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Introduction
- Standard perturbative treatment of EWPT is gauge-dependent.

vC: minimum of Veff at TC

TC: T at which Veff has degenerate minima T=TC

vC
- Gauge-independent methods:

(1) vC and TC are determined by

(2) Patel-Ramsey-Musolf (PRM) scheme

 vC and TC are determined separately.

[JHEP07(2011)029]

We analyze EWPT and sphaleron in the cxSM using 2 methods.
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FIG. 1: Patterns of symmetry breaking at finite temperature.

where ' and 'S denote the neutral doublet and singlet
background fields, respectively, and
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For m2 < 0 and b2 < 0, T = 0 minima will exist for
non-zero v0 and vS0. In the limit of vanishing a1, at su�-
ciently high-T the only minimum of the theory occurs at
the origin, denoted by “O”. As T decreases, one generi-
cally expects that a secondary minimum at 's ⌘ ṽS 6= 0
will first appear, since ⌃̄S < ⌃̄H . At a temperature T1,
the minimum at ṽS will become the global minimum in-
dicated by “A” in Fig. 1. As T further decreases, an ad-
ditional minimum at (' ⌘ v 6= 0, 'S ⌘ vS 6= 0) develops,
becoming the global minimum at temperature T2 < T1,
corresponding to point “B” in Fig. 1. The universe will
then follow a two-step symmetry-breaking trajectory in
field space indicated Fig. 1, where one may have either
ṽS(T2)�vS(T2) > 0 or < 0. We will henceforth denote T2

as the EWSB critical temperature, TC and the value of '
at this temperature as vC(TC). After a straightforward
calculation, one finds
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Here, the bar over vC indicates that it has been com-
puted using the high-T e↵ective potential (10). TC and
v̄C obtained in this way are the leading-order (LO) gauge-
invariant results. For positive (negative) �2 one has
ṽS(TC) larger (smaller) than vS(TC). In addition, for
positive �2, the potential will have a barrier between the

minima at A and B. In this case, the EWPT at T = TC

will be first order. Note, however, that an oversized pos-
itive �2 may render B at T = 0 metastable, since the
energy di↵erence between A and B phases, which is sup-
posed to be positive, can become negative. Therefore,
there should be an upper bound on the magnitude of �2,
as will be discussed below. For negative �2, in contrast,
TC is always raised which may prevent v̄C/TC becoming
a su�cient size. In fact, SFOEWPT cannot be found for
�2 < 0 in our numerical analysis.
The situation can be more complex in the presence

of non-vanishing a1 and the remaining zero-temperature
and thermal loop e↵ects encoded in the one-loop e↵ective
potential:
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and nj count the degrees of freedom for particle species j,
and m̄j are '-dependent masses. The Coleman-Weinberg
potential VCW and IB,F (a2) are respectively given by [16,
17]
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where c = 3/2 for scalars and fermions and 5/6 for gauge
bosons, and µ is the renormalization scale.
For a1 6= 0, the high-T minimum will no longer lie

at the origin but will be shifted by �a1 along the 'S

direction. Alternately, EWSB may occur directly from
the origin to point B, as Type (d) in Fig. 1. However,
this phase transition is not first order since ṽS is zero
as seen from Eq. (13). In what follows, we exclusively
explore two cases: Type-(a) EWPT with a1 6= 0 and
Type-(c) EWPT with a1 = 0, i.e.,

S1: mH2 = 230 GeV, vS0 = 40 GeV, a1 =
�(110 GeV)3,

S2: mH2 = 150 GeV, vS0 = 0 GeV, �2 = 2, d2 = 1,

and mA = mH1/2 ' 62.5 GeV in both cases. In Fig. 2,
temperature evolutions of the VEVs are plotted in S1
(Left) and S2 (Right). For the former, it is found that
A ! B transition is first-order, and T2 = TC = 90.4 GeV
and v̄C = 158.2 GeV. For the latter, on the other hand,
one can see that O ! A transition is second order while
A ! B transition is first order. We obtain T1 = 176.8
GeV for the former transition and T2 = TC = 85.8 GeV,
v̄C = 181.4 GeV, v̄SC = 0 GeV and ṽSC = 153.8 GeV for
the latter transition. Fig. 3 shows contours of the high-
T e↵ective potential at T = 180 GeV (Upper Left), 100
GeV (Upper Right), TC (Lower Left) and 0 GeV (Lower
Right) in the case of S2.

