contribution of the CKM phase to the neutron EDM is of order dn ⇠ 10�32
e

cm [25–33], about six orders of magnitude below the current experimental limit. This small

value is the result of the requirement of all three generations of quarks to participate in a

system that conserves flavor. The intrinsic quark EDMs first occur at order O(G2
F
↵s), with

flavor-changing interactions occurring in the intermediate virtual states. As a result, CKM

induced e↵ects give a negligible background to EDM searches.

The second source of CP violation in the SM arises from the CP violating term in the

QCD Lagrangian

L
CPV

QCD
= ✓̄

↵s

16⇡
G

a

µ⌫
G̃

aµ⌫
, (5)

where G̃
a

µ⌫
= "µ⌫⇢�G

a⇢�. The parameter ✓̄ is given by

✓̄ = ✓ + arg(detM 0
q
), (6)

where the ✓-parameter arises from the non-trivial structure of the QCD vacuum and M
0
q

corresponds to the original non-diagonal quark mass matrix after electroweak symmetry

breaking. Such a term is not forbidden by any symmetry and is in fact expected due to the

non-trivial structure of the QCD vacuum, the anomaly in the axial U(1)A transformation

on quarks [34, 35], and the absence of any massless quark in the SM. This term corresponds

to a source of flavor-diagonal CP violation, as opposed to the CKM phase associated with

flavor-changing CP violation.

The existence of gauge-equivalent vacuum instanton configurations, with distinct topo-

logical properties, requires the QCD vacuum to be given by a gauge-invariant superposition

of these configurations. Each such vacuum state is labeled by a ✓-parameter

|✓i =
X

n

e
in✓

|ni, (7)

where n denotes the topological winding number of the instanton configuration correspond-

ing to the vacuum state |ni. This non-trivial structure of the QCD vacuum is accounted for

by the ✓-term in Eqs.(6) and (5). There exists a connection between the QCD ✓-vacuum and

the axial U(1)A anomaly. The axial U(1)A transformation corresponds to a phase rotation

of a quark field given by

 ! e
�i↵�5 ,  ̄ !  ̄ e

�i↵�5 , (8)

where ↵ denotes the phase rotation angle. This transformation is a classical symmetry of

the Lagrangian in the limit of massless quarks. However, it is anomalous at the quantum

level. The divergence of the current

j
5
µ
=  ̄�µ�5 , (9)

• CKM-generated EDM is too small for current experimental 
sensitivities

1 Introduction

dn ⇠ 10�31 e cm (1)
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confirmed and studied in great detail through the mixing and decay properties of K- and

B-mesons. The contribution of the CKM phase to the neutron EDM is of order dn ⇠ 10�32
e

cm [25–33], about six orders of magnitude below the current experimental limit. This small

value is the result of the requirement of all three generations of quarks to participate in a

system that conserves flavor. The intrinsic quark EDMs first occur at order O(G2
F
↵s), with

flavor-changing interactions occurring in the intermediate virtual states. As a result, CKM

induced e↵ects give a negligible background to EDM searches.

The second source of CP violation in the SM arises from the CP violating term in the

QCD Lagrangian

L
CPV

QCD
= ✓̄

↵s

16⇡
G

a

µ⌫
G̃

aµ⌫
, (5)

where G̃
a

µ⌫
= "µ⌫⇢�G

a⇢�. The parameter ✓̄ is given by

✓̄ = ✓ + arg(detM 0
q
), (6)

where the ✓-parameter arises from the non-trivial structure of the QCD vacuum and M
0
q

corresponds to the original non-diagonal quark mass matrix after electroweak symmetry

breaking. Such a term is not forbidden by any symmetry and is in fact expected due to the

non-trivial structure of the QCD vacuum, the anomaly in the axial U(1)A transformation

on quarks [34, 35], and the absence of any massless quark in the SM. This term corresponds

to a source of flavor-diagonal CP violation, as opposed to the CKM phase associated with

flavor-changing CP violation.

The existence of gauge-equivalent vacuum instanton configurations, with distinct topo-

logical properties, requires the QCD vacuum to be given by a gauge-invariant superposition

of these configurations. Each such vacuum state is labeled by a ✓-parameter

|✓i =
X

n

e
in✓

|ni, (7)

where n denotes the topological winding number of the instanton configuration correspond-

ing to the vacuum state |ni. This non-trivial structure of the QCD vacuum is accounted for

by the ✓-term in Eqs.(6) and (5). There exists a connection between the QCD ✓-vacuum and

the axial U(1)A anomaly. The axial U(1)A transformation corresponds to a phase rotation

of a quark field given by

 ! e
�i↵�5 ,  ̄ !  ̄ e

�i↵�5 , (8)

where ↵ denotes the phase rotation angle. This transformation is a classical symmetry of

the Lagrangian in the limit of massless quarks. However, it is anomalous at the quantum

level. The divergence of the current

j
5
µ
=  ̄�µ�5 , (9)

• Thus, a non-zero EDM would be interpreted in the SM as flavor 
  diagonal strong CP violation
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breaking. Such a term is not forbidden by any symmetry and is in fact expected due to the

non-trivial structure of the QCD vacuum, the anomaly in the axial U(1)A transformation

on quarks [34, 35], and the absence of any massless quark in the SM. This term corresponds

to a source of flavor-diagonal CP violation, as opposed to the CKM phase associated with

flavor-changing CP violation.

The existence of gauge-equivalent vacuum instanton configurations, with distinct topo-

logical properties, requires the QCD vacuum to be given by a gauge-invariant superposition

of these configurations. Each such vacuum state is labeled by a ✓-parameter

|✓i =
X

n

e
in✓

|ni, (7)

where n denotes the topological winding number of the instanton configuration correspond-

ing to the vacuum state |ni. This non-trivial structure of the QCD vacuum is accounted for

by the ✓-term in Eqs.(6) and (5). There exists a connection between the QCD ✓-vacuum and

the axial U(1)A anomaly. The axial U(1)A transformation corresponds to a phase rotation

of a quark field given by

 ! e
�i↵�5 ,  ̄ !  ̄ e

�i↵�5 , (8)

where ↵ denotes the phase rotation angle. This transformation is a classical symmetry of

the Lagrangian in the limit of massless quarks. However, it is anomalous at the quantum

level. The divergence of the current

j
5
µ
=  ̄�µ�5 , (9)

• CKM-generated EDM is too small for current experimental 
sensitivities

1 Introduction

dn ⇠ 10�31 e cm (1)

References

[1] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 710, 67 (2012) [arXiv:1109.6572
[hep-ex]].

[2] V. Khachatryan et al. [CMS Collaboration], Phys. Lett. B 698, 196 (2011)
[arXiv:1101.1628 [hep-ex]].

[3] T. J. LeCompte and S. P. Martin, Phys. Rev. D 84, 015004 (2011) [arXiv:1105.4304
[hep-ph]].

[4] R. K. Ellis, K. Melnikov and G. Zanderighi, JHEP 0904, 077 (2009) [arXiv:0901.4101
[hep-ph]].

[5] C. F. Berger, Z. Bern, L. J. Dixon, F. Febres Cordero, D. Forde, T. Gleisberg, H. Ita and
D. A. Kosower et al., Phys. Rev. Lett. 102, 222001 (2009) [arXiv:0902.2760 [hep-ph]].

[6] C. F. Berger, Z. Bern, L. J. Dixon, F. Febres Cordero, D. Forde, T. Gleisberg, H. Ita
and D. A. Kosower et al., Phys. Rev. D 82, 074002 (2010) [arXiv:1004.1659 [hep-ph]].

[7] C. F. Berger, Z. Bern, L. J. Dixon, F. Febres Cordero, D. Forde, T. Gleisberg, H. Ita and
D. A. Kosower et al., Phys. Rev. Lett. 106, 092001 (2011) [arXiv:1009.2338 [hep-ph]].

[8] H. Ita, Z. Bern, L. J. Dixon, F. Febres Cordero, D. A. Kosower and D. Maitre, Phys.
Rev. D 85, 031501 (2012) [arXiv:1108.2229 [hep-ph]].

[9] G. F. Sterman, Nucl. Phys. B 281, 310 (1987).

[10] S. Catani and L. Trentadue, Nucl. Phys. B 327, 323 (1989).

[11] N. Kidonakis and J. F. Owens, Phys. Rev. D 63, 054019 (2001) [hep-ph/0007268].

[12] D. de Florian and W. Vogelsang, Phys. Rev. D 76, 074031 (2007) [arXiv:0704.1677
[hep-ph]].

[13] Z. Bern, G. Diana, L. J. Dixon, F. Febres Cordero, S. Hoche, H. Ita, D. A. Kosower
and D. Maitre et al., Phys. Rev. D 84, 114002 (2011) [arXiv:1106.1423 [hep-ph]].

[14] C. W. Bauer, S. Fleming and M. E. Luke, Phys. Rev. D 63, 014006 (2000) [hep-
ph/0005275].

1

5

confirmed and studied in great detail through the mixing and decay properties of K- and

B-mesons. The contribution of the CKM phase to the neutron EDM is of order dn ⇠ 10�32
e

cm [25–33], about six orders of magnitude below the current experimental limit. This small

value is the result of the requirement of all three generations of quarks to participate in a

system that conserves flavor. The intrinsic quark EDMs first occur at order O(G2
F
↵s), with

flavor-changing interactions occurring in the intermediate virtual states. As a result, CKM

induced e↵ects give a negligible background to EDM searches.

The second source of CP violation in the SM arises from the CP violating term in the

QCD Lagrangian

L
CPV

QCD
= ✓̄

↵s

16⇡
G

a

µ⌫
G̃

aµ⌫
, (5)

where G̃
a

µ⌫
= "µ⌫⇢�G

a⇢�. The parameter ✓̄ is given by

✓̄ = ✓ + arg(detM 0
q
), (6)

where the ✓-parameter arises from the non-trivial structure of the QCD vacuum and M
0
q

corresponds to the original non-diagonal quark mass matrix after electroweak symmetry

breaking. Such a term is not forbidden by any symmetry and is in fact expected due to the

non-trivial structure of the QCD vacuum, the anomaly in the axial U(1)A transformation

on quarks [34, 35], and the absence of any massless quark in the SM. This term corresponds

to a source of flavor-diagonal CP violation, as opposed to the CKM phase associated with

flavor-changing CP violation.

The existence of gauge-equivalent vacuum instanton configurations, with distinct topo-

logical properties, requires the QCD vacuum to be given by a gauge-invariant superposition

of these configurations. Each such vacuum state is labeled by a ✓-parameter

|✓i =
X

n

e
in✓

|ni, (7)

where n denotes the topological winding number of the instanton configuration correspond-

ing to the vacuum state |ni. This non-trivial structure of the QCD vacuum is accounted for

by the ✓-term in Eqs.(6) and (5). There exists a connection between the QCD ✓-vacuum and

the axial U(1)A anomaly. The axial U(1)A transformation corresponds to a phase rotation

of a quark field given by

 ! e
�i↵�5 ,  ̄ !  ̄ e

�i↵�5 , (8)

where ↵ denotes the phase rotation angle. This transformation is a classical symmetry of

the Lagrangian in the limit of massless quarks. However, it is anomalous at the quantum

level. The divergence of the current

j
5
µ
=  ̄�µ�5 , (9)

• Thus, a non-zero EDM would be interpreted in the SM as flavor 
  diagonal strong CP violation

Effects not 
associated with 
a macroscopic 
force
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confirmed and studied in great detail through the mixing and decay properties of K- and
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e

cm [25–33], about six orders of magnitude below the current experimental limit. This small
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system that conserves flavor. The intrinsic quark EDMs first occur at order O(G2
F
↵s), with

flavor-changing interactions occurring in the intermediate virtual states. As a result, CKM

induced e↵ects give a negligible background to EDM searches.

The second source of CP violation in the SM arises from the CP violating term in the

QCD Lagrangian

L
CPV

QCD
= ✓̄

↵s

16⇡
G

a

µ⌫
G̃

aµ⌫
, (5)

where G̃
a

µ⌫
= "µ⌫⇢�G

a⇢�. The parameter ✓̄ is given by

✓̄ = ✓ + arg(detM 0
q
), (6)

where the ✓-parameter arises from the non-trivial structure of the QCD vacuum and M
0
q

corresponds to the original non-diagonal quark mass matrix after electroweak symmetry

breaking. Such a term is not forbidden by any symmetry and is in fact expected due to the

non-trivial structure of the QCD vacuum, the anomaly in the axial U(1)A transformation

on quarks [34, 35], and the absence of any massless quark in the SM. This term corresponds

to a source of flavor-diagonal CP violation, as opposed to the CKM phase associated with

flavor-changing CP violation.

The existence of gauge-equivalent vacuum instanton configurations, with distinct topo-

logical properties, requires the QCD vacuum to be given by a gauge-invariant superposition

of these configurations. Each such vacuum state is labeled by a ✓-parameter

|✓i =
X

n

e
in✓

|ni, (7)

where n denotes the topological winding number of the instanton configuration correspond-

ing to the vacuum state |ni. This non-trivial structure of the QCD vacuum is accounted for

by the ✓-term in Eqs.(6) and (5). There exists a connection between the QCD ✓-vacuum and

the axial U(1)A anomaly. The axial U(1)A transformation corresponds to a phase rotation

of a quark field given by

 ! e
�i↵�5 ,  ̄ !  ̄ e

�i↵�5 , (8)

where ↵ denotes the phase rotation angle. This transformation is a classical symmetry of

the Lagrangian in the limit of massless quarks. However, it is anomalous at the quantum

level. The divergence of the current

j
5
µ
=  ̄�µ�5 , (9)

• U(1) axial rotations
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where n denotes the topological winding number of the instanton configuration correspond-

ing to the vacuum state |ni. This non-trivial structure of the QCD vacuum is accounted for

by the ✓-term in Eqs.(6) and (5). There exists a connection between the QCD ✓-vacuum and

the axial U(1)A anomaly. The axial U(1)A transformation corresponds to a phase rotation

of a quark field given by

 ! e
�i↵�5 ,  ̄ !  ̄ e

�i↵�5 , (8)

where ↵ denotes the phase rotation angle. This transformation is a classical symmetry of

the Lagrangian in the limit of massless quarks. However, it is anomalous at the quantum

level. The divergence of the current

j
5
µ
=  ̄�µ�5 , (9)
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associated with the U(1)A transformation, is given by

@
µ
j
5
µ
= 2imq ̄�5 +

↵s

8⇡
G

a

µ⌫
G̃

aµ⌫
. (10)

We see that the quark masses explicitly break the U(1)A symmetry of the Lagrangian even

at the classical level. The second term in Eq. (10), with the same structure as the QCD

CP violating term in Eq. (5), is the result of the anomaly and arises from the non-trivial

Jacobian in the QCD path-integral [36–39] that arises from the transformation in Eq. (8)

D D ̄ ! D D ̄ Exp
h
2i↵

Z
d
4
x
↵s

16⇡
G

a

µ⌫
G̃

aµ⌫

i
. (11)

Thus, for a U(1)A transformation of a massless quark, so that the mass term (mq) in Eq. (10)

vanishes, the only e↵ect of the axial U(1)A transformation in Eq. (8) is to shift the value of

the ✓-parameter

✓ ! ✓ + 2↵. (12)

Since the U(1)A transformation just amounts to a change of variables in the QCD path

integral, the shift in Eq. (12) implies that the path integral cannot depend ✓, rendering it an

unphysical parameter. Thus, if there is at least one massless quark, the QCD CP violating

term can be completely removed by an appropriate U(1)A phase rotation.

However, it is now established that there are no massless quarks in the SM [40]. In this

case, in addition to the shift in the ✓-parameter, the U(1)A transformation also changes the

phase of the quark mass. In this case, the U(1)A transformation cannot be used to eliminate

the CP violating e↵ect in QCD. Instead, it can only move the e↵ect between the ✓-parameter

and the quark mass.

In fact, a flavor-diagonal U(1)A transformation can be used to remove the overall phase

in the quark mass matrix so that all of the flavor-diagonal CP violation is contained in the

✓̄-term in Eq. (5), where ✓̄ is given by Eq. (6). Alternatively, one can perform an axial U(1)A
rotation to eliminate the ✓̄-term so that the flavor-diagonal CP violation e↵ect is contained

entirely in CP violating quark mass terms

LCPV = i✓̄
mumdms

mumd +mums +mdms

⇥
ū�5u+ d̄�5d+ s̄�5s

⇤
, (13)

where the heavy quarks c, b and t have been integrated out. Note that this term is propor-

tional to the product of quark masses so that in the presence of a massless quark, there is

no flavor-diagonal CP violation as expected.

Given that the contribution of the CKM phase to EDMs in the SM are negligibly small,

the observation of a non-zero EDM can be interpreted as arising from CP-violating mass

term in Eq. (13) or equivalently from the ✓̄-term in Eq. (5). The current limit on the neutron

EDM of |dn| < 2.9⇥ 10�13 e fm, translates into the bound

| ✓̄ | <⇠ 10�10
. (14)

The SM provides no explanation for such a small value of ✓̄ and corresponds to the well-

known Strong CP problem.
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• Axial U(1) symmetry is anomalous

• For a massless quark, the net effect is a shift in the 

6

associated with the U(1)A transformation, is given by

@
µ
j
5
µ
= 2imq ̄�5 +

↵s

8⇡
G

a

µ⌫
G̃

aµ⌫
. (10)

We see that the quark masses explicitly break the U(1)A symmetry of the Lagrangian even

at the classical level. The second term in Eq. (10), with the same structure as the QCD

CP violating term in Eq. (5), is the result of the anomaly and arises from the non-trivial

Jacobian in the QCD path-integral [36–39] that arises from the transformation in Eq. (8)

D D ̄ ! D D ̄ Exp
h
2i↵

Z
d
4
x
↵s

16⇡
G

a

µ⌫
G̃

aµ⌫

i
. (11)

Thus, for a U(1)A transformation of a massless quark, so that the mass term (mq) in Eq. (10)

vanishes, the only e↵ect of the axial U(1)A transformation in Eq. (8) is to shift the value of

the ✓-parameter

✓ ! ✓ + 2↵. (12)

Since the U(1)A transformation just amounts to a change of variables in the QCD path

integral, the shift in Eq. (12) implies that the path integral cannot depend ✓, rendering it an

unphysical parameter. Thus, if there is at least one massless quark, the QCD CP violating

term can be completely removed by an appropriate U(1)A phase rotation.

