T-violation in nucleons and nuclei: an effective field theory approach

Jordy de Vries

University of Massachusetts, Amherst Amherst Center for Fundamental Interactions

Main purpose of this talk

- 1. How to describe T-violating hadronic interactions in a systematic fashion ? What interactions to include for 'leading order' calculations ?
- Using these interactions to calculate T-odd nuclear observables (EDMs, Schiff moments, Magnetic quadrupole, neutron spin rotation, analyzing powers ...). I will focus on PVTV not on PCTV (but happy to discuss)
- 3. Focus on simple observables that capture main ideas (analogue of program of hadronic PV) → extension to complicated observables in heavy nuclei is far from trivial.

Main purpose of this talk

- 1. How to describe T-violating hadronic interactions in a systematic fashion ? What interactions to include for 'leading order' calculations ?
- Using these interactions to calculate T-odd nuclear observables (EDMs, Schiff moments, Magnetic quadrupole, neutron spin rotation, analyzing powers ...). I will focus on PVTV not on PCTV (but happy to discuss)
- 3. Focus on simple observables that capture main ideas (analogue of program of hadronic PV) → extension to complicated observables in heavy nuclei is far from trivial.
- 4. Very important: measurable T-violating signals require BSM physics (or nonzero theta term). Need some sort of link between hadronic T-violation and particle physics to be able to do 1) and then 2) and 3).
- 5. Will **not** discuss in detail specific BSM models or implications or baryogenesis motivations → talks by Kaori and Michael on Saturday.

EDMs in the SM

- CP is broken in the CM via the Kobayashi-Maskawa mechanism
- CP-odd phase in the **off-diagonal** CKM matrix
- Manifests in flavor-diagonal (our goal) at 3 loops (electron 4 loops)

Very very suppressed SM electroweak contributions to EDMs

Hoogeveen '90, Khriplovich, Zhitnitsky '82, Czarnecki, Krause '97, Uraltsev '13, Seng '14

Standard Model suppression

5 to 6 orders **below** upper bound \longleftrightarrow **Out of reach!**

With linear extrapolation: CKM neutron EDM in 2075....

For the forseeable future: EDMs are **'background-free'** searches for new physics

Comparing to hadronic parity violation

Comparing to hadronic parity violation

The form of the CP-odd 'Fermi' interactions

- To stay **model independent**: add all EFT operators (infinite...)
 - 1) Degrees of freedom: Full SM field content
 - 2) Symmetries: Lorentz, **SU(3)xSU(2)xU(1)**

Buchmuller & Wyler '86 Gradzkowski et al '10 Many others

$$L_{new} = L_{SM} + \frac{1}{\Lambda}L_5 + \frac{1}{\Lambda^2}L_6 + \cdots$$

• Effects at low energy (E) suppressed by powers of (E/Λ)

The form of the CP-odd 'Fermi' interactions

- To stay **model independent**: add all EFT operators (infinite...)
 - 1) Degrees of freedom: Full SM field content
 - 2) Symmetries: Lorentz, SU(3)xSU(2)xU(1)

Buchmuller & Wyler '86 Gradzkowski et al '10 Many others

Dekens & JdV, '13

Fuyuto et al '17

Cirigliano et al' 15,'16'17

$$L_{new} = L_{SM} + \frac{1}{\Lambda}L_5 + \frac{1}{\Lambda^2}L_6 + \cdots$$

- Effects at low energy (E) suppressed by powers of (E/Λ)
- Focus on all CP-odd operators at dimension-six
- Run down → Integrate out H,W,Z,t → Run down → integrate out b,c →
 Obtain form of the 'CP-odd' Fermi interactions
- Can be easily matched to specific BSM models
- CPV unlikely to arise from light BSM fields but loopholes exist!

Le Dall, Pospelov, Ritz '15

When the dust settles.....