Because of 2 fields, there are many patterns of phase transitions.
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Here, the bar over vC indicates that it has been com-
puted using the high-T e↵ective potential (10). TC and
v̄C obtained in this way are the leading-order (LO) gauge-
invariant results. For positive (negative) �2 one has
ṽS(TC) larger (smaller) than vS(TC). In addition, for
positive �2, the potential will have a barrier between the
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will be first order. Note, however, that an oversized pos-
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there should be an upper bound on the magnitude of �2,
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and nj count the degrees of freedom for particle species j,
and m̄j are '-dependent masses. The Coleman-Weinberg
potential VCW and IB,F (a2) are respectively given by [16,
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where c = 3/2 for scalars and fermions and 5/6 for gauge
bosons, and µ is the renormalization scale.
For a1 6= 0, the high-T minimum will no longer lie

at the origin but will be shifted by �a1 along the 'S

direction. Alternately, EWSB may occur directly from
the origin to point B, as Type (d) in Fig. 1. However,
this phase transition is not first order since ṽS is zero
as seen from Eq. (13). In what follows, we exclusively
explore two cases: Type-(a) EWPT with a1 6= 0 and
Type-(c) EWPT with a1 = 0, i.e.,

S1: mH2 = 230 GeV, vS0 = 40 GeV, a1 =
�(110 GeV)3,

S2: mH2 = 150 GeV, vS0 = 0 GeV, �2 = 2, d2 = 1,

and mA = mH1/2 ' 62.5 GeV in both cases. In Fig. 2,
temperature evolutions of the VEVs are plotted in S1
(Left) and S2 (Right). For the former, it is found that
A ! B transition is first-order, and T2 = TC = 90.4 GeV
and v̄C = 158.2 GeV. For the latter, on the other hand,
one can see that O ! A transition is second order while
A ! B transition is first order. We obtain T1 = 176.8
GeV for the former transition and T2 = TC = 85.8 GeV,
v̄C = 181.4 GeV, v̄SC = 0 GeV and ṽSC = 153.8 GeV for
the latter transition. Fig. 3 shows contours of the high-
T e↵ective potential at T = 180 GeV (Upper Left), 100
GeV (Upper Right), TC (Lower Left) and 0 GeV (Lower
Right) in the case of S2.

Because of 2 fields, there are many patterns of phase transitions.

We will focus on type (a) PT.



Leading order analysis

Approximate formulas: 

(a)

- large positive δ2 (negative α) gives larger vC/TC.
- However, too large positive δ2 (negative α) leads to unstable 
vacuum.
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full one-loop effective potential Veff rather than V high-T
0 .

As discussed in Ref. [20], this procedure, as well as the
conventional method for computing TC , introduces an
unphysical gauge dependence. In what follows, we will
perform a gauge-invariant computation. We also address
the impact of the µ-dependence by implementing a RG-
improved analysis. These and other theoretical issues
associated with the BNPC and ΓN are discussed below.

V. GAUGE-INVARIANT METHOD BEYOND
THE LEADING ORDER

Here, we delineate the gauge-invariant treatment for
EWPT and sphaleron rate. Determination of TC and v̄C
using the high-T effective potential is obviously gauge
independent. Beyond this order, however, the potential
barrier inherently depends on the gauge fixing parameter,
which may lead to the gauge-dependent TC and vC as in
the ordinary method. Nevertheless, the gauge-invariant
TC can still be obtained by use of a method advocated
in Ref. [20] (PRM scheme). In this method, TC is deter-
mined by the following degeneracy condition

Veff(v
(1)
0 ;TC)− Veff(v

(2)
0 ;TC) = 0 , (24)

where Veff is the effective potential whose ! expansion
follows the Nielsen-Fukuda-Kugo identity [21, 22], and

v(1)
0 denotes the minimum of V0(ϕ) while v(2)

0 that of
V0(ϕ) but with the electroweak broken VEV’s taken to
be zero. In this paper, we will confine ourself to the one-
loop order so that Veff is approximated by Eq. (15).

Since the renormalization scale µ exists in VCW in
Eq. (16), TC can suffer from a significant amount of the µ
dependence. In this paper, we will use a scheme in which
V0(ϕ) in the degeneracy condition (24) is replaced by the
RG-improved one Ṽ0(ϕ) in order to alleviate the µ de-
pendence. More explicitly, we replace all the parameters
in V0 with the running ones

Ṽ0(ϕ,ϕS)

=
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4
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16
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8
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2)ϕS +
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4
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S . (25)

Here, we use the one-loop β functions [13] to evaluate
the running parameters, and the RG effects on ϕ and ϕS

are ignored as they are negligible. Note that the other
parameters appearing in Eq. (24) remain unchanged in
order not to spoil the gauge independence to this order.
Similarly, V0(ϕ) in Eq. (10) remains as is since the renor-
malization scale is not involved by construction. In what
follows, we explicitly demonstrate how our prescription
works.
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FIG. 4: Renormalization scale dependence on TC and v̄C
in S1. The dotted curves are calculated based on the orig-
inal PRM scheme to O(!) while the solid ones are the RG-
improved version.