However, it is now established that there are no massless quarks in the SM [40]. In this

case, in addition to the shift in the ✓-parameter, the U(1)A transformation also changes the

phase of the quark mass. In this case, the U(1)A transformation cannot be used to eliminate

the CP violating e↵ect in QCD. Instead, it can only move the e↵ect between the ✓-parameter

and the quark mass.

In fact, a flavor-diagonal U(1)A transformation can be used to remove the overall phase

in the quark mass matrix so that all of the flavor-diagonal CP violation is contained in the

✓̄-term in Eq. (5), where ✓̄ is given by Eq. (6). Alternatively, one can perform an axial U(1)A
rotation to eliminate the ✓̄-term so that the flavor-diagonal CP violation e↵ect is contained

entirely in CP violating quark mass terms

LCPV = i✓̄
mumdms

mumd +mums +mdms

⇥
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confirmed and studied in great detail through the mixing and decay properties of K- and

B-mesons. The contribution of the CKM phase to the neutron EDM is of order dn ⇠ 10�32
e

cm [25–33], about six orders of magnitude below the current experimental limit. This small

value is the result of the requirement of all three generations of quarks to participate in a

system that conserves flavor. The intrinsic quark EDMs first occur at order O(G2
F
↵s), with

flavor-changing interactions occurring in the intermediate virtual states. As a result, CKM

induced e↵ects give a negligible background to EDM searches.

The second source of CP violation in the SM arises from the CP violating term in the

QCD Lagrangian

L
CPV

QCD
= ✓̄

↵s

16⇡
G

a

µ⌫
G̃

aµ⌫
, (5)

where G̃
a

µ⌫
= "µ⌫⇢�G

a⇢�. The parameter ✓̄ is given by

✓̄ = ✓ + arg(detM 0
q
), (6)

where the ✓-parameter arises from the non-trivial structure of the QCD vacuum and M
0
q

corresponds to the original non-diagonal quark mass matrix after electroweak symmetry

breaking. Such a term is not forbidden by any symmetry and is in fact expected due to the

non-trivial structure of the QCD vacuum, the anomaly in the axial U(1)A transformation

on quarks [34, 35], and the absence of any massless quark in the SM. This term corresponds

to a source of flavor-diagonal CP violation, as opposed to the CKM phase associated with

flavor-changing CP violation.

The existence of gauge-equivalent vacuum instanton configurations, with distinct topo-

logical properties, requires the QCD vacuum to be given by a gauge-invariant superposition

of these configurations. Each such vacuum state is labeled by a ✓-parameter

|✓i =
X

n

e
in✓

|ni, (7)

where n denotes the topological winding number of the instanton configuration correspond-

ing to the vacuum state |ni. This non-trivial structure of the QCD vacuum is accounted for

by the ✓-term in Eqs.(6) and (5). There exists a connection between the QCD ✓-vacuum and

the axial U(1)A anomaly. The axial U(1)A transformation corresponds to a phase rotation

of a quark field given by

 ! e
�i↵�5 ,  ̄ !  ̄ e

�i↵�5 , (8)

where ↵ denotes the phase rotation angle. This transformation is a classical symmetry of

the Lagrangian in the limit of massless quarks. However, it is anomalous at the quantum

level. The divergence of the current

j
5
µ
=  ̄�µ�5 , (9)



Connection with Axial U(1)
• In presence of a massless quark, strong CP violation can be 
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• In the absence of a massless quark, strong CP violation can 
be rotated into the quark mass terms

6

associated with the U(1)A transformation, is given by

@
µ
j
5
µ
= 2imq ̄�5 +

↵s

8⇡
G

a

µ⌫
G̃

aµ⌫
. (10)

We see that the quark masses explicitly break the U(1)A symmetry of the Lagrangian even

at the classical level. The second term in Eq. (10), with the same structure as the QCD

CP violating term in Eq. (5), is the result of the anomaly and arises from the non-trivial

Jacobian in the QCD path-integral [36–39] that arises from the transformation in Eq. (8)

D D ̄ ! D D ̄ Exp
h
2i↵

Z
d
4
x
↵s

16⇡
G

a

µ⌫
G̃

aµ⌫

i
. (11)

Thus, for a U(1)A transformation of a massless quark, so that the mass term (mq) in Eq. (10)

vanishes, the only e↵ect of the axial U(1)A transformation in Eq. (8) is to shift the value of

the ✓-parameter

✓ ! ✓ + 2↵. (12)

Since the U(1)A transformation just amounts to a change of variables in the QCD path

integral, the shift in Eq. (12) implies that the path integral cannot depend ✓, rendering it an

unphysical parameter. Thus, if there is at least one massless quark, the QCD CP violating

term can be completely removed by an appropriate U(1)A phase rotation.

However, it is now established that there are no massless quarks in the SM [40]. In this

case, in addition to the shift in the ✓-parameter, the U(1)A transformation also changes the

phase of the quark mass. In this case, the U(1)A transformation cannot be used to eliminate

the CP violating e↵ect in QCD. Instead, it can only move the e↵ect between the ✓-parameter

and the quark mass.

In fact, a flavor-diagonal U(1)A transformation can be used to remove the overall phase

in the quark mass matrix so that all of the flavor-diagonal CP violation is contained in the

✓̄-term in Eq. (5), where ✓̄ is given by Eq. (6). Alternatively, one can perform an axial U(1)A
rotation to eliminate the ✓̄-term so that the flavor-diagonal CP violation e↵ect is contained

entirely in CP violating quark mass terms

LCPV = i✓̄
mumdms

mumd +mums +mdms

⇥
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L
CPV

QCD
= ✓̄

↵s

16⇡
G

a

µ⌫
G̃

aµ⌫
, (5)

where G̃
a

µ⌫
= "µ⌫⇢�G

a⇢�. The parameter ✓̄ is given by

✓̄ = ✓ + arg(detM 0
q
), (6)

where the ✓-parameter arises from the non-trivial structure of the QCD vacuum and M
0
q

corresponds to the original non-diagonal quark mass matrix after electroweak symmetry

breaking. Such a term is not forbidden by any symmetry and is in fact expected due to the
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on quarks [34, 35], and the absence of any massless quark in the SM. This term corresponds
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logical properties, requires the QCD vacuum to be given by a gauge-invariant superposition

of these configurations. Each such vacuum state is labeled by a ✓-parameter

|✓i =
X

n

e
in✓

|ni, (7)

where n denotes the topological winding number of the instanton configuration correspond-

ing to the vacuum state |ni. This non-trivial structure of the QCD vacuum is accounted for

by the ✓-term in Eqs.(6) and (5). There exists a connection between the QCD ✓-vacuum and
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 ! e
�i↵�5 ,  ̄ !  ̄ e

�i↵�5 , (8)

where ↵ denotes the phase rotation angle. This transformation is a classical symmetry of

the Lagrangian in the limit of massless quarks. However, it is anomalous at the quantum

level. The divergence of the current

j
5
µ
=  ̄�µ�5 , (9)

• EDMs can then be generated through matrix elements of 
the CP violating quark mass terms.

Non-observation of flavor diagonal CP violation 
is the strong CP problem
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IV. EDMS AND SPIN-DEPENDENT FORCES VIA AXIONS

The generation of non-zero EDMs in the SM, through the CKM phase or the ✓̄-term, is not

associated with a macroscopic SD force, where macroscopic is understood as corresponding

to an interaction range r � 1/m⇡. In this case, there is no real connection between EDM

and fifth-force experiments. Such a connection can arise in scenarios beyond the SM that

involve a light mediator particle with CP-violating couplings to SM fermions. A well-known

example of such a light mediator particle is the axion, introduced to provide a dynamical

explanation of the strong CP problem. Here we give a brief overview of the axion mechanism

which can then be contrasted with the case of a more general scalar mediator considered in

this work. In particular, it will be shown that the correlation between constraints from EDM

and fifth-force experiments is quite di↵erent for the axion compared to a more general scalar.

More comprehensive and detailed reviews on axion physics can be found, for example, in

Refs. [41, 42].

For the purposes of illustration, we consider the axion mechanism in the Kim-Shifman-

Vainstein-Zakharov (KSVZ) model [43, 44]. In this model, the SM is augmented by a new

massless electroweak-singlet quark  and a complex scalar �

�L = @µ�
†
@
µ�+ µ

2
��

†�� ��(�
†�)2 +  ̄i/@ + y  ̄R� L + h.c., (15)

where  L = 1
2(1��

5) and  R = 1
2(1+�

5) denote the left-handed and right-handed chiral

components of the new massless quark respectively. This Lagrangian, and thereby the full

SM, is invariant under a global chiral U(1)PQ Peccei-Quinn transformation

 ! e
�i↵�5  ,  ̄ !  ̄ e

�i↵�5 , � ! e
�2i↵ �. (16)

However, as in the case of the axial U(1)A transformation, the Peccei-Quinn transformation

is anomalous and contributes a shift to the value of ✓, as shown in Eqs.(11) and (12). Thus,

by an appropriate U(1)PQ, one can completely rotate away the ✓̄-parameter, thereby solving

the Strong CP problem.

However, since a massless quark is not observed in nature, the U(1)PQ symmetry of

the Lagrangian must be spontaneously broken at a high enough scale fa so that the new

quark acquires a large enough mass to avoid current experimental limits. The spontaneous

symmetry breaking occurs via the vacuum expectation value

h�i = fa, (17)

and the excitations about this ground state value can be written as

�(x) =
fa + ⇢(x)

p
2

e
ia(x)/fa . (18)

The heavy field ⇢(x) corresponds to radial excitations and a(x) is the axion corresponding

to the Goldstone boson associated with the spontaneous symmetry breaking of U(1)PQ.

• SM + massless colored quark + complex scalar
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An illustrative model: KSVZ Model
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However, since the U(1)PQ symmetry is explicitly broken by the chiral anomaly, the axion

is a pseudo-Goldstone boson and acquires a potential and a non-zero mass. Experimental

constraints impose the boundaries of 109 ⇠
< fa ⇠

< 1012 GeV, which constitute the “axion-

window” [42].

After the spontaneous symmetry breaking, the new electroweak-singlet quark acquires

a large mass m ⇠ fa via its Yukawa interaction with � in Eq. (15). Similarly, the field

⇢(x) in Eq. (18) also acquires a large mass. One can construct a low energy e↵ective theory

by integrating out the heavy fields  (x), ⇢(x), where the low energy degrees of freedom

correspond to SM fields and the axion. The general form of such an e↵ective theory is

obtained by observing the symmetry properties of the full theory. Note that the U(1)PQ

transformation in Eq. (16) results in the shifts

✓̄ ! ✓̄ + 2↵,
a(x)

fa
!

a(x)

fa
� 2↵, (19)

so that the quantity ✓̄ + a(x)
fa

is left invariant. This implies that all axion interactions in the

e↵ective theory must be formulated in terms of this invariant combination as a fundamental

building block. In particular, the ✓̄-parameter in Eq. (5) must be replaced as

✓̄ ! ✓̄ +
a(x)

fa
, (20)

so that the ✓̄ parameter is e↵ectively promoted to a dynamical field. The e↵ective interaction

Lagrangian for the axion now takes the general form

La =
↵s

16⇡

⇣
✓̄ +

a

fa

⌘
G

a

µ⌫
G̃

aµ⌫
�mq q̄q. (21)

Note that in general additional terms from higher dimension axion interactions are also

possible and the kinetic term for the axion 1
2 @

µa(x)@µa(x) is implicit. We have included the

quark mass term in the definition La since, as discussed below, an axial U(1)A transformation

can move the axion coupling entirely into the quark mass term. For purposes of illustration,

we work in QCD with one quark flavor.

The couplings of the axion to the SM matter fermions can be made more explicit by

rotating ✓̄-term in Eq. (5) into the quark mass matrix before introducing axions by the

replacement in Eq. (20). The relevant terms in the Lagrangian of QCD with a single quark

flavor are

L = ✓̄
↵s

16⇡
G

a

µ⌫
G̃

aµ⌫
�mq q̄q. (22)

Performing an axial U(1)A transformation to rotate the ✓̄-term into the quark mass, the

Lagrangian can be brought into the form

L = �mq cos ✓̄ q̄q +mq sin ✓̄ q̄i�
5
q, (23)
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⇢(x) in Eq. (18) also acquires a large mass. One can construct a low energy e↵ective theory

by integrating out the heavy fields  (x), ⇢(x), where the low energy degrees of freedom

correspond to SM fields and the axion. The general form of such an e↵ective theory is

obtained by observing the symmetry properties of the full theory. Note that the U(1)PQ

transformation in Eq. (16) results in the shifts

✓̄ ! ✓̄ + 2↵,
a(x)

fa
!

a(x)

fa
� 2↵, (19)

so that the quantity ✓̄ + a(x)
fa

is left invariant. This implies that all axion interactions in the

e↵ective theory must be formulated in terms of this invariant combination as a fundamental

building block. In particular, the ✓̄-parameter in Eq. (5) must be replaced as

✓̄ ! ✓̄ +
a(x)

fa
, (20)

so that the ✓̄ parameter is e↵ectively promoted to a dynamical field. The e↵ective interaction

Lagrangian for the axion now takes the general form

La =
↵s

16⇡

⇣
✓̄ +

a

fa

⌘
G

a

µ⌫
G̃

aµ⌫
�mq q̄q. (21)

Note that in general additional terms from higher dimension axion interactions are also

possible and the kinetic term for the axion 1
2 @

µa(x)@µa(x) is implicit. We have included the

quark mass term in the definition La since, as discussed below, an axial U(1)A transformation

can move the axion coupling entirely into the quark mass term. For purposes of illustration,

we work in QCD with one quark flavor.

The couplings of the axion to the SM matter fermions can be made more explicit by

rotating ✓̄-term in Eq. (5) into the quark mass matrix before introducing axions by the

replacement in Eq. (20). The relevant terms in the Lagrangian of QCD with a single quark

flavor are

L = ✓̄
↵s

16⇡
G

a

µ⌫
G̃

aµ⌫
�mq q̄q. (22)

Performing an axial U(1)A transformation to rotate the ✓̄-term into the quark mass, the

Lagrangian can be brought into the form

L = �mq cos ✓̄ q̄q +mq sin ✓̄ q̄i�
5
q, (23)

• Integrate out heavy degrees of freedom. Construct low energy 
EFT: SM + Axion. Note in full theory U(1) PQ causes the shifts:
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< 1012 GeV, which constitute the “axion-
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After the spontaneous symmetry breaking, the new electroweak-singlet quark acquires

a large mass m ⇠ fa via its Yukawa interaction with � in Eq. (15). Similarly, the field

⇢(x) in Eq. (18) also acquires a large mass. One can construct a low energy e↵ective theory

by integrating out the heavy fields  (x), ⇢(x), where the low energy degrees of freedom

correspond to SM fields and the axion. The general form of such an e↵ective theory is

obtained by observing the symmetry properties of the full theory. Note that the U(1)PQ

transformation in Eq. (16) results in the shifts

✓̄ ! ✓̄ + 2↵,
a(x)

fa
!

a(x)
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� 2↵, (19)

so that the quantity ✓̄ + a(x)
fa

is left invariant. This implies that all axion interactions in the

e↵ective theory must be formulated in terms of this invariant combination as a fundamental

building block. In particular, the ✓̄-parameter in Eq. (5) must be replaced as

✓̄ ! ✓̄ +
a(x)

fa
, (20)

so that the ✓̄ parameter is e↵ectively promoted to a dynamical field. The e↵ective interaction

Lagrangian for the axion now takes the general form
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⇣
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a
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⌘
G

a
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aµ⌫
�mq q̄q. (21)

Note that in general additional terms from higher dimension axion interactions are also

possible and the kinetic term for the axion 1
2 @

µa(x)@µa(x) is implicit. We have included the

quark mass term in the definition La since, as discussed below, an axial U(1)A transformation

can move the axion coupling entirely into the quark mass term. For purposes of illustration,

we work in QCD with one quark flavor.

The couplings of the axion to the SM matter fermions can be made more explicit by

rotating ✓̄-term in Eq. (5) into the quark mass matrix before introducing axions by the

replacement in Eq. (20). The relevant terms in the Lagrangian of QCD with a single quark

flavor are

L = ✓̄
↵s

16⇡
G

a

µ⌫
G̃

aµ⌫
�mq q̄q. (22)

Performing an axial U(1)A transformation to rotate the ✓̄-term into the quark mass, the

Lagrangian can be brought into the form

L = �mq cos ✓̄ q̄q +mq sin ✓̄ q̄i�
5
q, (23)

8

However, since the U(1)PQ symmetry is explicitly broken by the chiral anomaly, the axion

is a pseudo-Goldstone boson and acquires a potential and a non-zero mass. Experimental

constraints impose the boundaries of 109 ⇠
< fa ⇠

< 1012 GeV, which constitute the “axion-

window” [42].