Intermediate summary I

- Parametrized BSM CP violation in terms of **dim6** operators
- Several operators at low energy: theta, (C)EDMs, Weinberg, Four-fermion
- Important: different BSM models -> different EFT operators
- 1. Standard Model: only theta has a chance to be measured
- 2. 2-Higgs doublet model: quark+electron EDM, CEDMs, Weinberg (exact hierarchy depends on detail of models)
- 3. Split SUSY: only electron + quark EDMs (ratio fixed)
- 4. Left-right symmetric: Four-quark LR operators, small (C)EDMs
- 5 Leptoquarks: Semi-leptonic four-fermion and four-quark (tree-level)
- But we neglect these 'high-energy details' in this talk and focus on the EFT operators around 1 GeV

Mohapatra et al '75 Giudice et al '06 Dekens et al '14 '18 Pich & Jung '14 Fuyuto et al '18

When the dust settles.....

CPV in hadrons and nuclei

Goal is to calculate CPV properties of hadrons and nuclei

- Electric dipole + higher moments (Schiff, magnetic quadrupole...)
- CP-odd scattering observables

Wishlist

- **Link** to underlying theory (QCD + CPV operators)
- Power counting of nuclear forces and currents
- General (several observables in one framework)

General CP-violating NN force

- Parametrize the CPV nuclear force with one-meson exchange
- CP-odd analogue of the PV DDH model with O(10) CPV couplings

Gudkov et al '11 '13

• Or in EFT with just contact terms: five $S \leftrightarrow P$ transitions

$${}^{3}S_{1} \Leftrightarrow {}^{1}P_{1} \qquad {}^{3}S_{1} \Leftrightarrow {}^{3}P_{1} \qquad {}^{1}S_{0} \Leftrightarrow {}^{3}P_{0}$$

$$np \qquad np \qquad np,nn,pp$$

Herczeg '66, 87 Gudkov et al '93

General CP-violating NN force

- Parametrize the CPV nuclear force with one-meson exchange
- CP-odd analogue of the PV DDH model with O(10) CPV couplings

Gudkov et al '11 '13

Herczeg '66, 87 Gudkov et al '93

• Or in EFT with just contact terms: five $S \leftrightarrow P$ transitions

Here we use chiral EFT: startpoint QCD + CPV dim-6 operators

- 1. Systematic derivation of CPV potential + CPV 3-body forces
- 2. Direct connection between forces and currents (for EDMs!)
- 3. Link to lattice QCD

An ultrashort intro to Chiral EFT

• Use the symmetries of QCD to obtain chiral Lagrangian

$$L_{QCD} \rightarrow L_{chiPT} = L_{\pi\pi} + L_{\pi N} + L_{NN} + \cdots$$

- Quark masses = $0 \rightarrow SU(2)_L xSU(2)_R$ symmetry
 - Spontaneously broken to SU(2)-isospin (pions = Goldstone)
 - Explicit breaking (quark mass) \rightarrow pion mass
- ChPT has systematic expansion in $Q/\Lambda_{\chi} \sim m_{\pi}/\Lambda_{\chi}$ $\Lambda_{\chi} \simeq 1 \, GeV$

Weinberg, Gasser, Leutwyler, and many many others

An ultrashort intro to Chiral EFT

• Use the symmetries of QCD to obtain chiral Lagrangian

$$L_{QCD} \rightarrow L_{chiPT} = L_{\pi\pi} + L_{\pi N} + L_{NN} + \cdots$$

- Quark masses = $0 \rightarrow SU(2)_L xSU(2)_R$ symmetry
 - Spontaneously broken to SU(2)-isospin (pions = Goldstone)
 - Explicit breaking (quark mass) \rightarrow pion mass
- ChPT has systematic expansion in $Q/\Lambda_{\chi} \sim m_{\pi}/\Lambda_{\chi}$ $\Lambda_{\chi} \simeq 1 \, GeV$
 - Form of interactions fixed by symmetries
 - Each interactions comes with an unknown constant (LEC)
 - Can be used to derive a nucleon-nucleon potential (chiral EFT)
- Extended to include CP violation Mereghetti et al' 10, JdV et al '12, Bsaisou et al '14

Weinberg, Gasser, Leutwyler, and many many others

ChiPT with CP violation

- They all break CP....
- But transform **differently** under chiral/isospin symmetry

Different CP-odd chiral Lagrangians

Different hierarchy of CP-odd moments and scattering observables

1 pion-pion-pion

- 2 nucleon-photon (EDM)
- Up to NLO, seven interactions for all CP-odd dim4-6 sources
- Each hadronic/nuclear CPV observables probes a linear combination
- More terms if leptons are included !