VI. NUMERICAL ANALYSIS

A. S1 Case

Fig. 4 shows TC and the corresponding v̄C with and
without the RG improvement. The latter corresponds to
the results in the PRM scheme to O(!). The input pa-
rameters are the same as in the left plot of Fig 2. The
solid curves represent the former and the dashed ones the
latter. One can see that TC has a significant renormal-
ization scale dependence before the RG improvement. In
this case, v̄C can vary from zero to nonzero, making it
difficult to reach a conclusion whether the EWPT is of
first-order or not. After the RG improvement, however,
the renormalization scale dependence is substantially al-
leviated, and the EWPT is seen to be strongly first-order.

In Fig. 5, TC and v̄C are plotted as functions of α,
where the solid curves correspond to the PRM scheme
with RG improvement, while the dashed ones the LO
gauge-invariant method. One can see that TC gets lower
as α decreases in both cases. This implies that since
δ2 = 2(m2

H1
−m2

H2
)sαcα/(v0vS0), a positive δ2 is more fa-

vorable for SFOEWPT as also seen from the analytic for-
mula Eq. (14). For α ! −22◦, however, phase A becomes
the global minimum, yielding an upper bound δ2 ! 2.6.
It should be noted that the differences between the LO
and NLO results become more and more prominent as α
approaches to zero. Moreover, the tree-potential barrier
would disappear at around α ≃ −18.5◦, which signifies a
second-order EWPT in the LO calculation. In such small
α regions, the loop-induced barrier would be important
for the realization of SFOEWPT. Our NLO calculation
shows that the EWPT is still first-order for α " −18.5◦,
which persists to α = 0◦. However, this could be an arti-
fact since higher-order contributions such as O(!2) terms

NLO analysis - PRM scheme -
O(hbar)

e.g. 
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- TC is not onset of the PT.
Onset of PT
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- Nucleation rate per unit time per unit volume

[A.D. Linde, NPB216 (’82) 421]

- Definition of nucleation temperature (TN)

Nucleation temperature

where Ecb(T ) is the energy of the critical bubble at temperature T 2. Note that this is
a rate per unit volume. We define the nucleation temperature TN as the temperature
at which the rate of nucleation of a critical bubble within a horizon volume is equal to
the Hubble parameter at that temperature. Since the horizon scale is roughly given by
H(T )−1, the nucleation temperature is defined by3

ΓN(TN)H(TN)−3 = H(TN). (4.2)

Since the Hubble parameter at temperature T is

H(T ) =

√
8πG

3
ρ(T ) =

(
8π

3m2
P

π2

30
g∗(T )T 4

)1/2

≃ 1.66 g∗(T )1/2 T 2

mP
, (4.3)

where g∗(T ) is the effective massless degrees of freedom at T defined by
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θ(T − mB(T ))gB +
7
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∑
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θ(T − mF (T ))gF , (4.4)

with gB and gF being intrinsic degrees of freedom of boson B and fermion F , respectively,
the definition of TN (4.2) is reduced to

(
Ecb(TN)

2πTN

)3/2

e−Ecb(TN )/TN = 7.59 g∗(TN)2 T 4
N
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P

, (4.5)

or
Ecb(TN)
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− 3

2
log

Ecb(TN)

TN
= 152.59 − 2 log g∗(TN) − 4 log

TN

100GeV
. (4.6)

A Derivatives of the effective potential

Here we summarize the first and second derivatives of the effective potential, which are
used in the tadpole conditions, the equations of motion and matrix elements in the relax-
ation algorithm.

A.1 tadpole conditions

The tadpole conditions are imposed in the vacuum at zero temperature.

⟨Φd⟩0 =
1√
2

(
v0d

0

)
, ⟨Φu⟩0 =

eiθ0

√
2

(
0

v0u

)
(A.1)

2In [3], the author only evaluated the contribution from translational zero modes which is proportional
to E3/2

cb , but not that from rotational zero modes and those from nonzero modes. He multiplied T 4 with the
prefactor on the dimensional ground. We expect a factor of T 3 comes from the 3-dimensional translational
zero modes, while the remaining factor of T may have its origin in the negative mode corresponding to
the instability of the critical bubble. Any way, this uncertainty in the prefactor will have small effect on
the estimation of the nucleation temperature, which is mainly determined by the exponent.