After the spontaneous symmetry breaking, the new electroweak-singlet quark acquires

a large mass m ⇠ fa via its Yukawa interaction with � in Eq. (15). Similarly, the field

⇢(x) in Eq. (18) also acquires a large mass. One can construct a low energy e↵ective theory

by integrating out the heavy fields  (x), ⇢(x), where the low energy degrees of freedom

correspond to SM fields and the axion. The general form of such an e↵ective theory is

obtained by observing the symmetry properties of the full theory. Note that the U(1)PQ

transformation in Eq. (16) results in the shifts

✓̄ ! ✓̄ + 2↵,
a(x)

fa
!

a(x)

fa
� 2↵, (19)

so that the quantity ✓̄ + a(x)
fa

is left invariant. This implies that all axion interactions in the

e↵ective theory must be formulated in terms of this invariant combination as a fundamental

building block. In particular, the ✓̄-parameter in Eq. (5) must be replaced as

✓̄ ! ✓̄ +
a(x)

fa
, (20)

so that the ✓̄ parameter is e↵ectively promoted to a dynamical field. The e↵ective interaction

Lagrangian for the axion now takes the general form

La =
↵s

16⇡
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✓̄ +

a
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⌘
G

a

µ⌫
G̃

aµ⌫
�mq q̄q. (21)

Note that in general additional terms from higher dimension axion interactions are also

possible and the kinetic term for the axion 1
2 @

µa(x)@µa(x) is implicit. We have included the

quark mass term in the definition La since, as discussed below, an axial U(1)A transformation

can move the axion coupling entirely into the quark mass term. For purposes of illustration,

we work in QCD with one quark flavor.

The couplings of the axion to the SM matter fermions can be made more explicit by

rotating ✓̄-term in Eq. (5) into the quark mass matrix before introducing axions by the

replacement in Eq. (20). The relevant terms in the Lagrangian of QCD with a single quark

flavor are

L = ✓̄
↵s

16⇡
G

a

µ⌫
G̃

aµ⌫
�mq q̄q. (22)

Performing an axial U(1)A transformation to rotate the ✓̄-term into the quark mass, the

Lagrangian can be brought into the form

L = �mq cos ✓̄ q̄q +mq sin ✓̄ q̄i�
5
q, (23)
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However, since the U(1)PQ symmetry is explicitly broken by the chiral anomaly, the axion

is a pseudo-Goldstone boson and acquires a potential and a non-zero mass. Experimental

constraints impose the boundaries of 109 ⇠
< fa ⇠

< 1012 GeV, which constitute the “axion-

window” [42].

After the spontaneous symmetry breaking, the new electroweak-singlet quark acquires

a large mass m ⇠ fa via its Yukawa interaction with � in Eq. (15). Similarly, the field

⇢(x) in Eq. (18) also acquires a large mass. One can construct a low energy e↵ective theory

by integrating out the heavy fields  (x), ⇢(x), where the low energy degrees of freedom

correspond to SM fields and the axion. The general form of such an e↵ective theory is

obtained by observing the symmetry properties of the full theory. Note that the U(1)PQ

transformation in Eq. (16) results in the shifts

✓̄ ! ✓̄ + 2↵,
a(x)

fa
!

a(x)

fa
� 2↵, (19)

so that the quantity ✓̄ + a(x)
fa

is left invariant. This implies that all axion interactions in the

e↵ective theory must be formulated in terms of this invariant combination as a fundamental

building block. In particular, the ✓̄-parameter in Eq. (5) must be replaced as

✓̄ ! ✓̄ +
a(x)

fa
, (20)

so that the ✓̄ parameter is e↵ectively promoted to a dynamical field. The e↵ective interaction

Lagrangian for the axion now takes the general form

La =
↵s

16⇡

⇣
✓̄ +

a

fa

⌘
G

a

µ⌫
G̃

aµ⌫
�mq q̄q. (21)

Note that in general additional terms from higher dimension axion interactions are also

possible and the kinetic term for the axion 1
2 @

µa(x)@µa(x) is implicit. We have included the

quark mass term in the definition La since, as discussed below, an axial U(1)A transformation

can move the axion coupling entirely into the quark mass term. For purposes of illustration,

we work in QCD with one quark flavor.

The couplings of the axion to the SM matter fermions can be made more explicit by

rotating ✓̄-term in Eq. (5) into the quark mass matrix before introducing axions by the

replacement in Eq. (20). The relevant terms in the Lagrangian of QCD with a single quark

flavor are

L = ✓̄
↵s

16⇡
G

a

µ⌫
G̃

aµ⌫
�mq q̄q. (22)

Performing an axial U(1)A transformation to rotate the ✓̄-term into the quark mass, the

Lagrangian can be brought into the form

L = �mq cos ✓̄ q̄q +mq sin ✓̄ q̄i�
5
q, (23)

• Effective Axion Lagrangian:
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However, since the U(1)PQ symmetry is explicitly broken by the chiral anomaly, the axion

is a pseudo-Goldstone boson and acquires a potential and a non-zero mass. Experimental

constraints impose the boundaries of 109 ⇠
< fa ⇠

< 1012 GeV, which constitute the “axion-

window” [42].

After the spontaneous symmetry breaking, the new electroweak-singlet quark acquires

a large mass m ⇠ fa via its Yukawa interaction with � in Eq. (15). Similarly, the field

⇢(x) in Eq. (18) also acquires a large mass. One can construct a low energy e↵ective theory

by integrating out the heavy fields  (x), ⇢(x), where the low energy degrees of freedom

correspond to SM fields and the axion. The general form of such an e↵ective theory is

obtained by observing the symmetry properties of the full theory. Note that the U(1)PQ

transformation in Eq. (16) results in the shifts

✓̄ ! ✓̄ + 2↵,
a(x)

fa
!

a(x)

fa
� 2↵, (19)

so that the quantity ✓̄ + a(x)
fa

is left invariant. This implies that all axion interactions in the

e↵ective theory must be formulated in terms of this invariant combination as a fundamental

building block. In particular, the ✓̄-parameter in Eq. (5) must be replaced as

✓̄ ! ✓̄ +
a(x)

fa
, (20)

so that the ✓̄ parameter is e↵ectively promoted to a dynamical field. The e↵ective interaction

Lagrangian for the axion now takes the general form

La =
↵s

16⇡

⇣
✓̄ +

a

fa

⌘
G

a

µ⌫
G̃

aµ⌫
�mq q̄q. (21)

Note that in general additional terms from higher dimension axion interactions are also

possible and the kinetic term for the axion 1
2 @

µa(x)@µa(x) is implicit. We have included the

quark mass term in the definition La since, as discussed below, an axial U(1)A transformation

can move the axion coupling entirely into the quark mass term. For purposes of illustration,

we work in QCD with one quark flavor.

The couplings of the axion to the SM matter fermions can be made more explicit by

rotating ✓̄-term in Eq. (5) into the quark mass matrix before introducing axions by the

replacement in Eq. (20). The relevant terms in the Lagrangian of QCD with a single quark

flavor are

L = ✓̄
↵s

16⇡
G

a

µ⌫
G̃

aµ⌫
�mq q̄q. (22)

Performing an axial U(1)A transformation to rotate the ✓̄-term into the quark mass, the

Lagrangian can be brought into the form

L = �mq cos ✓̄ q̄q +mq sin ✓̄ q̄i�
5
q, (23)

Low Effective Lagrangian for Axion

• Axial U(1) transformation can move all CP violation into the 
quark mass terms:
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which will reproduce the analog of the term in Eq. (13), when expanded to leading power

in ✓̄ and generalized to three quark flavors [45]. As before, the axion interactions in the

e↵ective theory can now be obtained by implementing the replacement in Eq. (20) to get

La = � cos
⇣
✓̄ +

a

fa

⌘
mq q̄q +mq sin

⇣
✓̄ +

a

fa

⌘
q̄i�

5
q, (24)

which is equivalent to the form in Eq. (21). The form of Eq. (24) makes manifest the

couplings of the axion to the SM quark. In general the axion can acquire a non-zero vacuum

expectation value (vev) so that

a(x) = hai+ a(x), (25)

where a(x) denotes the axion field corresponding to excitations above the vev hai. After the

axion acquires a non-zero expectation value, the new induced ✓̄ parameter (✓ind.) is given by

✓ind. = ✓̄ +
hai

fa
, (26)

so that the axion Lagrangian in Eq. (24) can be brought into the form

La = � cos
⇣
✓ind. +

a

fa

⌘
mq q̄q +mq sin

⇣
✓ind. +

a

fa

⌘
q̄i�

5
q. (27)

An axion potential is generated through non-perturbative QCD e↵ects which generate a

non-zero vev for the quark bilinear so that

V

⇣
✓ind. +

a

fa

⌘
= mq hq̄qi cos

⇣
✓ind. +

a

fa

⌘
. (28)

Similar, results can be derived when there is more than one quark flavor. Generally, the

ground state axion potential, when expanded around its minimum, has the form

V (✓ind.) '
1

2
�(0) ✓2ind., (29)

where �(0) is the topological susceptibility and is given by �(0) = �mqhq̄qi for one quark

flavor and by

�(0) = �
mumd

mu +md

hūu+ d̄di, (30)

for two quark flavors. Since the minimization of the ground state axion potential requires

✓ind. = 0, there is no flavor-diagonal CP violation and a correspondingly vanishing contri-

bution to the EDM. In this way, dynamical relaxation in the ground state axion potential

solves the strong CP problem and eliminates flavor-diagonal CP-violation.

The presence of additional higher-dimensional CP-odd operators can generate terms that

are linear in ✓ind. in the axion potential. This can occur via mixed correlators of the form

[41]

�CP(0) = �i limk!0

Z
d
4
x e

ik·x
h0|T (GG̃(x),OCP(0))|0i. (31)
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However, since the U(1)PQ symmetry is explicitly broken by the chiral anomaly, the axion

is a pseudo-Goldstone boson and acquires a potential and a non-zero mass. Experimental

constraints impose the boundaries of 109 ⇠
< fa ⇠

< 1012 GeV, which constitute the “axion-

window” [42].

After the spontaneous symmetry breaking, the new electroweak-singlet quark acquires

a large mass m ⇠ fa via its Yukawa interaction with � in Eq. (15). Similarly, the field

⇢(x) in Eq. (18) also acquires a large mass. One can construct a low energy e↵ective theory

by integrating out the heavy fields  (x), ⇢(x), where the low energy degrees of freedom

correspond to SM fields and the axion. The general form of such an e↵ective theory is

obtained by observing the symmetry properties of the full theory. Note that the U(1)PQ

transformation in Eq. (16) results in the shifts

✓̄ ! ✓̄ + 2↵,
a(x)

fa
!

a(x)

fa
� 2↵, (19)

so that the quantity ✓̄ + a(x)
fa

is left invariant. This implies that all axion interactions in the

e↵ective theory must be formulated in terms of this invariant combination as a fundamental

building block. In particular, the ✓̄-parameter in Eq. (5) must be replaced as

✓̄ ! ✓̄ +
a(x)

fa
, (20)

so that the ✓̄ parameter is e↵ectively promoted to a dynamical field. The e↵ective interaction

Lagrangian for the axion now takes the general form

La =
↵s

16⇡

⇣
✓̄ +

a

fa

⌘
G

a

µ⌫
G̃

aµ⌫
�mq q̄q. (21)

Note that in general additional terms from higher dimension axion interactions are also

possible and the kinetic term for the axion 1
2 @

µa(x)@µa(x) is implicit. We have included the

quark mass term in the definition La since, as discussed below, an axial U(1)A transformation

can move the axion coupling entirely into the quark mass term. For purposes of illustration,

we work in QCD with one quark flavor.

The couplings of the axion to the SM matter fermions can be made more explicit by

rotating ✓̄-term in Eq. (5) into the quark mass matrix before introducing axions by the

replacement in Eq. (20). The relevant terms in the Lagrangian of QCD with a single quark

flavor are

L = ✓̄
↵s

16⇡
G

a

µ⌫
G̃

aµ⌫
�mq q̄q. (22)

Performing an axial U(1)A transformation to rotate the ✓̄-term into the quark mass, the

Lagrangian can be brought into the form

L = �mq cos ✓̄ q̄q +mq sin ✓̄ q̄i�
5
q, (23)

• Axion couplings to the quarks is now manifest.

Low Effective Lagrangian for Axion

• Axial U(1) transformation can move all CP violation into the 
quark mass terms:

Axial U(1) rotation



9

which will reproduce the analog of the term in Eq. (13), when expanded to leading power

in ✓̄ and generalized to three quark flavors [45]. As before, the axion interactions in the

e↵ective theory can now be obtained by implementing the replacement in Eq. (20) to get

La = � cos
⇣
✓̄ +

a

fa

⌘
mq q̄q +mq sin

⇣
✓̄ +

a

fa

⌘
q̄i�

5
q, (24)

which is equivalent to the form in Eq. (21). The form of Eq. (24) makes manifest the

couplings of the axion to the SM quark. In general the axion can acquire a non-zero vacuum

expectation value (vev) so that

a(x) = hai+ a(x), (25)

where a(x) denotes the axion field corresponding to excitations above the vev hai. After the

axion acquires a non-zero expectation value, the new induced ✓̄ parameter (✓ind.) is given by

✓ind. = ✓̄ +
hai

fa
, (26)

so that the axion Lagrangian in Eq. (24) can be brought into the form

La = � cos
⇣
✓ind. +

a

fa

⌘
mq q̄q +mq sin

⇣
✓ind. +

a

fa

⌘
q̄i�

5
q. (27)

An axion potential is generated through non-perturbative QCD e↵ects which generate a

non-zero vev for the quark bilinear so that

V

⇣
✓ind. +

a

fa

⌘
= mq hq̄qi cos

⇣
✓ind. +

a

fa

⌘
. (28)

Similar, results can be derived when there is more than one quark flavor. Generally, the

ground state axion potential, when expanded around its minimum, has the form

V (✓ind.) '
1

2
�(0) ✓2ind., (29)

where �(0) is the topological susceptibility and is given by �(0) = �mqhq̄qi for one quark

flavor and by

�(0) = �
mumd

mu +md

hūu+ d̄di, (30)

for two quark flavors. Since the minimization of the ground state axion potential requires

✓ind. = 0, there is no flavor-diagonal CP violation and a correspondingly vanishing contri-

bution to the EDM. In this way, dynamical relaxation in the ground state axion potential

solves the strong CP problem and eliminates flavor-diagonal CP-violation.

The presence of additional higher-dimensional CP-odd operators can generate terms that

are linear in ✓ind. in the axion potential. This can occur via mixed correlators of the form

[41]

�CP(0) = �i limk!0

Z
d
4
x e

ik·x
h0|T (GG̃(x),OCP(0))|0i. (31)
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However, since the U(1)PQ symmetry is explicitly broken by the chiral anomaly, the axion

is a pseudo-Goldstone boson and acquires a potential and a non-zero mass. Experimental

constraints impose the boundaries of 109 ⇠
< fa ⇠

< 1012 GeV, which constitute the “axion-

window” [42].

After the spontaneous symmetry breaking, the new electroweak-singlet quark acquires

a large mass m ⇠ fa via its Yukawa interaction with � in Eq. (15). Similarly, the field

⇢(x) in Eq. (18) also acquires a large mass. One can construct a low energy e↵ective theory

by integrating out the heavy fields  (x), ⇢(x), where the low energy degrees of freedom

correspond to SM fields and the axion. The general form of such an e↵ective theory is

obtained by observing the symmetry properties of the full theory. Note that the U(1)PQ

transformation in Eq. (16) results in the shifts

✓̄ ! ✓̄ + 2↵,
a(x)

fa
!

a(x)

fa
� 2↵, (19)

so that the quantity ✓̄ + a(x)
fa

is left invariant. This implies that all axion interactions in the

e↵ective theory must be formulated in terms of this invariant combination as a fundamental

building block. In particular, the ✓̄-parameter in Eq. (5) must be replaced as

✓̄ ! ✓̄ +
a(x)

fa
, (20)

so that the ✓̄ parameter is e↵ectively promoted to a dynamical field. The e↵ective interaction

Lagrangian for the axion now takes the general form

La =
↵s

16⇡

⇣
✓̄ +

a

fa

⌘
G

a

µ⌫
G̃

aµ⌫
�mq q̄q. (21)

Note that in general additional terms from higher dimension axion interactions are also

possible and the kinetic term for the axion 1
2 @

µa(x)@µa(x) is implicit. We have included the

quark mass term in the definition La since, as discussed below, an axial U(1)A transformation

can move the axion coupling entirely into the quark mass term. For purposes of illustration,

we work in QCD with one quark flavor.

The couplings of the axion to the SM matter fermions can be made more explicit by

rotating ✓̄-term in Eq. (5) into the quark mass matrix before introducing axions by the

replacement in Eq. (20). The relevant terms in the Lagrangian of QCD with a single quark

flavor are

L = ✓̄
↵s

16⇡
G

a

µ⌫
G̃

aµ⌫
�mq q̄q. (22)

Performing an axial U(1)A transformation to rotate the ✓̄-term into the quark mass, the

Lagrangian can be brought into the form

L = �mq cos ✓̄ q̄q +mq sin ✓̄ q̄i�
5
q, (23)

• Axion couplings to the quarks is now manifest.

Low Effective Lagrangian for Axion

• Axial U(1) transformation can move all CP violation into the 
quark mass terms:

Axial U(1) rotation

• Quark condensate generates an axion potential: 
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so that the quantity ✓̄ + a(x)
fa

is left invariant. This implies that all axion interactions in the

e↵ective theory must be formulated in terms of this invariant combination as a fundamental

building block. In particular, the ✓̄-parameter in Eq. (7) must be replaced as

✓̄ ! ✓̄ +
a(x)

fa
, (22)

so that the ✓̄ parameter is e↵ectively promoted to a dynamical field. The e↵ective interaction

Lagrangian for the axion now takes the general form

La =
↵s

16⇡

⇣
✓̄ +

a

fa

⌘
G

a

µ⌫
G̃

aµ⌫
�mq q̄q + · · · . (23)

where the “+ · · · ” denote the axion kinetic and mass terms as well as possible higher-

dimension axion interactions. Note that we have included the quark mass term in the

definition La since, as discussed below, an axial U(1)A transformation can move the axion

coupling entirely into the quark mass term. For purposes of illustration, we work in QCD

with one quark flavor.