Mereghetti et al '10, JdV et al '12, Bsaisou et al '14, Chupp/Ramsey-Musolf '13

Hierarchy of CPV nuclear forces

CP-even

 $\overline{N}N \ \overline{N}N$

Hierarchy of CPV nuclear forces

An explicit example: the theta term

U(1) and SU(2) rotations + vacuum alignments: **CP-odd quark mass**:

$$\mathcal{L}_{\text{QCD}} = \mathcal{L}_{\text{kin}} - \bar{m}\bar{q}q - \varepsilon\bar{m}\,\bar{q}\tau^3 q + m_\star\,\bar{\theta}\,\bar{q}i\gamma^5 q \qquad \text{Crewther et al' 79} \\ \text{Baluni '79}$$

Easy to include in ChPT
$$\chi = 2B(\overline{m} + \varepsilon \overline{m}\tau^3) \rightarrow 2B(\overline{m} + \varepsilon \overline{m}\tau^3 + im_*\overline{\theta})$$

Theta and chiral perturbation theory

U(1) and SU(2) rotations + vacuum alignments: CP-odd quark mass:

Strong proton-neutron mass splitting

Theta and chiral perturbation theory

U(1) and SU(2) rotations + vacuum alignments: CP-odd quark mass:

Theta and chiral perturbation theory

After axial U(1) and SU(2) rotations, complex CP-odd quark mass:

Wrap-up

• Identify protected relations for various couplings

	Values obtained here $(\times 10^{-3} \bar{\theta})$	JdV et al '15
$ \bar{g}_0/(2F_\pi) \bar{g}_{0\eta}/(2F_\eta) \bar{g}_{0N\Sigma K}/(2F_K) \bar{g}_{0N\Lambda K}/(2F_K) $	15.5 ± 2.5 115 ± 37 -36 ± 11 -44 ± 13	$g_1 = -(3 \pm 2) \cdot 10^{-3} \overline{\theta}$ Small due to isospin symmetry

• Used to estimate short-range CPV NN forces from theta term

- Dimension-six qCEDMs have isospin-odd component !
- ChPT gives no direct info about size. Both $g_{0,1}$ are LO
- QCD sum rules to the rescue

$$\bar{g}_0 = (5 \pm 10)(\tilde{d}_u + \tilde{d}_d) \,\mathrm{fm}^{-1} \qquad \bar{g}_1 = (20^{+20}_{-10})(\tilde{d}_u - \tilde{d}_d) \,\mathrm{fm}$$

 $|\bar{g}_1| \ge |\bar{g}_0|$

- Large uncertainties. But generally:
- Lattice in progress (CALLAT)

q q

 $^{-1}$

Pospelov '02

• Four-quark left-right operator breaks isospin !

Mohapatra, Senjanovic, Pati '75

Maiezza et al '14

$$L = i\Xi(\bar{u}_R\gamma_\mu d_R)(\bar{u}_L\gamma_\mu d_L) + h.c$$

• ChPT gives ratio of couplings

$$\frac{\overline{g}_1}{\overline{g}_0} = \frac{8c_1 m_\pi^2}{(m_n - m_p)^{strong}} = -(68 \pm 25)$$

• Four-quark left-right operator breaks isospin !

Mohapatra, Senjanovic, Pati '75 Maiezza et al ' 14

$$L = i\Xi(\bar{u}_R\gamma_\mu d_R)(\bar{u}_L\gamma_\mu d_L) + \text{h.c.}$$

- Due to current-current form: more complicated chiral Lagrangian
- Unique CPV pion-pion-pion interaction

JdV et al '12

Finally: CPV operators that are chiral invariant: e.g. Weinberg operator

$$L = C_{w} f^{abc} \varepsilon^{\mu\nu\alpha\beta} G^{a}_{\alpha\beta} G^{b}_{\mu\lambda} G^{c\,\lambda}_{\nu}$$