3One may think that only one bubble nucleated within a horizon volume cannot convert the whole
region into the broken phase. In this sense, this definition of nucleation temperature will give an upper
bound of temperature at which the phase transition begins to proceed.
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FIG. 6: S3(T )/T vs. T for α = −20.5◦ in S1. S3(T ) is
evaluated by use of the high-T effective potential in Eq. (10).
The dotted horizontal line satisfies the condition in Eq. (19).
In this case, we have TLO

C = 90.4 GeV and TN = 84.9 GeV,
with the latter closer to TC calculated in the PRM scheme.

dropped here may not be neglected in the small α re-
gion. As emphasized in Ref. [20], such a fake SFOEWPT
to O(!) calculation can also happen in the SM. Even
though a quantitative statement awaits a more precise
analysis in that region, the negatively large α (positively
large δ) does show the generic feature of SFOEWPT in
this model.
As discussed in Sec. IV, the actual beginning of the

EWPT is somewhat below the temperature at which the
effective potential has two degenerate minima. Here,
we calculate S3(T ) to find TN using the high-T effec-
tive potential in Eq. (10). In Fig. 6, the solid curve
shows S3(T )/T as a function of T for α = −20.5◦ in
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FIG. 7: Esph(T )/T as a function of T , where Esph(T ) is cal-
culated using the high-T effective potential in Eq. (10). From
right to left, the dots mark for Esph(T

LO
C )/TLO

C = 61.31,
Esph(TN )/TN = 74.23 and Esph(TC)/TC = 78.00, where
TLO
C = 90.4 GeV, TN = 84.9 GeV and TC = 83.1 GeV.

S1. The dotted line satisfies the condition in Eq. (19),
from which we obtain S3(TN )/TN = 152.01 and TN =
84.9 GeV, which is closer to TC = 83.1 GeV obtained
in the PRM scheme. The degrees of supercooling is
thus (TLO

C − TN )/TLO
C ≃ 6.1%, where TLO

C = 90.4 GeV
and is one order of magnitude larger than that in the
minimal supersymmetric SM (MSSM) case (see, e.g.,
Refs. [23, 24]).

It is found that the supercooling becomes larger as
α decreases, and eventually the condition of Eq. (19)
cannot be fulfilled for α ! −21.4◦, rendering a stronger
lower bound on α than the vacuum condition mentioned
above. For the critical α, we obtain TLO

C = 78.1 GeV and
TN = 47.3 GeV, leading to (TLO

C − TN )/TLO
C ≃ 39.4%.

In such a large supercooling case, it is worth studying
how the EWPT develops. If it mostly proceeds via the
bubble nucleations rather than expansions, the EWBG
may not work since the baryon asymmetry is normally
facilitated with the help of the bubble expansions.

Fig. 7 displays Esph(T )/T against T for α = −20.5◦

in S1, where Esph(T ) is estimate based on the high-T
effective potential in Eq. (10). From right to left, the
three dots mark the results for Esph(TLO

C )/TLO
C = 61.31,

Esph(TN )/TN = 74.23 and Esph(TC)/TC = 78.00 using
the values of TLO

C , TN and TC given above.
In Fig. 8, the dimensionless sphaleron energy E(T ) is

plotted as a function of T . Apparently, E(T ) decreases as
T increases, showing that the temperature dependence of
Esph(T ) is not fully embodied in Ω(T ), and a näıve scal-
ing formula Esph(T ) = Esph(0)v(T )/v0 is no longer valid,
especially when T approaches TC (for earlier studies, see
Refs. [24–26]). As in Fig. 7, the three dots correspond
to E(TLO

C ) = 1.82, E(TN ) = 1.86 and E(TC) = 1.87 from
right to left.
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No nucleation case
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- Too strong 1st-order EWPT 
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Sphaleron
σφαλεροs (sphaleros) “ready to fall”

[F.R.Klinkhamer and N.S.Manton, PRD30, 2212 (1984)]

Sphaleron解を求める
saddle point = least-energy path上のmaximum-energy configuration
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Sphaleron in SU(2) gauge-Higgs system

How do we find a saddle point configuration?
-> use of a noncontractible loop.
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Manton’s ansatz

Energy functional

[N.S. Manton, PRD28 (’83) 2019]



Manton’s ansatz

Energy functional

[N.S. Manton, PRD28 (’83) 2019]



Manton’s ansatz

Energy functional

[N.S. Manton, PRD28 (’83) 2019]

input:



Equations of motion for the sphaleron

with the boundary conditions:

Sphaleron energy
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FIG. 6: S3(T )/T vs. T for α = −20.5◦ in S1. S3(T ) is
evaluated by use of the high-T effective potential in Eq. (10).
The dotted horizontal line satisfies the condition in Eq. (19).
In this case, we have TLO

C = 90.4 GeV and TN = 84.9 GeV,
with the latter closer to TC calculated in the PRM scheme.

dropped here may not be neglected in the small α re-
gion. As emphasized in Ref. [20], such a fake SFOEWPT
to O(!) calculation can also happen in the SM. Even
though a quantitative statement awaits a more precise
analysis in that region, the negatively large α (positively
large δ) does show the generic feature of SFOEWPT in
this model.
As discussed in Sec. IV, the actual beginning of the

EWPT is somewhat below the temperature at which the
effective potential has two degenerate minima. Here,
we calculate S3(T ) to find TN using the high-T effec-
tive potential in Eq. (10). In Fig. 6, the solid curve
shows S3(T )/T as a function of T for α = −20.5◦ in
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FIG. 7: Esph(T )/T as a function of T , where Esph(T ) is cal-
culated using the high-T effective potential in Eq. (10). From
right to left, the dots mark for Esph(T

LO
C )/TLO

C = 61.31,
Esph(TN )/TN = 74.23 and Esph(TC)/TC = 78.00, where
TLO
C = 90.4 GeV, TN = 84.9 GeV and TC = 83.1 GeV.