The couplings of the axion to the SM matter fermions can be made more explicit by

rotating ✓̄-term in Eq. (7) into the quark mass matrix before introducing axions by the

replacement in Eq. (22). Prior to introducing the axion, the relevant terms in the Lagrangian

of QCD with a single quark flavor are

L = ✓̄
↵s

16⇡
G

a

µ⌫
G̃

aµ⌫
�mq q̄q . (24)

Performing an axial U(1)A transformation to rotate the ✓̄-term into the quark mass, the

Lagrangian can be brought into the form

L = �mq cos ✓̄ q̄q +mq sin ✓̄ q̄i�
5
q , (25)

which will reproduce the analog of the term in Eq. (15), when expanded to leading power

in ✓̄ and generalized to three quark flavors [44]. Inclusion of the axion interactions in the

e↵ective theory can now be obtained by implementing the replacement in Eq. (22), leading

to

La = � cos
⇣
✓̄ +

a

fa

⌘
mq q̄q +mq sin

⇣
✓̄ +

a

fa

⌘
q̄i�

5
q , (26)

which is equivalent to the form in Eq. (23). The form of Eq. (26) makes manifest the

couplings of the axion to the SM quark. In general the axion can acquire a non-zero vacuum

expectation value (vev) so that

a(x) = hai+ a(x) , (27)

where a(x) denotes the axion field corresponding to excitations above the vev hai. After the

axion acquires a non-zero expectation value, the new induced ✓̄ parameter (✓e↵) is given by

✓e↵ = ✓̄ +
hai

fa
, (28)

8

so that the quantity ✓̄ + a(x)
fa

is left invariant. This implies that all axion interactions in the

e↵ective theory must be formulated in terms of this invariant combination as a fundamental

building block. In particular, the ✓̄-parameter in Eq. (7) must be replaced as

✓̄ ! ✓̄ +
a(x)

fa
, (22)

so that the ✓̄ parameter is e↵ectively promoted to a dynamical field. The e↵ective interaction

Lagrangian for the axion now takes the general form

La =
↵s

16⇡

⇣
✓̄ +

a

fa

⌘
G

a

µ⌫
G̃

aµ⌫
�mq q̄q + · · · . (23)

where the “+ · · · ” denote the axion kinetic and mass terms as well as possible higher-

dimension axion interactions. Note that we have included the quark mass term in the

definition La since, as discussed below, an axial U(1)A transformation can move the axion

coupling entirely into the quark mass term. For purposes of illustration, we work in QCD

with one quark flavor.

The couplings of the axion to the SM matter fermions can be made more explicit by

rotating ✓̄-term in Eq. (7) into the quark mass matrix before introducing axions by the

replacement in Eq. (22). Prior to introducing the axion, the relevant terms in the Lagrangian

of QCD with a single quark flavor are

L = ✓̄
↵s

16⇡
G

a

µ⌫
G̃

aµ⌫
�mq q̄q . (24)

Performing an axial U(1)A transformation to rotate the ✓̄-term into the quark mass, the

Lagrangian can be brought into the form

L = �mq cos ✓̄ q̄q +mq sin ✓̄ q̄i�
5
q , (25)

which will reproduce the analog of the term in Eq. (15), when expanded to leading power

in ✓̄ and generalized to three quark flavors [44]. Inclusion of the axion interactions in the

e↵ective theory can now be obtained by implementing the replacement in Eq. (22), leading

to

La = � cos
⇣
✓̄ +

a

fa

⌘
mq q̄q +mq sin

⇣
✓̄ +

a

fa

⌘
q̄i�

5
q , (26)

which is equivalent to the form in Eq. (23). The form of Eq. (26) makes manifest the

couplings of the axion to the SM quark. In general the axion can acquire a non-zero vacuum

expectation value (vev) so that

a(x) = hai+ a(x) , (27)

where a(x) denotes the axion field corresponding to excitations above the vev hai. After the

axion acquires a non-zero expectation value, the new induced ✓̄ parameter (✓e↵) is given by

✓e↵ = ✓̄ +
hai

fa
, (28)
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which will reproduce the analog of the term in Eq. (13), when expanded to leading power

in ✓̄ and generalized to three quark flavors [45]. As before, the axion interactions in the

e↵ective theory can now be obtained by implementing the replacement in Eq. (20) to get

La = � cos
⇣
✓̄ +

a

fa

⌘
mq q̄q +mq sin

⇣
✓̄ +

a

fa

⌘
q̄i�

5
q, (24)

which is equivalent to the form in Eq. (21). The form of Eq. (24) makes manifest the

couplings of the axion to the SM quark. In general the axion can acquire a non-zero vacuum

expectation value (vev) so that

a(x) = hai+ a(x), (25)

where a(x) denotes the axion field corresponding to excitations above the vev hai. After the

axion acquires a non-zero expectation value, the new induced ✓̄ parameter (✓ind.) is given by

✓ind. = ✓̄ +
hai

fa
, (26)

so that the axion Lagrangian in Eq. (24) can be brought into the form

La = � cos
⇣
✓ind. +

a

fa

⌘
mq q̄q +mq sin

⇣
✓ind. +

a

fa

⌘
q̄i�

5
q. (27)

An axion potential is generated through non-perturbative QCD e↵ects which generate a

non-zero vev for the quark bilinear so that

V

⇣
✓ind. +

a

fa

⌘
= mq hq̄qi cos

⇣
✓ind. +

a

fa

⌘
. (28)

Similar, results can be derived when there is more than one quark flavor. Generally, the

ground state axion potential, when expanded around its minimum, has the form

V (✓ind.) '
1

2
�(0) ✓2ind., (29)

where �(0) is the topological susceptibility and is given by �(0) = �mqhq̄qi for one quark

flavor and by

�(0) = �
mumd

mu +md

hūu+ d̄di, (30)

for two quark flavors. Since the minimization of the ground state axion potential requires

✓ind. = 0, there is no flavor-diagonal CP violation and a correspondingly vanishing contri-

bution to the EDM. In this way, dynamical relaxation in the ground state axion potential

solves the strong CP problem and eliminates flavor-diagonal CP-violation.

The presence of additional higher-dimensional CP-odd operators can generate terms that

are linear in ✓ind. in the axion potential. This can occur via mixed correlators of the form

[41]

�CP(0) = �i limk!0

Z
d
4
x e

ik·x
h0|T (GG̃(x),OCP(0))|0i. (31)

Axion Potential 

• Axion potential is generated via the quark condensate

• The ground state potential can be expanded as

• Minimum of the potential at:

 Dynamical relaxation of ground state Axion 
 potential solves the strong CP problem
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so that the axion Lagrangian in Eq. (26) can be brought into the form

La = � cos
⇣
✓e↵ +

a

fa

⌘
mq q̄q +mq sin

⇣
✓e↵ +

a

fa

⌘
q̄i�

5
q . (29)

An axion potential is generated through non-perturbative QCD e↵ects which generate a

quark condensate so that

V

⇣
✓e↵ +

a

fa

⌘
= ��(0) cos

⇣
✓e↵ +

a

fa

⌘
, (30)

where the topological susceptibility is given by

�(0) = �mq hq̄qi . (31)

Generally, the ground state axion potential, when expanded around its minimum, has the

form

V (✓e↵) '
1

2
�(0) ✓2e↵ . (32)

Since the minimization of the ground state axion potential requires ✓e↵ = 0, there is no

flavor-diagonal CP violation and a correspondingly vanishing contribution to the EDM. In

this way, dynamical relaxation in the ground state axion potential solves the strong CP

problem and eliminates flavor-diagonal CP-violation.

The presence of additional higher-dimensional CP-odd operators, such as the quark

chromo-electric dipole moment, can generate terms that are linear in ✓e↵ in the axion po-

tential. This can occur via mixed correlators of the form [40]

�CP(0) = �i limk!0

Z
d
4
x e

ik·x
h0|T (GG̃(x),OCP(0))|0i . (33)

Such mixed correlators can give rise to an axion potential of the form

V (✓e↵) ' �CP(0) ✓e↵ +
�(0)

2
✓
2
e↵ . (34)

In this case, the potential is minimized at non-zero value of ✓e↵ given by

✓e↵ = �
�CP(0)

�(0)
, (35)

resulting in a non-vanishing contribution to EDMs3.

Expanding the Lagrangian in Eq. (29) in ✓e↵ and a(x), gives the result

La =
⇣
✓e↵

fa
a� 1

⌘
mq q̄q +

⇣
✓e↵ +

a

fa

⌘
mq q̄i�

5
q +

mq

2f 2
a

a
2
q̄q + · · · . (36)

3 This non-vanishing ✓e↵ corresponds to ✓ind. in the notation of Ref. [40].

,
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so that the axion Lagrangian in Eq. (26) can be brought into the form

La = � cos
⇣
✓e↵ +

a

fa

⌘
mq q̄q +mq sin

⇣
✓e↵ +

a

fa

⌘
q̄i�

5
q . (29)

An axion potential is generated through non-perturbative QCD e↵ects which generate a

quark condensate so that

V

⇣
✓e↵ +

a

fa

⌘
= ��(0) cos

⇣
✓e↵ +

a

fa

⌘
, (30)

where the topological susceptibility is given by

�(0) = �mq hq̄qi . (31)

Generally, the ground state axion potential, when expanded around its minimum, has the

form

V (✓e↵) '
1

2
�(0) ✓2e↵ . (32)

Since the minimization of the ground state axion potential requires ✓e↵ = 0, there is no

flavor-diagonal CP violation and a correspondingly vanishing contribution to the EDM. In

this way, dynamical relaxation in the ground state axion potential solves the strong CP

problem and eliminates flavor-diagonal CP-violation.

The presence of additional higher-dimensional CP-odd operators, such as the quark

chromo-electric dipole moment, can generate terms that are linear in ✓e↵ in the axion po-

tential. This can occur via mixed correlators of the form [40]

�CP(0) = �i limk!0

Z
d
4
x e

ik·x
h0|T (GG̃(x),OCP(0))|0i . (33)

Such mixed correlators can give rise to an axion potential of the form

V (✓e↵) ' �CP(0) ✓e↵ +
�(0)

2
✓
2
e↵ . (34)

In this case, the potential is minimized at non-zero value of ✓e↵ given by

✓e↵ = �
�CP(0)

�(0)
, (35)

resulting in a non-vanishing contribution to EDMs3.

Expanding the Lagrangian in Eq. (29) in ✓e↵ and a(x), gives the result

La =
⇣
✓e↵

fa
a� 1

⌘
mq q̄q +

⇣
✓e↵ +

a

fa

⌘
mq q̄i�

5
q +

mq

2f 2
a

a
2
q̄q + · · · . (36)

3 This non-vanishing ✓e↵ corresponds to ✓ind. in the notation of Ref. [40].

9

so that the axion Lagrangian in Eq. (26) can be brought into the form

La = � cos
⇣
✓e↵ +

a

fa

⌘
mq q̄q +mq sin

⇣
✓e↵ +

a

fa

⌘
q̄i�

5
q . (29)

An axion potential is generated through non-perturbative QCD e↵ects which generate a

quark condensate so that

V

⇣
✓e↵ +

a

fa

⌘
= ��(0) cos

⇣
✓e↵ +

a

fa

⌘
, (30)

where the topological susceptibility is given by

�(0) = �mq hq̄qi . (31)

Generally, the ground state axion potential, when expanded around its minimum, has the

form

V (✓e↵) '
1

2
�(0) ✓2e↵ . (32)

Since the minimization of the ground state axion potential requires ✓e↵ = 0, there is no

flavor-diagonal CP violation and a correspondingly vanishing contribution to the EDM. In

this way, dynamical relaxation in the ground state axion potential solves the strong CP

problem and eliminates flavor-diagonal CP-violation.

The presence of additional higher-dimensional CP-odd operators, such as the quark

chromo-electric dipole moment, can generate terms that are linear in ✓e↵ in the axion po-

tential. This can occur via mixed correlators of the form [40]

�CP(0) = �i limk!0

Z
d
4
x e

ik·x
h0|T (GG̃(x),OCP(0))|0i . (33)

Such mixed correlators can give rise to an axion potential of the form

V (✓e↵) ' �CP(0) ✓e↵ +
�(0)

2
✓
2
e↵ . (34)

In this case, the potential is minimized at non-zero value of ✓e↵ given by

✓e↵ = �
�CP(0)

�(0)
, (35)

resulting in a non-vanishing contribution to EDMs3.

Expanding the Lagrangian in Eq. (29) in ✓e↵ and a(x), gives the result

La =
⇣
✓e↵

fa
a� 1

⌘
mq q̄q +

⇣
✓e↵ +

a

fa

⌘
mq q̄i�

5
q +

mq

2f 2
a

a
2
q̄q + · · · . (36)

3 This non-vanishing ✓e↵ corresponds to ✓ind. in the notation of Ref. [40].
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which will reproduce the analog of the term in Eq. (13), when expanded to leading power

in ✓̄ and generalized to three quark flavors [45]. As before, the axion interactions in the

e↵ective theory can now be obtained by implementing the replacement in Eq. (20) to get

La = � cos
⇣
✓̄ +

a

fa

⌘
mq q̄q +mq sin

⇣
✓̄ +

a

fa

⌘
q̄i�

5
q, (24)

which is equivalent to the form in Eq. (21). The form of Eq. (24) makes manifest the

couplings of the axion to the SM quark. In general the axion can acquire a non-zero vacuum

expectation value (vev) so that

a(x) = hai+ a(x), (25)

where a(x) denotes the axion field corresponding to excitations above the vev hai. After the

axion acquires a non-zero expectation value, the new induced ✓̄ parameter (✓ind.) is given by

✓ind. = ✓̄ +
hai

fa
, (26)

so that the axion Lagrangian in Eq. (24) can be brought into the form

La = � cos
⇣
✓ind. +

a

fa

⌘
mq q̄q +mq sin

⇣
✓ind. +

a

fa

⌘
q̄i�

5
q. (27)

An axion potential is generated through non-perturbative QCD e↵ects which generate a

non-zero vev for the quark bilinear so that

V

⇣
✓ind. +

a

fa

⌘
= mq hq̄qi cos

⇣
✓ind. +

a

fa

⌘
. (28)

Similar, results can be derived when there is more than one quark flavor. Generally, the

ground state axion potential, when expanded around its minimum, has the form

V (✓ind.) '
1

2
�(0) ✓2ind., (29)

where �(0) is the topological susceptibility and is given by �(0) = �mqhq̄qi for one quark

flavor and by

�(0) = �
mumd

mu +md

hūu+ d̄di, (30)

for two quark flavors. Since the minimization of the ground state axion potential requires

✓ind. = 0, there is no flavor-diagonal CP violation and a correspondingly vanishing contri-

bution to the EDM. In this way, dynamical relaxation in the ground state axion potential

solves the strong CP problem and eliminates flavor-diagonal CP-violation.

The presence of additional higher-dimensional CP-odd operators can generate terms that

are linear in ✓ind. in the axion potential. This can occur via mixed correlators of the form

[41]

�CP(0) = �i limk!0

Z
d
4
x e

ik·x
h0|T (GG̃(x),OCP(0))|0i. (31)

Higher dimension CP odd operators
• The presence of higher dimensional CP-odd operators can 
generate linear terms in the potential 

• The coefficient of the linear term can arise from the correlator 
of the CP-odd higher dimension operator

• The minimum is shifted to a non-zero value 

Non-zero 
EDM
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so that the axion Lagrangian in Eq. (26) can be brought into the form

La = � cos
⇣
✓e↵ +

a

fa

⌘
mq q̄q +mq sin

⇣
✓e↵ +

a

fa

⌘
q̄i�

5
q . (29)

An axion potential is generated through non-perturbative QCD e↵ects which generate a

quark condensate so that

V

⇣
✓e↵ +

a

fa

⌘
= ��(0) cos

⇣
✓e↵ +

a

fa

⌘
, (30)

where the topological susceptibility is given by

�(0) = �mq hq̄qi . (31)

Generally, the ground state axion potential, when expanded around its minimum, has the

form

V (✓e↵) '
1

2
�(0) ✓2e↵ . (32)

Since the minimization of the ground state axion potential requires ✓e↵ = 0, there is no

flavor-diagonal CP violation and a correspondingly vanishing contribution to the EDM. In

this way, dynamical relaxation in the ground state axion potential solves the strong CP

problem and eliminates flavor-diagonal CP-violation.

The presence of additional higher-dimensional CP-odd operators, such as the quark

chromo-electric dipole moment, can generate terms that are linear in ✓e↵ in the axion po-

tential. This can occur via mixed correlators of the form [40]

�CP(0) = �i limk!0

Z
d
4
x e

ik·x
h0|T (GG̃(x),OCP(0))|0i . (33)

Such mixed correlators can give rise to an axion potential of the form

V (✓e↵) ' �CP(0) ✓e↵ +
�(0)

2
✓
2
e↵ . (34)

In this case, the potential is minimized at non-zero value of ✓e↵ given by

✓e↵ = �
�CP(0)

�(0)
, (35)

resulting in a non-vanishing contribution to EDMs3.