CPV pion-nucleon operators forbidden at LO $\rightarrow \frac{m_{\pi}^2}{\Lambda_{\chi}^2}$

Short-range are important but only for 2 out of 5 S-P transitions

 ${}^{3}S_{1} \Leftrightarrow {}^{1}P_{1} \qquad {}^{1}S_{0} \Leftrightarrow {}^{3}P_{0} (np = nn = pp)$

The CPV NN +NNN potential

For all dim4 + dim6 sources, NN + NNN CPV potential is subset of

- Long-range (pions): $\overline{g}_0 \quad {}^3S_1 \leftrightarrow {}^1P_1 + {}^1S_0 \leftrightarrow {}^3P_0 \quad np = nn = pp$ $\overline{g}_1 \quad {}^3S_1 \leftrightarrow {}^3P_1 + {}^1S_0 \leftrightarrow {}^3P_0 \quad nn = -pp$
- Short range $\overline{C}_{1,2} \xrightarrow{3} S_1 \leftrightarrow {}^1P_1 \& {}^1S_0 \leftrightarrow {}^3P_0 \quad np = nn = pp$
- Quite different (simpler) from general boson-exchange model:
 3 long-range + 5 short-range transitions and no 3-body

The CPV NN +NNN potential

For all dim4 + dim6 sources, NN + NNN CPV potential is subset of

These 5 interactions can form the starting point for CP-violating scattering and transmission experiments.

They can be linked to CPV at quark level and to BSM models.

Existing/future calculations for CPV reactions can be matched to this framework and then compared to EDMs. For EDMs we also need currents!

The problem of the nucleon EDMs

• Lowest-order interactions: CPV pion-nucleon couplings (2x)

- Loop **enhanced** by chiral logarithm (long-range physics)
- But depends on renormalization-scale **µ**
- Counter terms absorb µ: no direct link between EDMs and CPV potential at the hadronic level (but there is one at the quark level)

• But: BNL group criticizes the lattice extraction Abramczyk et al '17

See also: Shindler et al '15, Shintani et al '15, Alexandrou et al '15

Nucleon EDM

	_		- 0				
		$m_{\pi} [{ m MeV}]$	$m_N [{ m GeV}]$	F_2	α	$ ilde{F}_3$	$\overline{F_3}$
[ETMC 2016]	n	373	1.216(4)	$-1.50(16)^{a}$	-0.217(18)	-0.555(74)	0.094(74)
ſ	n	530	1.334(8)	-0.560(40)	$-0.247(17)^{b}$	-0.325(68)	-0.048(68)
[Shintani et al 2005] {	p	530	1.334(8)	0.399(37)	$-0.247(17)^{b}$	0.284(81)	0.087(81)
	n	690	1.575(9)	-1.715(46)	-0.070(20)	-1.39(1.52)	-1.15(1.52)
	n	605	1.470(9)	-1.698(68)	-0.160(20)	0.60(2.98)	1.14(2.98)
[Guo et al 2015]	n	465	1.246(7)	$-1.491(22)^{c}$	$-0.079(27)^d$	-0.375(48)	$-0.130(76)^d$
	n	360	1.138(13)	$-1.473(37)^{c}$	$-0.092(14)^d$	-0.248(29)	$0.020(58)^d$

Abramczyk et al '17

- Lattice results contaminated by spurious signal
- Corrected EDM signal consistent with zero within errors
- No sign for strong CP problem on the lattice yet

Preliminiary: A. Shindler, T. Luu, J. Dragos, A. Yousif, JdV

And dim-6 sources ?

• Quark EDM accurately determined Bhattacharya et al '15 '16

 $d_n = -(0.22 \pm 0.03)d_u + (0.74 \pm 0.07)d_d + (0.008 \pm 0.01)d_s$

- Quark CEDM no lattice calculations yet. But in progress.
 QCD sum rules: nucleon EDMs ~ 50-75% uncertainty
 - Pospelov, Ritz '02 '05 Hisano et al ' 12 '13