S1. The dotted line satisfies the condition in Eq. (19),
from which we obtain S3(TN )/TN = 152.01 and TN =
84.9 GeV, which is closer to TC = 83.1 GeV obtained
in the PRM scheme. The degrees of supercooling is
thus (TLO

C − TN )/TLO
C ≃ 6.1%, where TLO

C = 90.4 GeV
and is one order of magnitude larger than that in the
minimal supersymmetric SM (MSSM) case (see, e.g.,
Refs. [23, 24]).

It is found that the supercooling becomes larger as
α decreases, and eventually the condition of Eq. (19)
cannot be fulfilled for α ! −21.4◦, rendering a stronger
lower bound on α than the vacuum condition mentioned
above. For the critical α, we obtain TLO

C = 78.1 GeV and
TN = 47.3 GeV, leading to (TLO

C − TN )/TLO
C ≃ 39.4%.

In such a large supercooling case, it is worth studying
how the EWPT develops. If it mostly proceeds via the
bubble nucleations rather than expansions, the EWBG
may not work since the baryon asymmetry is normally
facilitated with the help of the bubble expansions.

Fig. 7 displays Esph(T )/T against T for α = −20.5◦

in S1, where Esph(T ) is estimate based on the high-T
effective potential in Eq. (10). From right to left, the
three dots mark the results for Esph(TLO

C )/TLO
C = 61.31,

Esph(TN )/TN = 74.23 and Esph(TC)/TC = 78.00 using
the values of TLO

C , TN and TC given above.
In Fig. 8, the dimensionless sphaleron energy E(T ) is

plotted as a function of T . Apparently, E(T ) decreases as
T increases, showing that the temperature dependence of
Esph(T ) is not fully embodied in Ω(T ), and a näıve scal-
ing formula Esph(T ) = Esph(0)v(T )/v0 is no longer valid,
especially when T approaches TC (for earlier studies, see
Refs. [24–26]). As in Fig. 7, the three dots correspond
to E(TLO

C ) = 1.82, E(TN ) = 1.86 and E(TC) = 1.87 from
right to left.

Esph(T)/T in cxSM

Esph(TC)

TC
= 78.00,

Esph(TN )

TN
= 74.23,

Esph(TLO
C )

TLO
C

= 61.31,



Is this scaling law valid?

T-dependence of Esph(T)

If T-dependence comes from 
v(T) only, one has

Esph(T ) =
4⇡v̄(T )

g2
E(T )

Esph(T ) = Esph(0)
v̄(T )

v0
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FIG. 9: TC and VEV’s as functions of δ2. For δ2 ! −0.5,
we have

√
λd2 < −δ2, which makes the Higgs potential un-

bounded from below. For −0.5 ! δ2 ! 0.34, the phase A is
absent since TC is too high to satisfy Eq. (26). For δ2 " 0.77,
phase A turns into the global minimum at T = 0.

B. S2 Case

In this case, there is no constraint among b1, b2, δ2 and
d2 from the tadpole condition of Eq. (6), as opposed to
the S1 case. Note that the nontrivial vacuum phase A in
ϕS exists if

ṽ2S(T ) = − 2

d2

(
b1 + b2 + 2ΣS(T )

)
(26)

is positive, which implies that b1 + b2 must be negative
as long as ΣS(T ) is positive.
Fig. 9 shows the dependence of EWPT on δ2. For

T [GeV] TC = 84.3 TLO
C = 99.8 TN = 96.6

v̄(T ) [GeV] 193.0 167.0 173.5
Esph(T )/T 84.36 61.67 66.02

E(T ) 1.92 1.92 1.92

TABLE I: VEVs and sphaleron energies at the different tem-
peratures, TC , T

LO
C and TN for δ2 = 0.55 in S2, where the

last two are calculated by use of the high-T effective poten-
tial (10).

δ2 ! −0.5, the Higgs potential is unbounded from below,
i.e.,

√
λd2 < −δ2 (λ = 0.52, d2 = 0.5). For −0.5 !

δ2 ! 0.34, there is no phase A since TC is too large to
satisfy Eq. (26). For δ2 " 0.77, phase A becomes the
global minimum at T = 0. In this case, the EWPT never
happens.