Expanding the Lagrangian in Eq. (29) in ✓e↵ and a(x), gives the result

La =
⇣
✓e↵

fa
a� 1

⌘
mq q̄q +

⇣
✓e↵ +

a

fa

⌘
mq q̄i�

5
q +

mq

2f 2
a

a
2
q̄q + · · · . (36)

3 This non-vanishing ✓e↵ corresponds to ✓ind. in the notation of Ref. [40].
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so that the axion Lagrangian in Eq. (26) can be brought into the form

La = � cos
⇣
✓e↵ +

a

fa

⌘
mq q̄q +mq sin

⇣
✓e↵ +

a

fa

⌘
q̄i�

5
q . (29)

An axion potential is generated through non-perturbative QCD e↵ects which generate a

quark condensate so that

V

⇣
✓e↵ +

a

fa

⌘
= ��(0) cos

⇣
✓e↵ +

a

fa

⌘
, (30)

where the topological susceptibility is given by

�(0) = �mq hq̄qi . (31)

Generally, the ground state axion potential, when expanded around its minimum, has the

form

V (✓e↵) '
1

2
�(0) ✓2e↵ . (32)

Since the minimization of the ground state axion potential requires ✓e↵ = 0, there is no

flavor-diagonal CP violation and a correspondingly vanishing contribution to the EDM. In

this way, dynamical relaxation in the ground state axion potential solves the strong CP

problem and eliminates flavor-diagonal CP-violation.

The presence of additional higher-dimensional CP-odd operators, such as the quark

chromo-electric dipole moment, can generate terms that are linear in ✓e↵ in the axion po-

tential. This can occur via mixed correlators of the form [40]

�CP(0) = �i limk!0

Z
d
4
x e

ik·x
h0|T (GG̃(x),OCP(0))|0i . (33)

Such mixed correlators can give rise to an axion potential of the form

V (✓e↵) ' �CP(0) ✓e↵ +
�(0)

2
✓
2
e↵ . (34)

In this case, the potential is minimized at non-zero value of ✓e↵ given by

✓e↵ = �
�CP(0)

�(0)
, (35)

resulting in a non-vanishing contribution to EDMs3.

Expanding the Lagrangian in Eq. (29) in ✓e↵ and a(x), gives the result

La =
⇣
✓e↵

fa
a� 1

⌘
mq q̄q +

⇣
✓e↵ +

a

fa

⌘
mq q̄i�

5
q +

mq

2f 2
a

a
2
q̄q + · · · . (36)

3 This non-vanishing ✓e↵ corresponds to ✓ind. in the notation of Ref. [40].
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An example of such a CP-odd operator is the quark chromoelectric dipole moment OCP =

d̃q q̄G
µ⌫
�µ⌫�5q. Such mixed correlators can give rise to an axion potential of the form

V (✓ind.) ' �CP(0) ✓ind. +
�(0)

2
✓
2
ind.. (32)

In this case, the potential is minimized at non-zero value of ✓ind. given by

✓ind. = �
�CP(0)

�(0)
, (33)

resulting in a non-vanishing contribution to EDMs.

Expanding the Lagrangian in Eq. (27) in ✓ind. and a(x), gives the result

La =
⇣
✓ind.

fa
a� 1

⌘
mq q̄q +

⇣
✓ind. +

a

fa

⌘
mq q̄i�

5
q +

mq

2f 2
a

a
2
q̄q + · · · . (34)

This form of the Lagrangian makes explicit the scalar (gq
a,s
) and pseudoscalar (gq

a,p
) couplings

and the induced mass ma of the axion

g
q

a,s
=

✓ind.mq

fa
, g

q

a,p
=

mq

fa
, ma '

1

fa
|�(0)|1/2. (35)

Note that since fa � mq, the axion is very light and can mediate a macroscopic SD force.

Based on the axion couplings to the quark, the product of couplings in the corresponding po-

tential in Eq. (1) is expected to be proportional to the product of the scalar and pseudosclar

axion couplings to the quark

g
1
s
g
2
p
/ ✓ind.

m
2
q

f 2
a

, (36)

with the constant of proportionality being a↵ected by nuclear physics e↵ects that determine

the axion cowpling to macroscopic objects. Note that the size of the SD fifth-force induced

by the axion is heavily suppressed by the factor of m2
q
/f

2
a
.

The dominant contribution of the axion to EDMs will come from a matrix element in-

volving the CP-odd quark mass term mq✓ind.q̄i�
5
q in Eq. (34). Note that in this case, the

suppression factor m
2
q
/f

2
a
, present in the macroscopic SD fifth-force, is absent. As a re-

sult, EDM constraints on ✓ind. dominate over the constraints from fifth-force experiments by

several orders of magnitude.

Now, EDM bounds require ✓ind. < 10�10, so that for quark masses mq ⇠ 1 MeV and

a Peccei-Quinn scale fa ⇠ 109 � 1012 GeV, we get the constraint g
q

a,s
< 10�25

� 10�22.

Correspondingly, the bound on the pseudoscalar coupling is g
q

a,p
< 10�15

� 10�12. The

resulting product of the macroscopic couplings in Eq. (1), for the fifth-force potential due to

an axion mediator, are bounded from EDM constraints as g1
s
g
2
p
/ ✓ind.

m
2
q

f2
a
< 10�40

� 10�34.

These EDM bounds are the the most stringent constraints; in fact even stronger than those

derived by combining the existing fifth-force laboratory limits with astrophysical limits from

SN 1987A (see bottom panel in Fig. 4 of [24]). This contrasts strongly with the case of a

generic scalar, in which case gs and gp are a priori unrestricted free parameters; unrelated

to the strong CP parameter ✓ind..

Axion Couplings

• Expanding the Axion Lagrangian gives

Scalar 
coupling

Pseudo-scalar 
coupling

Axion 
mass

• Product of couplings proportional to theta parameter:
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so that the axion Lagrangian in Eq. (26) can be brought into the form

La = � cos
⇣
✓e↵ +

a

fa

⌘
mq q̄q +mq sin

⇣
✓e↵ +

a

fa

⌘
q̄i�

5
q . (29)

An axion potential is generated through non-perturbative QCD e↵ects which generate a

quark condensate so that

V

⇣
✓e↵ +

a

fa

⌘
= ��(0) cos

⇣
✓e↵ +

a

fa

⌘
, (30)

where the topological susceptibility is given by

�(0) = �mq hq̄qi . (31)

Generally, the ground state axion potential, when expanded around its minimum, has the

form

V (✓e↵) '
1

2
�(0) ✓2e↵ . (32)

Since the minimization of the ground state axion potential requires ✓e↵ = 0, there is no

flavor-diagonal CP violation and a correspondingly vanishing contribution to the EDM. In

this way, dynamical relaxation in the ground state axion potential solves the strong CP

problem and eliminates flavor-diagonal CP-violation.

The presence of additional higher-dimensional CP-odd operators, such as the quark

chromo-electric dipole moment, can generate terms that are linear in ✓e↵ in the axion po-

tential. This can occur via mixed correlators of the form [40]

�CP(0) = �i limk!0

Z
d
4
x e

ik·x
h0|T (GG̃(x),OCP(0))|0i . (33)

Such mixed correlators can give rise to an axion potential of the form

V (✓e↵) ' �CP(0) ✓e↵ +
�(0)

2
✓
2
e↵ . (34)

In this case, the potential is minimized at non-zero value of ✓e↵ given by

✓e↵ = �
�CP(0)

�(0)
, (35)

resulting in a non-vanishing contribution to EDMs3.

Expanding the Lagrangian in Eq. (29) in ✓e↵ and a(x), gives the result

La =
⇣
✓e↵

fa
a� 1

⌘
mq q̄q +

⇣
✓e↵ +

a

fa

⌘
mq q̄i�

5
q +

mq

2f 2
a

a
2
q̄q + · · · . (36)

3 This non-vanishing ✓e↵ corresponds to ✓ind. in the notation of Ref. [40].
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This form of the Lagrangian makes explicit the scalar (gq
a,s
) and pseudoscalar (gq

a,p
) couplings

and the induced mass ma of the axion

g
q

a,s
=

✓e↵mq

fa
, g

q

a,p
=

mq

fa
, ma '

1

fa
|�(0)|1/2 . (37)

Note that the CP-odd mass term ✓e↵mq q̄i�
5
q in Eq. (36) is the analogue of Eq. (15) for the

case of one quark flavor. Moreover, since fa � |�(0)|1/4, the axion is very light and can

mediate a macroscopic SD force. Based on the axion couplings to the quark, the product

of couplings in the corresponding potential in Eq. (3) is expected to be proportional to the

product of the scalar and pseudoscalar axion couplings to the quark

g
q

s
g
q

p
/ ✓e↵

m
2
q

f 2
a

, (38)

with the constant of proportionality being determined by the nuclear/nucleon matrix ele-

ments relevant to the test objects in the experiment. Note that the size of the SD fifth-force

induced by the axion is heavily suppressed by the factor of m2
q
/f

2
a
.

The dominant contribution of the axion to EDMs will come from a matrix element in-

volving the CP-odd quark mass term mq✓e↵q̄i�
5
q in Eq. (36). Note that in this case, the

suppression factor m
2
q
/f

2
a
, present in the macroscopic SD fifth-force, is absent. As a re-

sult, EDM constraints on ✓e↵ dominate over the constraints from fifth-force experiments by

several orders of magnitude.

EDM bounds require ✓e↵ ⇠
< 10�10, so that for quark masses mq ⇠ 1 MeV and a Peccei-

Quinn scale fa ⇠ 109 � 1012 GeV, the coupling g
q

a,s
must lie below 10�25

� 10�22. Corre-

spondingly, the bound on the pseudoscalar coupling is gq
a,p

< 10�15
� 10�12. The resulting

product of the macroscopic couplings in Eq. (3), for the fifth-force potential due to an axion

mediator, are bounded from EDM constraints as

gsgp / ✓e↵

m
2
q

f 2
a

< 10�40
� 10�34

. (39)

These EDM bounds are the the most stringent constraints; in fact even stronger than those

derived by combining the existing fifth-force laboratory limits with astrophysical limits from

SN 1987A (see bottom panel in Fig. 4 of [45]). As we discuss below, this situation contrasts

sharply with the case of a generic scalar, for which gs and gp are a priori unrestricted free

parameters and unrelated to the strong CP parameter ✓e↵.

IV. SPIN-DEPENDENT FORCES AND EDMS FROM A GENERIC LIGHT
SCALAR

We now turn to the generic light scalar case and return to the basic interactions of

Eqs. (1,2). Our objective is to estimate the diamagnetic atom and nucleon EDMs induced
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An example of such a CP-odd operator is the quark chromoelectric dipole moment OCP =

d̃q q̄G
µ⌫
�µ⌫�5q. Such mixed correlators can give rise to an axion potential of the form

V (✓ind.) ' �CP(0) ✓ind. +
�(0)

2
✓
2
ind.. (32)

In this case, the potential is minimized at non-zero value of ✓ind. given by

✓ind. = �
�CP(0)

�(0)
, (33)

resulting in a non-vanishing contribution to EDMs.

Expanding the Lagrangian in Eq. (27) in ✓ind. and a(x), gives the result

La =
⇣
✓ind.

fa
a� 1

⌘
mq q̄q +

⇣
✓ind. +

a

fa

⌘
mq q̄i�

5
q +

mq

2f 2
a

a
2
q̄q + · · · . (34)

This form of the Lagrangian makes explicit the scalar (gq
a,s
) and pseudoscalar (gq

a,p
) couplings

and the induced mass ma of the axion

g
q

a,s
=

✓ind.mq

fa
, g

q

a,p
=

mq

fa
, ma '

1

fa
|�(0)|1/2. (35)

Note that since fa � mq, the axion is very light and can mediate a macroscopic SD force.

Based on the axion couplings to the quark, the product of couplings in the corresponding po-

tential in Eq. (1) is expected to be proportional to the product of the scalar and pseudosclar

axion couplings to the quark

g
1
s
g
2
p
/ ✓ind.

m
2
q

f 2
a

, (36)

with the constant of proportionality being a↵ected by nuclear physics e↵ects that determine

the axion cowpling to macroscopic objects. Note that the size of the SD fifth-force induced

by the axion is heavily suppressed by the factor of m2
q
/f

2
a
.

The dominant contribution of the axion to EDMs will come from a matrix element in-

volving the CP-odd quark mass term mq✓ind.q̄i�
5
q in Eq. (34). Note that in this case, the

suppression factor m
2
q
/f

2
a
, present in the macroscopic SD fifth-force, is absent. As a re-

sult, EDM constraints on ✓ind. dominate over the constraints from fifth-force experiments by

several orders of magnitude.

Now, EDM bounds require ✓ind. < 10�10, so that for quark masses mq ⇠ 1 MeV and

a Peccei-Quinn scale fa ⇠ 109 � 1012 GeV, we get the constraint g
q

a,s
< 10�25

� 10�22.

Correspondingly, the bound on the pseudoscalar coupling is g
q

a,p
< 10�15

� 10�12. The

resulting product of the macroscopic couplings in Eq. (1), for the fifth-force potential due to

an axion mediator, are bounded from EDM constraints as g1
s
g
2
p
/ ✓ind.

m
2
q

f2
a
< 10�40

� 10�34.

These EDM bounds are the the most stringent constraints; in fact even stronger than those

derived by combining the existing fifth-force laboratory limits with astrophysical limits from

SN 1987A (see bottom panel in Fig. 4 of [24]). This contrasts strongly with the case of a

generic scalar, in which case gs and gp are a priori unrestricted free parameters; unrelated

to the strong CP parameter ✓ind..

Axion Couplings

• Expanding the Axion Lagrangian gives

Scalar 
coupling

Pseudo-scalar 
coupling

Axion 
mass

• Product of couplings proportional to theta parameter:

9

so that the axion Lagrangian in Eq. (26) can be brought into the form

La = � cos
⇣
✓e↵ +

a

fa

⌘
mq q̄q +mq sin

⇣
✓e↵ +

a

fa

⌘
q̄i�

5
q . (29)

An axion potential is generated through non-perturbative QCD e↵ects which generate a

quark condensate so that

V

⇣
✓e↵ +

a

fa

⌘
= ��(0) cos

⇣
✓e↵ +

a

fa

⌘
, (30)

where the topological susceptibility is given by

�(0) = �mq hq̄qi . (31)

Generally, the ground state axion potential, when expanded around its minimum, has the

form

V (✓e↵) '
1

2
�(0) ✓2e↵ . (32)

Since the minimization of the ground state axion potential requires ✓e↵ = 0, there is no

flavor-diagonal CP violation and a correspondingly vanishing contribution to the EDM. In

this way, dynamical relaxation in the ground state axion potential solves the strong CP

problem and eliminates flavor-diagonal CP-violation.

The presence of additional higher-dimensional CP-odd operators, such as the quark

chromo-electric dipole moment, can generate terms that are linear in ✓e↵ in the axion po-

tential. This can occur via mixed correlators of the form [40]

�CP(0) = �i limk!0

Z
d
4
x e

ik·x
h0|T (GG̃(x),OCP(0))|0i . (33)

Such mixed correlators can give rise to an axion potential of the form

V (✓e↵) ' �CP(0) ✓e↵ +
�(0)

2
✓
2
e↵ . (34)

In this case, the potential is minimized at non-zero value of ✓e↵ given by

✓e↵ = �
�CP(0)

�(0)
, (35)

resulting in a non-vanishing contribution to EDMs3.

Expanding the Lagrangian in Eq. (29) in ✓e↵ and a(x), gives the result

La =
⇣
✓e↵

fa
a� 1

⌘
mq q̄q +

⇣
✓e↵ +

a

fa

⌘
mq q̄i�

5
q +

mq

2f 2
a

a
2
q̄q + · · · . (36)

3 This non-vanishing ✓e↵ corresponds to ✓ind. in the notation of Ref. [40].
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This form of the Lagrangian makes explicit the scalar (gq
a,s
) and pseudoscalar (gq

a,p
) couplings

and the induced mass ma of the axion

g
q

a,s
=

✓e↵mq

fa
, g

q

a,p
=

mq

fa
, ma '

1

fa
|�(0)|1/2 . (37)

Note that the CP-odd mass term ✓e↵mq q̄i�
5
q in Eq. (36) is the analogue of Eq. (15) for the

case of one quark flavor. Moreover, since fa � |�(0)|1/4, the axion is very light and can

mediate a macroscopic SD force. Based on the axion couplings to the quark, the product

of couplings in the corresponding potential in Eq. (3) is expected to be proportional to the

product of the scalar and pseudoscalar axion couplings to the quark

g
q

s
g
q

p
/ ✓e↵

m
2
q

f 2
a

, (38)

with the constant of proportionality being determined by the nuclear/nucleon matrix ele-

ments relevant to the test objects in the experiment. Note that the size of the SD fifth-force

induced by the axion is heavily suppressed by the factor of m2
q
/f

2
a
.

The dominant contribution of the axion to EDMs will come from a matrix element in-

volving the CP-odd quark mass term mq✓e↵q̄i�
5
q in Eq. (36). Note that in this case, the

suppression factor m
2
q
/f

2
a
, present in the macroscopic SD fifth-force, is absent. As a re-

sult, EDM constraints on ✓e↵ dominate over the constraints from fifth-force experiments by

several orders of magnitude.

EDM bounds require ✓e↵ ⇠
< 10�10, so that for quark masses mq ⇠ 1 MeV and a Peccei-

Quinn scale fa ⇠ 109 � 1012 GeV, the coupling g
q

a,s
must lie below 10�25

� 10�22. Corre-

spondingly, the bound on the pseudoscalar coupling is gq
a,p

< 10�15
� 10�12. The resulting

product of the macroscopic couplings in Eq. (3), for the fifth-force potential due to an axion

mediator, are bounded from EDM constraints as

gsgp / ✓e↵

m
2
q

f 2
a

< 10�40
� 10�34

. (39)

These EDM bounds are the the most stringent constraints; in fact even stronger than those

derived by combining the existing fifth-force laboratory limits with astrophysical limits from

SN 1987A (see bottom panel in Fig. 4 of [45]). As we discuss below, this situation contrasts

sharply with the case of a generic scalar, for which gs and gp are a priori unrestricted free

parameters and unrelated to the strong CP parameter ✓e↵.