• Weinberg (and four-quark) only estimates

 $d_n \sim d_p \sim \pm (50 \pm 40) MeV \ ed_W$

Weinberg '89 Demir et al '03 JdV et al '10

• Not easy to unravel source from nucleon EDMs

The CPV NN force and nuclear EDMs

- Tree-level: no loop suppression
- Orthogonal to nucleon EDMs, sensitive to different CPV structures

$$d_{A} = \langle \Psi_{A} \parallel \vec{J}_{CP} \parallel \Psi_{A} \rangle + 2 \langle \Psi_{A} \parallel \vec{J}_{CP} \parallel \tilde{\Psi}_{A} \rangle$$
$$(E - H_{PT}) \mid \Psi_{A} \rangle = 0 \qquad (E - H_{PT}) \mid \tilde{\Psi}_{A} \rangle = V_{CP} \mid \Psi_{A} \rangle$$

- Solve Schrodinger eq. with CP-even NN potential
- Perturb with CPV nuclear force we derived before

EDM of the deuteron

Example: the simplest nucleus ²H

• Target of storage ring measurement and interesting theoretical laboratory

- Use a perturbative pion approach (Kaplan, Savage, Wise (1996))
- S-wave NN interactions are resummed and generate deuteron
- Pion exchange treated in perturbation theory (for now)
- Fails for denser nuclei/higher momenta but useful to get some insight

Expansion parameter:

$$m_{\pi} \left(\frac{g_A^2 m_N}{4\pi F_{\pi}^2} \right) \equiv \frac{m_{\pi}}{M_{NN}} \approx 0.4$$

EDM of the deuteron

Target of storage ring measurement

- Three contributions (NLO)
 - 1. Sum of nucleon EDMs
 - 2. CP-odd pion exchange
 - 3. CP-odd NN interactions
 - 4. No three-body force obviously
- Deuteron is a special case due to N=Z

$${}^{3}S_{1} \xrightarrow{\overline{g}_{0}, \overline{C}_{1,2}} {}^{1}P_{1} \xrightarrow{\gamma} {}^{3}F_{1}$$
$${}^{3}S_{1} \xrightarrow{\overline{g}_{1}} {}^{3}P_{1} \xrightarrow{\gamma} {}^{3}S_{1}$$

EDM of the deuteron

Target of storage ring measurement

- Three contributions (NLO)
 - 1. Sum of nucleon EDMs
 - 2. CP-odd pion exchange
 - 3. CP-odd NN interactions
 - 4. No three-body force obviously
- Deuteron is a special case due to N=Z

JdV et al PRL '11

$$F_{D}(\vec{q}^{2}) = (d_{n} + d_{p}) \left(1 - \frac{1}{3} (\frac{\vec{q}}{4\gamma})^{2} + \cdots \right) \qquad \gamma = \sqrt{m_{N}E_{b}} \approx 45 \ MeV$$

$$F_{D}(\vec{q}^{2}) = \overline{g}_{1} \frac{2e \ g_{A}}{3m_{\pi}M_{NN}} \frac{1 + \gamma/m_{\pi}}{(1 + 2\gamma/m_{\pi})^{2}} \left(1 - 0.48(\frac{\vec{q}}{4\gamma})^{2} + \cdots \right)$$

• Get the full form factor: extract EDM and Schiff Moment

Deuteron as a chiral filter

- Deuteron EDM results $d_D = (d_n + d_p) + 0.23 \ \overline{g}_1 e \ fm$
- Do the nucleon EDMs or the CPV NN force dominate ?
- Depends on the source of CP violation !

JdV et al PRL 11

	Theta term	Quark CEDMs	Four-quark operator	Quark EDM and Weinberg
$\frac{d_D - d_n - d_p}{d_n}$	0.5 ± 0.2	5 ± 3	20 ± 10	≅0

- Ratio suffers from hadronic uncertainties (need lattice)
- EFT approach connects different measurements

Deuteron as a chiral filter

- Deuteron EDM results $d_D = (d_n + d_p) + 0.23 \ \overline{g}_1 e \ fm$
- Do the nucleon EDMs or the CPV NN force dominate ?
- Depends on the source of CP violation !