As in the S1 case, we also evaluate S3(T ), Esph(T ) and
E , fixing δ2 = 0.55. The results are summarized in Table
I. One can see that as in the S1 case, the degree of the su-
percooling is one order of magnitude larger than the typ-
ical MSSM value [23, 24], i.e., (TLO

C − TN )/TLO
C ≃ 3.2%.

However, one distinctive feature of S2 is that E is inde-
pendent of T , implying that Esph(T ) = Esph(0)v̄(T )/v0
as in the SM. This is due to the fact that there is no
singlet Higgs contribution to Esph since v̄S = 0.

Before closing this section, we make a comment on the
DM mass mA dependence in SFOEWPT. In both S1 and
S2 cases, the vacuum energy of phase B increases as mA

increases and surpasses the vacuum energy of phase A
at some critical value, and hence TC cannot be defined
in the NLO calculation. As will be discussed in the next
section, a relatively large mA would be required to obtain
the correct DM abundance, which could be in conflict
with the realization of SFOEWPT.

VII. DARK MATTER

In this model, the pseudoscalar particle A can be a can-
didate for DM. We will study its properties in S1 and S2.
We use micrOMEGAs [27, 28] to calculate the relic den-
sity of A, ΩA, and its spin-independent scattering cross
section with nucleon N , σN

SI.
The observed DM relic density is [29]

ΩDMh2 = 0.1186± 0.0020 . (27)

We will use the central value as a constraint on ΩAh2.
If the relic abundance of A is less than the observed

one, σN
SI should be scaled as

σ̃N
SI = σN

SI

(
ΩA

ΩDM

)
. (28)

Recently, the LUX Collaboration has updated their
experimental results [30]. After combining the previous
LUX data, the minimum exclusion limit becomes σN

SI ≃
1.1× 10−46 cm2 at around 50 GeV of the DM mass.

Is this scaling law valid?

T-dependence of Esph(T)

If T-dependence comes from 
v(T) only, one has

Esph(T ) =
4⇡v̄(T )

g2
E(T )

Esph(T ) = Esph(0)
v̄(T )

v0
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√
λd2 < −δ2, which makes the Higgs potential un-

bounded from below. For −0.5 ! δ2 ! 0.34, the phase A is
absent since TC is too high to satisfy Eq. (26). For δ2 " 0.77,
phase A turns into the global minimum at T = 0.

B. S2 Case

In this case, there is no constraint among b1, b2, δ2 and
d2 from the tadpole condition of Eq. (6), as opposed to
the S1 case. Note that the nontrivial vacuum phase A in
ϕS exists if

ṽ2S(T ) = − 2

d2

(
b1 + b2 + 2ΣS(T )

)
(26)

is positive, which implies that b1 + b2 must be negative
as long as ΣS(T ) is positive.
Fig. 9 shows the dependence of EWPT on δ2. For

T [GeV] TC = 84.3 TLO
C = 99.8 TN = 96.6

v̄(T ) [GeV] 193.0 167.0 173.5
Esph(T )/T 84.36 61.67 66.02

E(T ) 1.92 1.92 1.92

TABLE I: VEVs and sphaleron energies at the different tem-
peratures, TC , T

LO
C and TN for δ2 = 0.55 in S2, where the

last two are calculated by use of the high-T effective poten-
tial (10).

δ2 ! −0.5, the Higgs potential is unbounded from below,
i.e.,

√
λd2 < −δ2 (λ = 0.52, d2 = 0.5). For −0.5 !

δ2 ! 0.34, there is no phase A since TC is too large to
satisfy Eq. (26). For δ2 " 0.77, phase A becomes the
global minimum at T = 0. In this case, the EWPT never
happens.

As in the S1 case, we also evaluate S3(T ), Esph(T ) and
E , fixing δ2 = 0.55. The results are summarized in Table
I. One can see that as in the S1 case, the degree of the su-
percooling is one order of magnitude larger than the typ-
ical MSSM value [23, 24], i.e., (TLO

C − TN )/TLO
C ≃ 3.2%.

However, one distinctive feature of S2 is that E is inde-
pendent of T , implying that Esph(T ) = Esph(0)v̄(T )/v0
as in the SM. This is due to the fact that there is no
singlet Higgs contribution to Esph since v̄S = 0.

Before closing this section, we make a comment on the
DM mass mA dependence in SFOEWPT. In both S1 and
S2 cases, the vacuum energy of phase B increases as mA

increases and surpasses the vacuum energy of phase A
at some critical value, and hence TC cannot be defined
in the NLO calculation. As will be discussed in the next
section, a relatively large mA would be required to obtain
the correct DM abundance, which could be in conflict
with the realization of SFOEWPT.