IV. SPIN-DEPENDENT FORCES AND EDMS FROM A GENERIC LIGHT
SCALAR

We now turn to the generic light scalar case and return to the basic interactions of

Eqs. (1,2). Our objective is to estimate the diamagnetic atom and nucleon EDMs induced

CP-odd quark mass 
generates EDM



Fig. 25. Limits from searches for new macroscopic forces. The horizontal axis is the range of the new force (the horizontal
range of the "gure corresponds to the allowed axion window). The vertical axis is the product of coupling constants. The
diagonal lines are the expected couplings should the residual strong CP-violation parameter !M be 10!" (conservatively
allowed by experiments) or 10!#$ (suggested should weak CP-violation arise from the Kobayashi-Maskawa model). The
upper limits to the couplings shown are those of Refs. [68,69].

Recall that null searches for a neutron edm conservatively imply !M (10!", and the axion resulted
from a scheme to drive !M to zero. However, in the Standard Model plus axions, !M does not
identically vanish. There remains a small contribution from known sources of weak-interaction
CP violation, at the level of perhaps !M K10!#$ [67], should weak-interaction CP violation
arise from the Kobayashi}Maskawa model. Axions would be signaled by a weak Yukawa-type
gravitational force at short but macroscopic distances, with strength proportional to the CP-
violating parameter !M .

Two such recent null experiments placed upper limits on the product coupling g
!
g
"
in a system of

magnetized media and test masses. One experiment [68] had peak sensitivity, relative to !M "xed,
near 10mm (20 !eV axions), the other [69] had peak sensitivity near 100mm (2!eV axions). Both
experiments lacked by 10 orders of magnitude or so the required sensitivity in g

!
g
"
to detect axions

at the !M allowed by the neutron edm search experiments (see Fig. 25). Two recent proposals aim to
improve the overall sensitivity by several orders of magnitude [70] and improve the sensitivity at
short distances, down to perhaps 1 mm (200!eV axions). However, these new experiments will
likely lack the sensitivity to g

!
g
"
required by the small !M implied by neutron edm limits by at least

several orders of magnitude.

4. Summary and outlook

While much has happened both in particle physics and cosmology over the past two decades,
the motivation for the axion remains strong. It is still the most compelling mechanism to enforce
Strong-CP conservation, and the sum total of all cosmological observables still point to a large
CDM component in the Universe. Serious e!orts to discover the axion should therefore

L.J Rosenberg, K.A. van Bibber / Physics Reports 325 (2000) 1}39 35

Fig. 24. Exclusion region (99.7% c.l.) from the solar axion search of Ref. [64]. The curves represent operation at di!erent
gas pressures: (a) 0 Torr, (b) 55 Torr, (c) 100Torr.

0.03 eV(m
!
(0.11 eV (99.7% c.l.), see Fig. 24. A more ambitious experiment, using a supercon-

ducting magnet on a telescope mount to track the Sun continuously has reported a preliminary
exclusion limit of g

!!!(6"10!"#GeV!" (95% c.l.) for m
!
(0.03 eV [65].

Another search for solar axions is underway (SOLAX), using a single-crystal germanium
detector. It exploits the coherent conversion of axions into photons when their angle of incidence
satis"es a Bragg condition with a crystalline plane. Analysis of 1.94 kg yr of data from a 1 kg
germanium detector yields a bound of g

!!!(2.7"10!$GeV!" (95% c.l.), independent of mass up
to m

!
& 1keV [66].

3.4. New macroscopic forces

Axions mediate a monopole-dipole interaction potential between spin and matter [67] given by

<Jg
!
g
"

!( ) r(
m

"
! 1
"r

#1
r%"e!"&# (18)

where g
!
and g

"
are coupling constants at the scalar (s) and polarized (p) vertices, ! and r the spin

and separation vectors, m
"
the mass at the polarized vertex, and " the range of the force (J1/m

!
).

For axions with mass within the window 1}1000!eV, the corresponding " is 0.2}200mm. The
scalar coupling g

!
is proportional to the strong interaction CP-violating parameter #M , and the

product of couplings is

g
!
g
"
K #M

"(mm)%
6"10!%' . (19)

34 L.J Rosenberg, K.A. van Bibber / Physics Reports 325 (2000) 1}39
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associated with the U(1)A transformation, is given by

@
µ
j
5
µ
= 2imq ̄�5 +

↵s

8⇡
G

a

µ⌫
G̃

aµ⌫
. (10)

We see that the quark masses explicitly break the U(1)A symmetry of the Lagrangian even

at the classical level. The second term in Eq. (10), with the same structure as the QCD

CP violating term in Eq. (5), is the result of the anomaly and arises from the non-trivial

Jacobian in the QCD path-integral [36–39] that arises from the transformation in Eq. (8)

D D ̄ ! D D ̄ Exp
h
2i↵

Z
d
4
x
↵s

16⇡
G

a

µ⌫
G̃

aµ⌫

i
. (11)

Thus, for a U(1)A transformation of a massless quark, so that the mass term (mq) in Eq. (10)

vanishes, the only e↵ect of the axial U(1)A transformation in Eq. (8) is to shift the value of

the ✓-parameter

✓ ! ✓ + 2↵. (12)

Since the U(1)A transformation just amounts to a change of variables in the QCD path

integral, the shift in Eq. (12) implies that the path integral cannot depend ✓, rendering it an

unphysical parameter. Thus, if there is at least one massless quark, the QCD CP violating

term can be completely removed by an appropriate U(1)A phase rotation.

However, it is now established that there are no massless quarks in the SM [40]. In this

case, in addition to the shift in the ✓-parameter, the U(1)A transformation also changes the

phase of the quark mass. In this case, the U(1)A transformation cannot be used to eliminate

the CP violating e↵ect in QCD. Instead, it can only move the e↵ect between the ✓-parameter

and the quark mass.

In fact, a flavor-diagonal U(1)A transformation can be used to remove the overall phase

in the quark mass matrix so that all of the flavor-diagonal CP violation is contained in the

✓̄-term in Eq. (5), where ✓̄ is given by Eq. (6). Alternatively, one can perform an axial U(1)A
rotation to eliminate the ✓̄-term so that the flavor-diagonal CP violation e↵ect is contained

entirely in CP violating quark mass terms

LCPV = i✓̄
mumdms

mumd +mums +mdms

⇥
ū�5u+ d̄�5d+ s̄�5s

⇤
, (13)

where the heavy quarks c, b and t have been integrated out. Note that this term is propor-

tional to the product of quark masses so that in the presence of a massless quark, there is

no flavor-diagonal CP violation as expected.

Given that the contribution of the CKM phase to EDMs in the SM are negligibly small,

the observation of a non-zero EDM can be interpreted as arising from CP-violating mass

term in Eq. (13) or equivalently from the ✓̄-term in Eq. (5). The current limit on the neutron

EDM of |dn| < 2.9⇥ 10�13 e fm, translates into the bound

| ✓̄ | <⇠ 10�10
. (14)

The SM provides no explanation for such a small value of ✓̄ and corresponds to the well-

known Strong CP problem.

EDM limit

EDM Limits Dominate over Fifth Force Bounds

Fifth-force
limits

EDM limits

(Rosenberg, Bibber)



4

V. DIPOLE-DIPOLE FORCES

Dipole-dipole forces have been constrained by labora-
tory experiments, although the results are less restric-
tive than the corresponding astrophysical limits. For the
pseudoscalar neutron coupling one finds gnp < 0.85×10−4

form <
∼

10−7 eV based on a K–3He comagnetometer [36].
For the pseudoscalar electron coupling, the most recent
Eöt-Wash torsion balance spin-spin experiment yields
gep < 3× 10−8 for m <

∼
10−6 eV [37].

VI. AXION INTERPRETATION

These limits on the various scalar and pseudoscalar
couplings of a hypothetical low-mass boson can be inter-
preted specifically in terms of QCD axions where the in-
teraction strengths and mass are closely correlated apart
from model-dependent numerical factors.
One characteristic of axions is the relation mafa ∼

mπfπ between their mass ma, decay constant fa, pion
mass mπ = 135 MeV and pion decay constant fπ =
92 MeV. A CP-violating scalar interaction can be ex-
pressed as [3, 6]

gNs ∼ Θeff

fπ
fa

∼ Θeff

ma

mπ
, (8)

where Θeff measures CP-violating effects. Taking this
relation as defining Θeff we show in Fig. 4 (top) the gNs
limits translated into limits on Θeff as function of ma.
Axions with ma exceeding about 1 eV are excluded

by cosmological hot dark matter bounds [38] and ma ex-
ceeding about 10 meV by the energy loss of SN 1987A.
The meV range would be favored by anomalous white-
dwarf cooling (Sec. II A). It is interesting that Fig. 4
(top) shows greatest sensitivity at this “axion meV fron-
tier” [39]. However, even in this range the Θeff sensitivity
is far from realistic values because limits on neutron and
nuclear electric dipole moments imply Θeff

<
∼

10−11 [6, 7].
The pseudoscalar axion-electron interaction is gep =

Ceme/fa ∼ Ce(me/fπ)(ma/mπ), where Ce is a model-
dependent coefficient. Overall we therefore have

gNs gep ∼ Θeff Ce
me

fπ

(

ma

mπ

)2

. (9)

Using this relation we translate the gNs gep limits of Fig. 2
into CeΘeff and show the result in Fig. 4 (middle).
Likewise, the pseudoscalar axion-nucleon interaction is

gNp = CNmN/fa ∼ CN (mN/fπ)(ma/mπ) so that

gNs gNp ∼ Θeff CN
mN

fπ

(

ma

mπ

)2

. (10)

Translating the gNs gNp limits of Fig. 3 into limits on
CNΘeff leads to Fig. 4 (bottom).
For the moment any of these limits are far from the

phenomenologically interesting range. In a more detailed

10!10 10!8 10!6 10!4 10!2 100
10!9

10!8

10!7
10!6

10!5

10!4

"
ef
f

3

4

56

7

8

10!10 10!8 10!6 10!4 10!2 100
10!9

10!8

10!7
10!6

10!5

10!4
10!3

10!2

10!1

100

101

102

C
e
"
ef
f

10!10 10!8 10!6 10!4 10!2 100
10!9

10!8

10!7
10!6

10!5

10!4
10!3

10!2

10!1

100

101

102

103

ma !eV"

C
N
"
ef
f

FIG. 4: Long-range force limits translated to the effective CP-
violating axion parameter Θeff using: Top: gNs of Fig. 1 and
Eq. (8). Middle: gNs gep of Fig. 2 and Eq. (9). Bottom: gNs gNp
of Fig. 3 and Eq. (10).

analysis, one should include differences of the axion cou-
pling to protons and neutrons.

(Raffelt)

Convert Laboratory and Astrophysical bounds as constraints 
on the Strong CP parameter

• EDM Limits on Strong CP parameter still dominate.
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associated with the U(1)A transformation, is given by

@
µ
j
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= 2imq ̄�5 +

↵s

8⇡
G
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µ⌫
G̃

aµ⌫
. (10)

We see that the quark masses explicitly break the U(1)A symmetry of the Lagrangian even

at the classical level. The second term in Eq. (10), with the same structure as the QCD

CP violating term in Eq. (5), is the result of the anomaly and arises from the non-trivial

Jacobian in the QCD path-integral [36–39] that arises from the transformation in Eq. (8)
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Z
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4
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16⇡
G
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G̃

aµ⌫

i
. (11)

Thus, for a U(1)A transformation of a massless quark, so that the mass term (mq) in Eq. (10)

vanishes, the only e↵ect of the axial U(1)A transformation in Eq. (8) is to shift the value of

the ✓-parameter

✓ ! ✓ + 2↵. (12)

Since the U(1)A transformation just amounts to a change of variables in the QCD path

integral, the shift in Eq. (12) implies that the path integral cannot depend ✓, rendering it an

unphysical parameter. Thus, if there is at least one massless quark, the QCD CP violating

term can be completely removed by an appropriate U(1)A phase rotation.

However, it is now established that there are no massless quarks in the SM [40]. In this

case, in addition to the shift in the ✓-parameter, the U(1)A transformation also changes the

phase of the quark mass. In this case, the U(1)A transformation cannot be used to eliminate

the CP violating e↵ect in QCD. Instead, it can only move the e↵ect between the ✓-parameter

and the quark mass.

In fact, a flavor-diagonal U(1)A transformation can be used to remove the overall phase

in the quark mass matrix so that all of the flavor-diagonal CP violation is contained in the

✓̄-term in Eq. (5), where ✓̄ is given by Eq. (6). Alternatively, one can perform an axial U(1)A
rotation to eliminate the ✓̄-term so that the flavor-diagonal CP violation e↵ect is contained

entirely in CP violating quark mass terms

LCPV = i✓̄
mumdms

mumd +mums +mdms

⇥
ū�5u+ d̄�5d+ s̄�5s

⇤
, (13)

where the heavy quarks c, b and t have been integrated out. Note that this term is propor-

tional to the product of quark masses so that in the presence of a massless quark, there is

no flavor-diagonal CP violation as expected.

Given that the contribution of the CKM phase to EDMs in the SM are negligibly small,

the observation of a non-zero EDM can be interpreted as arising from CP-violating mass

term in Eq. (13) or equivalently from the ✓̄-term in Eq. (5). The current limit on the neutron

EDM of |dn| < 2.9⇥ 10�13 e fm, translates into the bound

| ✓̄ | <⇠ 10�10
. (14)

The SM provides no explanation for such a small value of ✓̄ and corresponds to the well-

known Strong CP problem.

EDM limit



Generic Scalars (non-axions)
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V. SPIN-DEPENDENT FORCES FROM A GENERIC LIGHT SCALAR

We saw in the last section that the axion, introduced to solve the Strong CP problem

gives rise to a macroscopic SD force. However, in this case the EDM limits dominate over

the fifth-force limits by several orders of magnitude. This is a result of the precise relation

between the strong CP parameter ✓ind. (see Eqs.(35) and (36)) and its couplings to the

quarks.

However, for more generic light scalars, unrelated to the strong CP problem, the potential

of the SD force is independent of ✓ind. As a result the EDM constraints on ✓ind have no impact

on the size of the macroscopic SD force mediated by the light scalar. In this case, fifth-force
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Lagrangian

L'qq = g
q

s
' q̄q + g

q

p
' q̄i�5q, (37)

where the light scalar mediator is denoted by ' and g
q

s
and g

q

p
denote the scalar and pseu-

doscalar couplings to a quark of flavor q. These quark-level couplings, in turn induce the

e↵ective scalar and pseudoscalar couplings to the nucleons (N) denoted by gs and gp respec-

tively

L'NN = gs 'N̄N + gp 'N̄i�5N. (38)
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fective couplings to nuclei whose charges add up to give rise to a coupling to macroscopic test

objects. In particular, the product of couplings g1
s
g
2
p
in the potential between macroscopic

test objects in Eq. (1) can be obtained in this manner.

In general, one can also consider couplings of ' to leptons which will contribute to

the e↵ective coupling to an atom. Once again, for the sake of simplicity, we neglect this

possibility. We note that these simplifying assumptions do not a↵ect main conclusions about

using EDM and fifth-force experiments to constrain SD forces in a complementary manner.

• EDMs induced by dynamical exchanges of light scalar. This 
is a different mechanism than the CP-odd quark mass terms 
in the case of axions.

• Full EDM calculation must incorporate this propagating 
  light scalar.  Effective operator approach no longer applicable.

Arbitrary Couplings

• Nucleon level couplings:Introduction Experiments Axions Scalar w/o PQ Symmetry Conclusions Outlook Collaboration
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FIG. 1: Representative diagrams of the contribution to nuclear EDMs arising from exchanges of
the light scalar ' that mediates the macroscopic SD force. The first diagram corresponds to '
exchanges between nucleons in the nucleus. The second and third diagrams can be interpreted as an
induced proton EDM and CP-odd pion-nucleon coupling due to '-exchange. Since m' ⌧ ⇤QCD,
the light scalar ' cannot be integrated out and must be included as a propagating degree of freedom
in nuclear calculations. As a result, all the diagrams are implicitly understood to be dressed with
nuclear e↵ects.

From the nucleon couplings to the light scalar ' given in Eq. (38), the dominant CP-odd

mechanisms that contribute to dHg can arise from the diagrams shown in Fig. 1. The first

contribution arises from the CP-violating direct exchange of the light scalar ' between two

nucleons. The second contribution arises from a virtual '-loop on a proton line with a photon

insertion. This contribution can be thought of as generating a proton EDM, except that the

virtual '-loop cannot be integrated out into an e↵ective EDM vertex due to its light mass.

The final contribution arises from a virtual '-loop that connects nucleons and pions. This

last contribution can be thought of as a contribution to the e↵ective pion-nucleon coupling,

except once again, ' cannot be integrated out into an e↵ective vertex.

The important point here is to note that all of these diagrams are proportional to the

product of the nucleon level couplings gsgp, defined in Eq. (38). Note that in the third

diagram, the coupling of ' to the pion is related to gs, as shown in appendix C. Thus,

current EDM limits can be translated into bounds on gsgp. The product of the macroscopic

couplings g1
s
g
2
p
that appear in the SD fifth-force potential in Eq. (1), are also proportional

to the same product gsgp. Thus, fifth-force limits also translate into bounds on the product

gsgp. As a result, EDM and fifth-force limits can be used as complementary probes of SD

macroscopic forces and the corresponding CP-violating e↵ects.