JdV et al PRL 11

	Theta term	Quark CEDMs	Four-quark operator	Quark EDM and Weinberg
$\frac{d_D - d_n - d_p}{d_n}$	0.5 ± 0.2	5 ± 3	20 ± 10	≅0

- Ratio suffers from hadronic uncertainties (need lattice)
- Using a realistic NN potential and solving Schrodinger equation:

 $d_{D} = 0.9(d_{n} + d_{p}) + \left[(0.18 \pm 0.02) \,\overline{g}_{1} + (0.0028 \pm 0.0003) \,\overline{g}_{0} \,\right] e \, fm$

• Analytic approach works up to 20% (for ²H)

Liu+Timmermans PRC '04 Bsaisou et al '15

The magnetic quadrupole moment

• A spin 1 particle has a Magnetic Quadrupole Moment

$$H = \frac{\overline{\mathbf{M}}_d}{4} \varepsilon^{*i} \varepsilon^j \nabla^i B^j$$

• There is is **no** one-body contribution

The magnetic quadrupole moment

deuteron MQM

For theta:

Liu et al, PLB '12

$$\frac{\overline{M}_d}{d_d} m_d = 0.22 \left(\mu_p + \mu_n\right) \left| \frac{\overline{g}_0}{F_\pi d_0} \right| e fm \propto 20 \left(\mu_p + \mu_n\right)$$

- Higher moments like MQMs can provide additional input
- Deuteron MQM is **not** a realistic target
- But nuclear MQMs can be important in atoms and molecules Flambaum et al 17 '18

EDMs of the tri-nucleon system

Stetcu et al '08 JdV et al '11 Song et al '13 Bsaisou et al '14

- 3He can be put in a ring as well (3H too but radioactive...)
- More contributions than deuteron:
 - 1. Nucleon EDMs
 - 2. Both g_0 and g_1 pion exchange

$$d_{3He} = 0.9 d_n - 0.05 d_p + [(0.14 \pm 0.04) \overline{g}_1 + (0.10 \pm 0.03) \overline{g}_0] e fm +$$

comparable

• Error estimate from cut-off variations + higher-order terms

EDMs of the tri-nucleon system

Stetcu et al '08 JdV et al '11 Song et al '13 Bsaisou et al '14

- 3He can be put in a ring as well (3H too but radioactive...)
- More contributions than deuteron:
 - 1. Nucleon EDMs
 - 2. Both g_0 and g_1 pion exchange

 $d_{_{3He}} = 0.9 \; d_{_n} - 0.05 \; d_{_p} + \left[(0.14 \pm 0.04) \; \overline{g}_{_1} + (0.10 \pm 0.03) \; \overline{g}_{_0} \right] e \; fm + \dots$

- Found to give small contributions (smaller than expectations)
 Bsaisou et al '14
- Unclear why, related to 3He structure?
- Viviani + Gnech reinvestigated this and found a larger and significant contribution! (talk at CD '18)
- No calculations include this for heavier nuclei

- Quite a large spread
- Only 10-20% for most CPV sources but leading for Weinberg operator
- How to understand this?

- Spread for different wave functions \rightarrow different short-range NN force
- No consistent renormalization of CP-even + CP-odd force
- For a given regulator Λ : fit $\overline{C}_1(\Lambda)$ to data . Requires nonzero EDMs...
- Better: calculate $S \leftrightarrow P$ transitions on lattice \rightarrow fit $\overline{C}_1(\Lambda)$

Towards denser systems....

Yamanaka et al '15 '16 '17 '18

- Yamanaka and collaborators started a program for larger EDMs
- Focus only one pion-exchange + nucleon EDMs
- So far: ⁶Li, ⁷Li, ⁹Be, ¹¹B, ¹³C and ¹⁹F is in progress
- ⁶Li described as $\alpha + n + p$
- Use phenomenological α -N and α - α interaction
- Use 'folding' to describe CPV nucleon- α interaction

$$V_{lpha-N}(\mathbf{r}) = \int d^3 \mathbf{r}' \, V_{
argstar}(\mathbf{r}-\mathbf{r}')
ho_{lpha}(\mathbf{r}'),$$

Towards denser systems....