VII. DARK MATTER

In this model, the pseudoscalar particle A can be a can-
didate for DM. We will study its properties in S1 and S2.
We use micrOMEGAs [27, 28] to calculate the relic den-
sity of A, ΩA, and its spin-independent scattering cross
section with nucleon N , σN

SI.
The observed DM relic density is [29]

ΩDMh2 = 0.1186± 0.0020 . (27)

We will use the central value as a constraint on ΩAh2.
If the relic abundance of A is less than the observed

one, σN
SI should be scaled as

σ̃N
SI = σN

SI

(
ΩA

ΩDM

)
. (28)

Recently, the LUX Collaboration has updated their
experimental results [30]. After combining the previous
LUX data, the minimum exclusion limit becomes σN

SI ≃
1.1× 10−46 cm2 at around 50 GeV of the DM mass.

Is this scaling law valid?

T-dependence of Esph(T)

If T-dependence comes from 
v(T) only, one has

No, it breaks down especially when T approaches TC.

Esph(T ) =
4⇡v̄(T )

g2
E(T )

Esph(T ) = Esph(0)
v̄(T )

v0
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√
λd2 < −δ2, which makes the Higgs potential un-

bounded from below. For −0.5 ! δ2 ! 0.34, the phase A is
absent since TC is too high to satisfy Eq. (26). For δ2 " 0.77,
phase A turns into the global minimum at T = 0.

B. S2 Case

In this case, there is no constraint among b1, b2, δ2 and
d2 from the tadpole condition of Eq. (6), as opposed to
the S1 case. Note that the nontrivial vacuum phase A in
ϕS exists if

ṽ2S(T ) = − 2

d2

(
b1 + b2 + 2ΣS(T )

)
(26)

is positive, which implies that b1 + b2 must be negative
as long as ΣS(T ) is positive.
Fig. 9 shows the dependence of EWPT on δ2. For

T [GeV] TC = 84.3 TLO
C = 99.8 TN = 96.6

v̄(T ) [GeV] 193.0 167.0 173.5
Esph(T )/T 84.36 61.67 66.02

E(T ) 1.92 1.92 1.92

TABLE I: VEVs and sphaleron energies at the different tem-
peratures, TC , T

LO
C and TN for δ2 = 0.55 in S2, where the

last two are calculated by use of the high-T effective poten-
tial (10).

δ2 ! −0.5, the Higgs potential is unbounded from below,
i.e.,

√
λd2 < −δ2 (λ = 0.52, d2 = 0.5). For −0.5 !

δ2 ! 0.34, there is no phase A since TC is too large to
satisfy Eq. (26). For δ2 " 0.77, phase A becomes the
global minimum at T = 0. In this case, the EWPT never
happens.

As in the S1 case, we also evaluate S3(T ), Esph(T ) and
E , fixing δ2 = 0.55. The results are summarized in Table
I. One can see that as in the S1 case, the degree of the su-
percooling is one order of magnitude larger than the typ-
ical MSSM value [23, 24], i.e., (TLO

C − TN )/TLO
C ≃ 3.2%.

However, one distinctive feature of S2 is that E is inde-
pendent of T , implying that Esph(T ) = Esph(0)v̄(T )/v0
as in the SM. This is due to the fact that there is no
singlet Higgs contribution to Esph since v̄S = 0.

Before closing this section, we make a comment on the
DM mass mA dependence in SFOEWPT. In both S1 and
S2 cases, the vacuum energy of phase B increases as mA

increases and surpasses the vacuum energy of phase A
at some critical value, and hence TC cannot be defined
in the NLO calculation. As will be discussed in the next
section, a relatively large mA would be required to obtain
the correct DM abundance, which could be in conflict
with the realization of SFOEWPT.

VII. DARK MATTER

In this model, the pseudoscalar particle A can be a can-
didate for DM. We will study its properties in S1 and S2.
We use micrOMEGAs [27, 28] to calculate the relic den-
sity of A, ΩA, and its spin-independent scattering cross
section with nucleon N , σN

SI.
The observed DM relic density is [29]

ΩDMh2 = 0.1186± 0.0020 . (27)

We will use the central value as a constraint on ΩAh2.
If the relic abundance of A is less than the observed

one, σN
SI should be scaled as

σ̃N
SI = σN

SI

(
ΩA

ΩDM

)
. (28)

Recently, the LUX Collaboration has updated their
experimental results [30]. After combining the previous
LUX data, the minimum exclusion limit becomes σN

SI ≃
1.1× 10−46 cm2 at around 50 GeV of the DM mass.

Is this scaling law valid?

T-dependence of Esph(T)

If T-dependence comes from 
v(T) only, one has

No, it breaks down especially when T approaches TC.
∵ presence of vS(T).

Esph(T ) =
4⇡v̄(T )

g2
E(T )

Esph(T ) = Esph(0)
v̄(T )

v0



Summary of the 1st part
- We have evaluated vC and TC using GI methods in the 
cxSM.

-μ dependence can be alleviated by the RG improvement. 