All of the diagrams in Fig. 1 occur inside the nuclear environment of the Hg nucleus and

will be dressed by nuclear e↵ects. For example, there can be an arbitrary number of pion

exchanges that dress the diagrams in Fig. 1. Such nuclear e↵ects (see Ref. [47] for a review)

cannot be computed in perturbation theory and a rigorous treatment is beyond the scope

of this work. Instead we provide a rough estimate based perturbative calculations in the

light scalar couplings gs and gp, as in Fig. 1, being incorporated into existing calculations

that take nuclear e↵ects into account. In particular, we focus on the contribution of the last

diagram in Fig. 1. We compute this diagram and interpret the result as a correction to the

e↵ective CP-odd pion-nucleon coupling ḡ⇡NN . This interpretation will miss those nuclear

• Some example nucleon level diagrams that can contribute 
  to the EDM:

Direct 
exchange

Proton 
EDM

Correction
to pion nucleon 

coupling

Estimate of Contribution to EDMs



13

N

N p p

�

'

⇡

⇡

N N

''

FIG. 1: Representative diagrams of the contribution to nuclear EDMs arising from exchanges of
the light scalar ' that mediates the macroscopic SD force. The first diagram corresponds to '
exchanges between nucleons in the nucleus. The second and third diagrams can be interpreted as an
induced proton EDM and CP-odd pion-nucleon coupling due to '-exchange. Since m' ⌧ ⇤QCD,
the light scalar ' cannot be integrated out and must be included as a propagating degree of freedom
in nuclear calculations. As a result, all the diagrams are implicitly understood to be dressed with
nuclear e↵ects.

From the nucleon couplings to the light scalar ' given in Eq. (38), the dominant CP-odd

mechanisms that contribute to dHg can arise from the diagrams shown in Fig. 1. The first

contribution arises from the CP-violating direct exchange of the light scalar ' between two

nucleons. The second contribution arises from a virtual '-loop on a proton line with a photon

insertion. This contribution can be thought of as generating a proton EDM, except that the

virtual '-loop cannot be integrated out into an e↵ective EDM vertex due to its light mass.

The final contribution arises from a virtual '-loop that connects nucleons and pions. This

last contribution can be thought of as a contribution to the e↵ective pion-nucleon coupling,

except once again, ' cannot be integrated out into an e↵ective vertex.

The important point here is to note that all of these diagrams are proportional to the

product of the nucleon level couplings gsgp, defined in Eq. (38). Note that in the third

diagram, the coupling of ' to the pion is related to gs, as shown in appendix C. Thus,

current EDM limits can be translated into bounds on gsgp. The product of the macroscopic

couplings g1
s
g
2
p
that appear in the SD fifth-force potential in Eq. (1), are also proportional

to the same product gsgp. Thus, fifth-force limits also translate into bounds on the product

gsgp. As a result, EDM and fifth-force limits can be used as complementary probes of SD

macroscopic forces and the corresponding CP-violating e↵ects.

All of the diagrams in Fig. 1 occur inside the nuclear environment of the Hg nucleus and

will be dressed by nuclear e↵ects. For example, there can be an arbitrary number of pion
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• An example nucleon level diagram that can contribute 
  to the EDM:

Estimate of Contribution to EDMs

Correction
to pion nucleon 
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- Treat as a shift to     
  pion-nucleon coupling

- Incorporate into   
  existing results for  
  the Schiff moment of 
  the Mercury EDM

(SM, Ramsey-Musolf, Pitschmann)
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1. Leading contributions

The shift in the pion-nucleon coupling in Eq. (46) arises from the calculation of the two

diagrams in Fig. 2 and correspond to the leading contributions. The di↵erent vertices in the

+
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p
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`

'

N N
0

⇡

p
0

p

`
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FIG. 2: Leading contributions from a virtual ' loop that give rise to the shift in the CP-odd
pion-nucleon coupling in Eq. (46).

diagrams are described by the e↵ective interactions in HB�PT

L⇡N̄N =
2gA
f⇡

@µ⇡
a
N̄v

�
a

2
S
µ
Nv, (A1)

L'⇡⇡ = g
⇡

s
' ⇡

a
⇡
a
, (A2)

L'N̄N = �
gp

mN

N̄v (S
µ
@µ')Nv, (A3)

where gA ' 1.27, mN ' 940 MeV denotes the nucleon mass, and f⇡ ' 92.4 MeV is the pion

decay constant. The heavy baryon nucleon fields Nv are defined in terms of the full theory

nucleon fields N as

Nv(x) = exp(imN v · x)
1 + /v

2
N(x), (A4)

where v
µ denotes the four-velocity which satisfies v2 = 1. The spin operator Sµ appearing

in Eq. (A3) is given by

Sµ =
i

2
�
5
�µ⌫v

⌫
. (A5)

In appendix C, it is shown that the coupling g
⇡

s
, appearing in L'⇡⇡ in Eq. (A3), can be

written as g⇡
s
'

m
2
⇡

90 MeV gs, so that both diagrams are proportional to gsgp.

The amplitude of the first diagram in Fig. (2) is given by

M
a

1 '
g
⇡

s
gpgA

mNf⇡

Z
d
d
`

(2⇡)d
N̄v(p

0)�a (S · q̄) (S · `)Nv(p)
1

v · p̄+ i"

1

`2 �m2
'
+ i"

1

q̄2 �m2
⇡
+ i"

,

(A6)

with q = p
0
� p, p̄ = p� `, p̄0 = p

0 + ` and q̄ = q + ` and N̄v(p) denotes the nucleon SU(2)

isospinor in momentum space. The superscript a on the amplitude denotes the pion isospin
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Appendix C: Scalar coupling to the pion

In this section we show that the coupling g
⇡

s
, appearing in Eq. (A3), is proportional to

the scalar nucleon coupling gs. We start with the quark level coupling g
q

s
, assuming flavor

universality for simplicity, so that

L
q

'
= g

q

s
' [ ūu+ d̄d ], (C1)

which induces a coupling g
⇡

s
to pions

L
⇡

'
= g

⇡

s
' ⇡

a
⇡
a
, (C2)

and the coupling gs to nucleons

L = gs ' N̄N. (C3)

By taking pion and nucleon matrix elements of the operator Lq

'
in Eq. (C1), the quark level

coupling g
q

s
is related to the pion (g⇡

s
) and nucleon (gs) level couplings as

g
⇡

s
= g

q

s
h⇡|ūu+ d̄d|⇡i,

gs = g
q

s
hN |ūu+ d̄d|Ni, (C4)

so that gs and g
⇡

s
are related as

g
⇡

s
=

h⇡|ūu+ d̄d|⇡i

hN |ūu+ d̄d|Ni
gs. (C5)

We use the relations [56, 57]

hN |ūu+ d̄d|Ni =
90 MeV

mu +md

,

h⇡|ūu+ d̄d|⇡i =
m

2
⇡

mu +md

, (C6)

to write

g
⇡

s

gs
'

m
2
⇡

90 MeV
' 218 MeV. (C7)
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Vertices in HBChPT Coupling to Pion

• Compute one loop diagrams using Heavy Baryon Chiral 
Perturbation theory (HBChPT)
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1. Leading contributions

The shift in the pion-nucleon coupling in Eq. (46) arises from the calculation of the two

diagrams in Fig. 2 and correspond to the leading contributions. The di↵erent vertices in the
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pion-nucleon coupling in Eq. (46).
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hN |ūu+ d̄d|Ni, (C4)

so that gs and g
⇡

s
are related as

g
⇡

s
=
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m
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m
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Vertices in HBChPT Coupling to Pion

• Coupling to pion is related to scalar nucleon coupling:
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1. Leading contributions

The shift in the pion-nucleon coupling in Eq. (46) arises from the calculation of the two

diagrams in Fig. 2 and correspond to the leading contributions. The di↵erent vertices in the
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p
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FIG. 2: Leading contributions from a virtual ' loop that give rise to the shift in the CP-odd
pion-nucleon coupling in Eq. (46).

diagrams are described by the e↵ective interactions in HB�PT
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, (A2)

L'N̄N = �
gp

mN

N̄v (S
µ
@µ')Nv, (A3)

where gA ' 1.27, mN ' 940 MeV denotes the nucleon mass, and f⇡ ' 92.4 MeV is the pion

decay constant. The heavy baryon nucleon fields Nv are defined in terms of the full theory

nucleon fields N as

Nv(x) = exp(imN v · x)
1 + /v

2
N(x), (A4)

where v
µ denotes the four-velocity which satisfies v2 = 1. The spin operator Sµ appearing

in Eq. (A3) is given by

Sµ =
i

2
�
5
�µ⌫v

⌫
. (A5)

In appendix C, it is shown that the coupling g
⇡

s
, appearing in L'⇡⇡ in Eq. (A3), can be

written as g⇡
s
'

m
2
⇡

90 MeV gs, so that both diagrams are proportional to gsgp.

The amplitude of the first diagram in Fig. (2) is given by

M
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with q = p
0
� p, p̄ = p� `, p̄0 = p

0 + ` and q̄ = q + ` and N̄v(p) denotes the nucleon SU(2)

isospinor in momentum space. The superscript a on the amplitude denotes the pion isospin
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e↵ects associated with all pion insertions to the virtual ' loop diagram, which are not taken

into account as renormalization of propagators and vertices, i.e. the scalar ' is a light

propagating and dynamical degree of freedom and cannot be integrated out into an e↵ective

pion-nucleon coupling. However, for the purpose of obtaining a rough order of magnitude

estimate, we expect it is su�cient to treat this e↵ect as a correction to the CP-odd pion-

nucleon coupling which is used as an input parameter in the full nuclear EDM calculation.

The general form of the CP-odd pion-nucleon interactions is given by [41, 46, 48, 49]

L⇡NN = ḡ
(0)
⇡NN

N̄⌧
a
N⇡

a + ḡ
(1)
⇡NN

N̄N⇡
0 + ḡ

(2)
⇡NN

(N̄⌧
a
N⇡

a
� 3N̄⌧

3
N⇡

0), (40)

where ḡ
(0)
⇡NN

, ḡ
(1)
⇡NN

, and ḡ
(2)
⇡NN

denote the induced isoscalar, isovector, and isotensor com-

ponents of the CP-odd pion-nucleon coupling ḡ⇡NN . This result is arrived at using the

techniques of heavy baryon chiral perturbation theory (HB�PT) [50]. The third diagram in

Fig. 1, will generate a shift �ḡ(i)
⇡NN

for each ḡ
(i)
⇡NN

coupling. The EDM dHg depends via the

Schi↵ moment on ḡ
(i)
⇡NN

dHg = dHg(SHg[ḡ
(i)
⇡NN

]), (41)

taking nuclear e↵ects into account. In particular, the contribution to dHg from the Schi↵

moment is given by [20, 51]

dHg = �2.8⇥ 10�4 SHg

fm2 , (42)

where the Schi↵ moment SHg is given in terms of the CP-odd pion nucleon couplings as

SHg = g⇡NN [ 0.01 ḡ(0)
⇡NN

+ 0.07 ḡ(1)
⇡NN

+ 0.02 ḡ(2)
⇡NN

] e fm3
, (43)

where g⇡NN ' 13.5 is the strong pion-nucleon coupling. Thus, the shift in the pion-nucleon

couplings ḡ(i)
⇡NN

due to the virtual ' loop results in a correction to the Schi↵ moment given

by

�SHg = g⇡NN [ 0.01 �ḡ(0)
⇡NN

+ 0.07 �ḡ(1)
⇡NN

+ 0.02 �ḡ(2)
⇡NN

] e fm3
. (44)

This correction to the Schi↵ moment causes a shift in dHg given by

�dHg = �2.8⇥ 10�4 �SHg

fm2 . (45)

Details of the computation of the the virtual '-loop in the third diagram of Fig. 1 and

the resulting correction to pion-nucleon CP-odd couplings ḡ
(0)
⇡NN

are given in appendix A.

The result expressed in terms of gsgp is given by

�ḡ
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⇡NN
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16⇡
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2
'

m⇡ +m'

gAm
2
⇡

90 MeVmNf⇡
gsgp, �ḡ
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⇡NN

+ 0.07 ḡ(1)
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(2)
⇡NN

= 0. (46)

14

e↵ects associated with all pion insertions to the virtual ' loop diagram, which are not taken

into account as renormalization of propagators and vertices, i.e. the scalar ' is a light

propagating and dynamical degree of freedom and cannot be integrated out into an e↵ective

pion-nucleon coupling. However, for the purpose of obtaining a rough order of magnitude

estimate, we expect it is su�cient to treat this e↵ect as a correction to the CP-odd pion-

nucleon coupling which is used as an input parameter in the full nuclear EDM calculation.

The general form of the CP-odd pion-nucleon interactions is given by [41, 46, 48, 49]

L⇡NN = ḡ
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Shift in the Mercury EDM
• Shift in the Schiff moment will cause a shift in the EDM

• Shift in the Schiff moment arises from one-loop pion-nucleon 
couplings

• Shift in CP-odd pion-nucleon couplings

(Griffith;de Jesus, Engel)
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1. Leading contributions

The shift in the pion-nucleon coupling in Eq. (46) arises from the calculation of the two

diagrams in Fig. 2 and correspond to the leading contributions. The di↵erent vertices in the
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FIG. 2: Leading contributions from a virtual ' loop that give rise to the shift in the CP-odd
pion-nucleon coupling in Eq. (46).
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where the Schi↵ moment SHg is given in terms of the CP-odd pion nucleon couplings as

SHg = g⇡NN [ 0.01 ḡ(0)
⇡NN

+ 0.07 ḡ(1)
⇡NN

+ 0.02 ḡ(2)
⇡NN

] e fm3
, (43)

where g⇡NN ' 13.5 is the strong pion-nucleon coupling. Thus, the shift in the pion-nucleon

couplings ḡ(i)
⇡NN

due to the virtual ' loop results in a correction to the Schi↵ moment given

by

�SHg = g⇡NN [ 0.01 �ḡ(0)
⇡NN

+ 0.07 �ḡ(1)
⇡NN

+ 0.02 �ḡ(2)
⇡NN
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. (44)

This correction to the Schi↵ moment causes a shift in dHg given by

�dHg = �2.8⇥ 10�4 �SHg

fm2 . (45)

Details of the computation of the the virtual '-loop in the third diagram of Fig. 1 and

the resulting correction to pion-nucleon CP-odd couplings ḡ
(0)
⇡NN

are given in appendix A.

The result expressed in terms of gsgp is given by
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e↵ects associated with all pion insertions to the virtual ' loop diagram, which are not taken

into account as renormalization of propagators and vertices, i.e. the scalar ' is a light

propagating and dynamical degree of freedom and cannot be integrated out into an e↵ective

pion-nucleon coupling. However, for the purpose of obtaining a rough order of magnitude

estimate, we expect it is su�cient to treat this e↵ect as a correction to the CP-odd pion-

nucleon coupling which is used as an input parameter in the full nuclear EDM calculation.

The general form of the CP-odd pion-nucleon interactions is given by [41, 46, 48, 49]
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for each ḡ
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⇡NN

due to the virtual ' loop results in a correction to the Schi↵ moment given
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⇡NN

] e fm3
. (44)

This correction to the Schi↵ moment causes a shift in dHg given by

�dHg = �2.8⇥ 10�4 �SHg

fm2 . (45)

Details of the computation of the the virtual '-loop in the third diagram of Fig. 1 and
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(0)
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are given in appendix A.
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nucleon coupling which is used as an input parameter in the full nuclear EDM calculation.

The general form of the CP-odd pion-nucleon interactions is given by [41, 46, 48, 49]

L⇡NN = ḡ
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due to the virtual ' loop results in a correction to the Schi↵ moment given
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⇡NN

due to the virtual ' loop results in a correction to the Schi↵ moment given
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estimate, we expect it is su�cient to treat this e↵ect as a correction to the CP-odd pion-
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(i)
⇡NN

coupling. The EDM dHg depends via the

Schi↵ moment on ḡ
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(2)
⇡NN

= 0. (46)

Shift in the Mercury EDM
• Shift in the Schiff moment will cause a shift in the EDM

• Shift in the Schiff moment arises from one-loop pion-nucleon 
couplings

• Shift in CP-odd pion-nucleon couplings
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EDM and fifth-force experiments to constrain SD forces is the main focus of this paper.

The axion [14–17], invoked to solve the strong CP problem, is the most familiar example of

a mediator of a new SD force that is constrained by EDM searches. In fact, EDM limits place

upper bounds on the product of axion couplings g
1
s
g
2
p
, appearing in Eq. (1), that are several

orders of magnitude more stringent than those derived from fifth-force experiments. This is

a result of the unique properties of the axion and its induced couplings to matter. However,

as we show in this paper, if one considers more general SD forces that are mediated by

light scalars with arbitrary couplings, fifth-force experiments can place significantly tighter

bounds in large regions of parameter space.

A non-zero EDM arises from a term in the Lagrangian of the form

L = �d
i

2
 ̄ �

µ⌫
�5  Fµ⌫ . (2)

In the non-relativistic limit, it gives rise to the Hamiltonian

H = �d ~E ·

~S

S
, (3)

for a particle of spin ~S in an electric field ~E. For a non-zero value of d, CP violation is

apparent from the CPT theorem and the behavior of the Hamiltonian under time-reversal

T ( ~E · ~S) = � ~E · ~S. The current bounds for the EDM of the neutron, the electron, and the

diamagnetic Mercury atom are

|dn| < 2.9⇥ 10�13 e fm (90% C.L.) [18],

|de| < 10.5⇥ 10�15 e fm (90% C.L.) [19],

|dHg| < 3.1⇥ 10�16 e fm (95% C.L.) [20], (4)

respectively. If a non-zero EDM is measured, the next logical step is to determine the source

of TVPV responsible for the observed e↵ect. In particular, this paper is concerned with the

possibility of a new macroscopic SD force.