Yamanaka et al '15 '16 '17 '18

- Yamanaka and collaborators started a program for larger EDMs
- Focus only one pion-exchange + nucleon EDMs
- So far: ⁶Li, ⁷Li, ⁹Be, ¹¹B, ¹³C and ¹⁹F is in progress
- ⁶Li described as $\alpha + n + p$
- Use phenomenological α -N and α - α interaction
- Use 'folding' to describe CPV nucleon- α interaction

$$\rho_{\alpha}(r) = \frac{4}{b^3 \pi^{3/2}} e^{-r^2/b^2}$$

$$d_{6Li} = 0.86(d_n + d_p) + 0.28 \ \overline{g}_1 \ e \ fm$$

$$d_D = 0.9(d_n + d_p) + \left[(0.18 \pm 0.02) \ \overline{g}_1 + (0.0028 \pm 0.0003) \ \overline{g}_0 \right] e \ fm$$

- Accuracy: I don't know.....
- Main point: no light nuclei with significant enhancements over ²H

Onwards to heavy systems

Graner et al, '16

Strongest bound on atomic EDM:

$$d_{199}_{Hg} < 8.7 \cdot 10^{-30} \ e \ cm$$

New measurements expected: Ra, Xe,

Schiff Theorem: EDM of nucleus is screened by electron cloud if:

- 1. Non-relativistic kinematics
- 2. Point particles
- 3. Electrostatic interactions

Schiff, '63

Onwards to heavy systems

Graner et al, '16

Strongest bound on atomic EDM:

$$d_{199}_{Hg} < 8.7 \cdot 10^{-30} \ e \ cm$$

New measurements expected: Ra, Xe,

Schiff Theorem: EDM of nucleus is screened by electron cloud if:

- 1. Non-relativistic kinematics
- 2. Point particles
- 3. Electrostatic interactions

Screening incomplete: nuclear finite size (Schiff moment S)

Typical suppression:

$$\frac{d_{Atom}}{d_{nucleus}} \propto 10 Z^2 \left(\frac{R_N}{R_A}\right)^2 \approx 10^{-3}$$

• Atomic part well under control

$$d_{199}_{Hg} = (2.8 \pm 0.6) \cdot 10^{-4} S_{Hg} e fm^2$$

Dzuba et al, '02, '09

Sing et al, '15 Jung, Fleig '18

Schiff, '63

Onwards to heavy systems

Graner et al, '16

Schiff, '63

Strongest bound on atomic EDM:

$$d_{199}_{Hg} < 8.7 \cdot 10^{-30} \ e \ cm$$

New measurements expected: Ra, Xe,

Schiff Theorem: EDM of nucleus is screened by electron cloud if:

- 1. Non-relativistic kinematics
- 2. Point particles

Schif

3. Electrostatic interactions

Screening incomplete: nuclear finite size (Schiff moment S)

$$S = \left\langle \Psi_{0} \middle| \hat{S}_{0} \middle| \Psi_{0} \right\rangle \approx \sum_{i \neq 0} \frac{\left\langle \Psi_{0} \middle| \hat{S}_{0} \middle| \Psi_{i} \right\rangle \left\langle \Psi_{i} \middle| V_{PP} \middle| \Psi_{0} \right\rangle}{E_{0} - E_{i}}$$

CPV potential
operator
$$S_{0} \sim \sum_{i} \left(r_{i}^{3} - \frac{5}{3} r_{ch}^{2} r_{i} \right) Y_{0}^{1}$$

EFT and many-body problems

- Need to calculate Schiff Moment (or MQM) of Hg, Ra, Xe....
- Issue: does chiral power counting hold ? Do pions dominate ?
- Say we assume so:

	a ₀ range (1	best)	a ₁ range (1	best)
¹⁹⁹ Hg	0.03±0.025	(0.01)	0.030±0.060	(±0.02)
²²⁵ Ra	-3.5±3.5	(-1.5)	14±12	(6)
¹²⁹ Xe	-0.03±0.025	(-0.008)	-0.03 ± 0.025	(-0.009)

$$S = g(a_0\overline{g}_0 + a_1\overline{g}_1) e fm^3 \qquad g = 13.5$$

Flambaum, de Jesus, Engel, Dobaczewski,,....