II. LABORATORY FIFTH-FORCE EXPERIMENTS

There are several high-precision fifth-force experiments that put bounds on the product

of the scalar (gs) and pseudoscalar (gp) nucleon level couplings, as a function of the mass m'.

These experiments employ di↵erent physical principles [13]. Currently, the most stringent

bounds come from neutron Qbounce experiments [21, 22] for the range � >
⇠ 2 ⇥ 10�5 m,

corresponding to m'
<
⇠ 10�2 eV. This corresponds to the high mass region of the so called

axion window. For the range � <
⇠ 2 ⇥ 10�1 m, corresponding to m'

>
⇠ 10�6 eV and the

low mass region of the axion window, the most stringent bounds come from experiments

measuring the precession frequency shift in the presence of an unpolarized mass [11, 12, 23].
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1. Leading contributions

The shift in the pion-nucleon coupling in Eq. (46) arises from the calculation of the two

diagrams in Fig. 2 and correspond to the leading contributions. The di↵erent vertices in the

+

N N
0

⇡

p
0

p

`

'

N N
0

⇡

p
0

p

`

'

FIG. 2: Leading contributions from a virtual ' loop that give rise to the shift in the CP-odd
pion-nucleon coupling in Eq. (46).

diagrams are described by the e↵ective interactions in HB�PT

L⇡N̄N =
2gA
f⇡

@µ⇡
a
N̄v

�
a

2
S
µ
Nv, (A1)

L'⇡⇡ = g
⇡

s
' ⇡

a
⇡
a
, (A2)

L'N̄N = �
gp

mN

N̄v (S
µ
@µ')Nv, (A3)

where gA ' 1.27, mN ' 940 MeV denotes the nucleon mass, and f⇡ ' 92.4 MeV is the pion

decay constant. The heavy baryon nucleon fields Nv are defined in terms of the full theory

nucleon fields N as

Nv(x) = exp(imN v · x)
1 + /v

2
N(x), (A4)

where v
µ denotes the four-velocity which satisfies v2 = 1. The spin operator Sµ appearing

in Eq. (A3) is given by

Sµ =
i

2
�
5
�µ⌫v

⌫
. (A5)

In appendix C, it is shown that the coupling g
⇡

s
, appearing in L'⇡⇡ in Eq. (A3), can be

written as g⇡
s
'

m
2
⇡

90 MeV gs, so that both diagrams are proportional to gsgp.

The amplitude of the first diagram in Fig. (2) is given by

M
a

1 '
g
⇡

s
gpgA

mNf⇡

Z
d
d
`

(2⇡)d
N̄v(p

0)�a (S · q̄) (S · `)Nv(p)
1

v · p̄+ i"

1

`2 �m2
'
+ i"

1

q̄2 �m2
⇡
+ i"

,

(A6)

with q = p
0
� p, p̄ = p� `, p̄0 = p

0 + ` and q̄ = q + ` and N̄v(p) denotes the nucleon SU(2)

isospinor in momentum space. The superscript a on the amplitude denotes the pion isospin
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Note that as mentioned earlier, the shift in ḡ
(0)
⇡NN

is proportional to the same product of

nucleon couplings gsgp, defined in Eq. (38), that are bounded by fifth-force limits. Using the

existing bound on the mercury EDM given in Eq. (4), one can obtain a conservative bound

(assuming no spurious cancellations with other contributions) on the product of couplings

gsgp by requiring that the shift in the EDM in Eq. (45) is less than the current bound given

in Eq. (4). The resulting bound is |gsgp| <⇠ 10�9.

As mentioned before, this bound should be interpreted only as a rough estimate and

could change by up two orders of magnitude. We have only considered the contribution to

dHg from the third diagram in Fig. 1. In doing so, we treated it as an e↵ective correction to

the pion-nucleon couplings ḡ(i)
⇡NN

. However, since m' ⌧ ⇤QCD, there will be nuclear e↵ects

that dress the third diagram in Fig. 1. These e↵ects cannot be incorporated by a simple

correction to ḡ
(i)
⇡NN

. Thus, one can expect order one corrections from nuclear e↵ects to the

estimates given in Eq. (46). Furthermore, additional contributions to dHg can arise from the

first two diagrams in Fig. 1. These require a full nuclear calculation and the resulting e↵ect

could change the bound on gsgp by up to two orders of magnitude. This can be understood

by noting that the third diagram in Fig. 1 is loop suppressed by a factor of ⇠ 1/(16⇡2)

relative to the first tree-level exchange diagram. There are several other one loop diagrams

not shown in Fig. 1, but are expected to be subleading, as discussed in appendix A. With

all of these considerations, in the absence of a full EDM calculation, including all nuclear

e↵ects in the presence of the light scalar ', we estimate that the true bound on gsgp lies

somewhere in the range gsgp
<
⇠ [10�12

, 10�8].

VII. COMPARISON OF FIFTH-FORCE AND EDM LIMITS

In this section, we discuss and summarize limits on macroscopic SD forces from laboratory

fifth-force experiments, EDM constraints, and the analysis of the previous sections. In

particular, we discuss the limits on the product of nucleon level couplings gsgp of the light

scalar mediator ', that determine the size of the macroscopic couplings g1
s
g
2
p
that determine

the fifth-force potential in Eq. (1). We also discuss and summarize the di↵erences between

axions and more generic light scalar SD force mediators.

For a generic scalar that mediates a macroscopic SD force, EDM constraints applied to

the analysis of section VI, give rise to an estimated bound of

gsgp
<
⇠ [10�12

, 10�8]. (47)

These bounds can be compared with those arising from laboratory fifth-force experiments.

For example, from Fig. 3 of Ref. [23] the bounds on gsgp for macroscopic SD forces of two

di↵erent interaction ranges are given in table I. In this case, one can conclude that the

laboratory fifth-force experiments place more stringent bounds by several orders of magni-

tude. Also note that the bounds from laboratory fifth-force experiments exhibit far greater

EDM Bound on Macroscopic 
Spin-Dependent Force
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by these interactions as functions of the parameters gs and gp and derive order-of-magnitude

bounds on their product. Before doing so, we comment on the possible origin of the inter-

action in Eq. (1). Although this interaction does not respect the SM electroweak symmetry,

it may be the low-energy remnant of a more complete theory that does so at high scales.

Consider, for example, an extension of the SM scalar sector that includes an additional

complex gauge singlet. After electroweak symmetry-breaking, the SM Higgs scalar will in

general mix with one component of the singlet, unless one imposes a discrete Z2 symmetry

on the scalar potential. If the electroweak-singlet vacuum also spontaneously breaks CP,

then mixed scalar-pseudoscalar states will occur. The SM Yukawa interactions will then

give rise to both types of terms in Eq. (1), with gs,p being functions of the quark Yukawa

couplings and parameters in the scalar potential. The question, then, is to determine the

extent to which EDMs and fifth force experiments might constrain such a scenario if one of

the scalars is ultra-light4 (for a concrete realization, see, e.g. Ref. [46]).

A. EDMs induced by a generic light scalar

We identify three classes of e↵ects associated with Eqs. (1,2) that contribute to EDMs,

illustrated in Fig. 1: (a) direct ' exchange between two nucleons that generates the potential

(3) and contributes to the nuclear Schi↵ moments of diamagnetic atoms (first panel) ; (b)

' loops involving one factor each of the scalar and pseudo scalar couplings that induce a

nucleon EDM (middle panel); and (c) ' loops that induce a TVPV ⇡NN coupling that,

in turn, generates the nuclear Schi↵ moment via ⇡-exchange between two nucleons (third

panel).

N

N p p

�

'

⇡

⇡

N N

''

FIG. 1: Representative diagrams of the contribution to nuclear EDMs arising from exchanges of
the light scalar ' that mediates the macroscopic SD force. The first diagram corresponds to '
exchanges between nucleons in the nucleus. The second and third diagrams can be interpreted as
an induced proton EDM and CP-odd pion-nucleon coupling due to '-exchange.

The computation of an EDM of a strongly-interacting many-body system is highly non-

trivial, and theoretical subtleties arise at the hadronic, nuclear, and atomic levels (for re-

4 In this case, there will in general also exist heavier mixed scalar-pseudoscalar states whose couplings to

quarks will also be functions of the Yukawa couplings and scalar potential.

Order of Magnitude Estimate on 
EDM Constraint
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Note that as mentioned earlier, the shift in ḡ
(0)
⇡NN

is proportional to the same product of

nucleon couplings gsgp, defined in Eq. (38), that are bounded by fifth-force limits. Using the

existing bound on the mercury EDM given in Eq. (4), one can obtain a conservative bound

(assuming no spurious cancellations with other contributions) on the product of couplings

gsgp by requiring that the shift in the EDM in Eq. (45) is less than the current bound given

in Eq. (4). The resulting bound is |gsgp| <⇠ 10�9.

As mentioned before, this bound should be interpreted only as a rough estimate and

could change by up two orders of magnitude. We have only considered the contribution to

dHg from the third diagram in Fig. 1. In doing so, we treated it as an e↵ective correction to

the pion-nucleon couplings ḡ(i)
⇡NN

. However, since m' ⌧ ⇤QCD, there will be nuclear e↵ects

that dress the third diagram in Fig. 1. These e↵ects cannot be incorporated by a simple

correction to ḡ
(i)
⇡NN

. Thus, one can expect order one corrections from nuclear e↵ects to the
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e↵ects in the presence of the light scalar ', we estimate that the true bound on gsgp lies

somewhere in the range gsgp
<
⇠ [10�12

, 10�8].

VII. COMPARISON OF FIFTH-FORCE AND EDM LIMITS

In this section, we discuss and summarize limits on macroscopic SD forces from laboratory

fifth-force experiments, EDM constraints, and the analysis of the previous sections. In

particular, we discuss the limits on the product of nucleon level couplings gsgp of the light

scalar mediator ', that determine the size of the macroscopic couplings g1
s
g
2
p
that determine

the fifth-force potential in Eq. (1). We also discuss and summarize the di↵erences between

axions and more generic light scalar SD force mediators.

For a generic scalar that mediates a macroscopic SD force, EDM constraints applied to

the analysis of section VI, give rise to an estimated bound of

gsgp
<
⇠ [10�12

, 10�8]. (47)

These bounds can be compared with those arising from laboratory fifth-force experiments.

For example, from Fig. 3 of Ref. [23] the bounds on gsgp for macroscopic SD forces of two

di↵erent interaction ranges are given in table I. In this case, one can conclude that the

laboratory fifth-force experiments place more stringent bounds by several orders of magni-

tude. Also note that the bounds from laboratory fifth-force experiments exhibit far greater

• Bound from the one-loop correction:

• The tree level diagram can enhance the effect by two 
orders of magnitude.

• In the absence of a rigorous calculation, a first estimate is
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and information on these numerical values, we refer the reader to Ref. [1]. For order of

magnitude estimates obtained below, the best values are used.

The shift in the pion-nucleon couplings ḡ
(i)
⇡NN

due to the virtual ' loop results in a

correction to the Schi↵ moment which is given by only the first term arises in our scenario

�SHg = g⇡NN [ a0 �ḡ
(0)
⇡NN

+ a1 �ḡ
(1)
⇡NN

+ a2 �ḡ
(2)
⇡NN

] e fm3
, (45)

This correction to the Schi↵ moment causes a shift in dHg given by

�dHg = �2.8⇥ 10�4 �SHg

fm2 . (46)

Details of the computation of the the virtual '-loop in the third diagram of Fig. 1 and

the resulting correction to pion-nucleon CP-odd couplings ḡ
(0)
⇡NN

are given in appendix A.

The result expressed in terms of gsgp is given by

�ḡ
(0)
⇡NN
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'

m⇡ +m'

gAm
2
⇡

90 MeVmNf⇡
gsgp, �ḡ

(1)
⇡NN

= 0, �ḡ
(2)
⇡NN

= 0. (47)

Note that as mentioned earlier, the shift in ḡ
(0)
⇡NN

is proportional to the same product of

nucleon couplings gsgp, defined in Eq. (38), that are bounded by fifth-force limits. Using the

existing bound on the mercury EDM given in Eq. (4), one can obtain a conservative bound

(assuming no spurious cancellations with other contributions) on the product of couplings

gsgp by requiring that the shift in the EDM in Eq. (46) is less than the current bound given

in Eq. (4). The resulting bound is |gsgp| <⇠ 10�9.

As emphasized above, this bound should be interpreted only as a rough upper bound.

Direct '-exchange may strengthen it by up to two orders of magnitude. Consequently, we

conservatively quote a range of upper bounds gsgp <⇠ [10�11
, 10�9].
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particular, we discuss the limits on the product of nucleon level couplings gsgp of the light

scalar mediator ', that determine the size of the macroscopic couplings g1
s
g
2
p
that determine

the fifth-force potential in Eq. (1). We also discuss and summarize the di↵erences between

axions and the more generic light scalar SD force mediators.

For a generic scalar, EDM constraints applied to the analysis of section VI, gives rise to

an estimated bound in the range

gsgp
<
⇠ [10�11

, 10�9]. (48)

These bounds can be compared with those arising from laboratory fifth-force experiments.

For example, from Fig. 3 of Ref. [24] the bounds on gsgp for macroscopic SD forces of two
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existing bound on the mercury EDM given in Eq. (4), one can obtain a conservative bound

(assuming no spurious cancellations with other contributions) on the product of couplings

gsgp by requiring that the shift in the EDM in Eq. (46) is less than the current bound given
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Direct '-exchange may strengthen it by up to two orders of magnitude. Consequently, we

conservatively quote a range of upper bounds gsgp <⇠ [10�11
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In this section, we discuss and summarize limits on macroscopic SD forces from laboratory

fifth-force experiments, EDM constraints, and the analysis of the previous sections. In

particular, we discuss the limits on the product of nucleon level couplings gsgp of the light

scalar mediator ', that determine the size of the macroscopic couplings g1
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p
that determine

the fifth-force potential in Eq. (1). We also discuss and summarize the di↵erences between

axions and the more generic light scalar SD force mediators.

For a generic scalar, EDM constraints applied to the analysis of section VI, gives rise to

an estimated bound in the range
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<
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These bounds can be compared with those arising from laboratory fifth-force experiments.

For example, from Fig. 3 of Ref. [24] the bounds on gsgp for macroscopic SD forces of two
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Interaction range Fifth EDM EDM Combined Laboratory

� [m] Force Generic Scalar Axion & Astrophysics

⇠ 2⇥ 10�5
⇠ 10�16

⇠ 10�9
� 10�11

⇠ 10�40
� 10�34

⇠ 10�27

⇠ 2⇥ 10�1
⇠ 10�29

⇠ 10�9
� 10�11

⇠ 10�40
� 10�34

⇠ 10�30
� 10�34

TABLE I: Comparison of the upper bound on gsgp from fifth-force and EDM experiments and
from combining astrophysical limits with laboratory constraints. Note that these limits are for the
generic scalar '. For the special case of the axion, the EDM limit is much more stringent than for
the non-axionic spin-0 particle. Note that the range dependence is due to the dependence on fa as
explained in the text.

V. COMPARISON OF FIFTH-FORCE AND EDM LIMITS

The bound in Eq. (45) can be compared with those arising from laboratory fifth-force

experiments. From Fig. 3 of Ref. [14] the bound on gsgp for two di↵erent interaction ranges

are given in Table I. In this case, one can conclude that the laboratory fifth-force experiments

place more stringent bounds by several orders of magnitude. Also note that the bounds from

laboratory fifth-force experiments exhibit far greater sensitivity to the interaction range, or

equivalently to the massm'. This is simply understood by noting that EDM constrains have

no sensitivity to m', since the typical nuclear size rN ⌧ 1/m'; in short, compared to typical

nuclear scales, the light scalar ' is essentially massless. Only when 1/m' ⇠ rN ⇠ 1/m⇡

can one expect EDM bounds to be sensitive to m' (see e.g. Eq. (43)). From Ref. [16],

this may occur somewhere in the region where 10�10 m <
⇠ � <

⇠ 10�7 m, corresponding to 2

eV <
⇠ m'

<
⇠ 2 keV. Finally, for � <

⇠ 10�10 m, corresponding to m'
>
⇠ 2 keV, one expects

EDM limits to dominate over those from fifth-force experiments. However, in this case the

interaction range is too small for it to be observed as a macroscopic SD force.

For the generic light scalar, even more stringent bounds on the product gsgp are derived by

combining existing laboratory limits with limits obtained from energy loss in the observed

1987A supernova. The laboratory limits on gs from tests of Newtons inverse square law

[4, 50–53], the weak equivalence principle [54, 55], and from astrophysical limits [56–58] are

combined with the SN 1987A limit on the pseudoscalar coupling gp (see Fig. 3 in Ref. [45]),

to obtain the most stringent limits, as seen in the last column of Table I. Nevertheless, pure

laboratory searches remain important, especially if with improvements over time they can

compete with astrophysical limits5.

For the case of axion-mediated TVPV spin-dependent forces, the situation is reversed. As

discussed in section III, the linear dependence of gs on ✓̄ that, in turn, is severly constrained

by EDM searches, implies that the fifth-force bounds on gsgp are several orders of magnitude

weaker (see Eq. (39)). For this scenario, the fifth force searches cannot compete with EDM

5 T. G. Walker, private communication

Generic Axion

• EDM limits appear to be the strongest for the axion while 
being the weakest for a generic (non-axion) scalar. 



Conclusions

• Observations in fifth-force experiments, astrophysics, and EDM 
experiments can be combined to constrain the nature of axion-
like particles.

• EDM limits dominate for Axion mediated forces.

• Astrophysical/gravity limits dominate for non-axion generic 
scalars.

• Laboratory fifth-force limits dominate EDM limits for 
  non-axion generic scalars, for the range of force it probes.  
  But EDM limits will still be relevant, if the range of the force 
  is too small compared to the sensitivity of the fifth-force   
  experiment.