- Uncertainties make interpretation more difficult
- Great challenge: connect EFT approach to heavier nuclei

table from review: Engel et al, '13

Recent progress

PHYSICAL REVIEW LETTERS 121, 232501 (2018)

Correlating Schiff Moments in the Light Actinides with Octupole Moments

Jacek Dobaczewski,^{1,2,3,4} Jonathan Engel,⁵ Markus Kortelainen,^{2,4} and Pierre Becker¹

• In nuclei like ²²⁵Ra there is a low-lying state with opposite parity

$$S \approx -2 \frac{\left\langle \Psi_0 \left| \hat{S}_0 \right| \overline{\Psi}_0 \right\rangle \left\langle \overline{\Psi}_0 \left| V_{PT} \right| \Psi_0 \right\rangle}{\Delta E}$$

• Schiff operator closely related to the octupole charge operator

$$\hat{Q}_0^3 \sim e \sum_i \left(r_i^3 \right) Y_0^3 \quad \longrightarrow \quad \left\langle \hat{Q}_0^3 \right\rangle = (940 \pm 30) e \ fm^3$$

Gaffney et al, Nature '13

Note: measurement is for ²²⁴Ra

Recent progress

PHYSICAL REVIEW LETTERS 121, 232501 (2018)

Correlating Schiff Moments in the Light Actinides with Octupole Moments

Jacek Dobaczewski,^{1,2,3,4} Jonathan Engel,⁵ Markus Kortelainen,^{2,4} and Pierre Becker¹

- CPV potential from EFT $S = g(a_0\overline{g}_0 + a_1\overline{g}_1) + b_1\overline{C}_1 + b_2\overline{C}_2$
- Observe relation between a_i, b_i and octupole moment

Recent progress

PHYSICAL REVIEW LETTERS 121, 232501 (2018)

Correlating Schiff Moments in the Light Actinides with Octupole Moments

Jacek Dobaczewski,^{1,2,3,4} Jonathan Engel,⁵ Markus Kortelainen,^{2,4} and Pierre Becker¹

- CPV potential from EFT $S = g(a_0\overline{g}_0 + a_1\overline{g}_1) + b_1\overline{C}_1 + b_2\overline{C}_2$
- Significant improvement for matrix elements !

	a_0	a_1	a_2	b_1	b_2
²²¹ Rn	-0.04(10)	-1.7(3)	0.67(10)	-0.015(5)	-0.007(4)
223 Rn	-0.08(8)	-2.4(4)	0.86(10)	-0.031(9)	-0.008(8)
²²³ Fr	0.07(20)	-0.8(7)	0.05(40)	0.018(8)	-0.016(10)
²²⁵ Ra	0.2(6)	-5(3)	3.3(1.5)	-0.01(3)	0.03(2)
²²⁹ Pa	-1.2(3)	-0.9(9)	-0.3(5)	0.036(8)	0.032(18)

- 2 pion-nucleon (no g_2 !)
- 1 pion-pion-pion

- 2 nucleon-nucleon
- 2 nucleon-photon (EDM)
- Each hadronic/nuclear CPV observables probes a linear combination
- Compare EDMs and scattering experiments in a single framework
- Link to particle physics exists

The EDM metromap

EDMs are important for particle physics

- Connected to open questions like matter/antimatter asymmetry (see Michaels talk) and existence of axions (Kaori's talk)
- Strong limits on specific BSM scenarios
- Strong limits on CP-violation in top-Higgs sector

Brod et al '13 Cirigliano et al '15'16 Fuyuto et al '17

• Testing explanations of B- and K-anomalies

Conclusion/Summary/Outlook

EDMs

- ✓ Very powerful search for BSM physics (probe the highest scales)
- ✓ Heroic experimental effort and great outlook
- \checkmark Theory needed to interpret measurements and constraints

EFT framework

- ✓ Framework exists for CP-violation (EDMs) from 1st principles
- ✓ Keep track of **symmetries** (gauge/CP/chiral) from multi-Tev to atomic scales

The chiral filter

- \checkmark Chiral symmetry determines form of hadronic interactions
- ✓ Different models → different dim6 → different EDM hierarchy
- ✓ Need theory improvement to fully exploit the experimental program