- Around phase transition point, TC is subject to the large 
theoretical errors. -> higher-order corrections are needed. 

- vC/TC is greater than the LO result.

Esph(TC)

TC
>

Esph(TLO
C )

TLO
C



Band structure effect on

B preservation criteria

Koichi Funakubo (Saga U), Kaori Fuyuto (UMass-Amherst)

Ref. arXiv:1612.05431

based on the collaborators with



B preservation criteria

modified by band effect?



B preservation criteria

modified by band effect?

modified!If yes, 



B preservation criteria

modified by band effect?

modified!If yes, 

EWBG-viable region must be re-analyzed!!



B+L violation
- (B+L) is violated by a chiral anomaly in EW theories.

Vacuum transition (instanton)

Transition rate at finite-E

[Ringwald, NPB330,(1990)1, Espinosa, NPB343 (1990)310]

[’t Hooft, PRL37,8 (1976), PRD14,3432 (1976)]

- But, instanton-based calculation is not valid at E>Esph

[Funakubo, Otsuki, Takenaga, Toyoda, PTP87,663(’92), PTP89,881(’93)]

Bounce is more appropriate (transition between the finite-E states)

-> Reduced model.

E⤴ ⟹ σ(E)⤴

instanton-based

[Aoyama, Goldberg, Ryzak, PRL60, 1902 (’88)]

[H. Tye, S. Wong, PRD92,045005 (’15)]



Tye-Wong’s work
F(E)

(instanton calculus)

F(E) = 0 for E>Esph  (Tye-Wong) ∵ a band structure 

[H. Tye, S. Wong, PRD92,045005 (2015)]

Tye-Wong 

Q: Does the band affect sphaleron process at finite-T?

E0≃15 TeV



Reduced model
[Funakubo, Otsuki, Takenaga, Toyoda, PTP87, 663 (1992), PTP89, 881 (1993)]Sphaleron解を求める

saddle point = least-energy path上のmaximum-energy configuration

NCS=1

NCS=0

vacuum

vacuum

Energy

configuration
space

least-energy path/gauge trf. = noncontractible loop
↕

highest symmetry config.

⋆ 4次元SU(2) gauge-Higgs doublet系 ⋆

L = −1
4
F a

µνF
aµν + (DµΦ)† DµΦ− λ

(
Φ†Φ− v2

2

)2

DµΦ = (∂µ − igAµ) Φ, Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν], Aµ = Aa
µ

τa

2
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μ(-∞)=0, μ(+∞)=π: vacuum, 

μ(tsph)=π/2: sphaleron

[Aoyama, Goldberg, Ryzak, PRL60, 1902 (1988)]

- We construct a reduced model by adopting 

a Manton’s ansatz. 

Non-contractible loop

(least energy path)

μ          ⇒ μ(t)

sphaleron
Let us promote μ to a dynamical variable:

[H. Tye, S. Wong, PRD92,045005 (2015)]



Comparison with Tye-Wong’s work

A0 Sphaleron mass Method for band 
structure

this work A0≠0 μ-dependent WKB w/ 3 
connection formulas

Tye-Wong A0=0 μ-independent Schroedinger eq. 
numerically

We use the Manton’s ansatz with 

Some differences between our work and Tye-Wong’s (TW’s).

Unlike the previous studies, our method is fully gauge invariant.

N.B.
If A0=0 is naively adopted with the Manton’s ansatz, an unwanted divergence 
would appear in DΦ at the region r=∞. -> some prescription is needed!!

[Aoyama, Goldberg, Ryzak, PRL60, 1902 (1988)]
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Classical action

f, h are determined by the EOM for the sphaleron.



c.f., TW’s: Msph = 17.1 TeV. With same normalization, Msph(ours) -> 23.0 TeV.

Classical action

where

Number of band edges are affected by the size of Msph (see later).



Band structure
this work Tye-Wong

Band Centre E Band Width Band Centre E Band Width
14.054 0.0744 ? ?
13.980 0.0741 ? ?

⫶ ⫶ ⫶ ⫶
9.072 0.0104 9.113 0.0156
9.044 4.85x10-3 9.081 7.19x10-3

9.012 1.61x10-3 9.047 2.62x10-3

⫶ ⫶ ⫶ ⫶
0.1015 1.88x10-199 0.1027 ~10-177

0.03383 1.31x10-202 0.03421 ~10-180

Esph=9.08 TeV Esph=9.11 TeV

Band gaps still exist E>Esph due to nonzero reflection rate. 

Units: TeV
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Transition factor

Δ(E) ≃
sum of band widths up to E

energy (E)

instanton calculus

band picture

- State of density is restricted.
Band picture: 
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- Exponential suppression at 

E≪Esph is due to the tiny 

band width.

tunneling factor



Vacuum decay rate at finite-T
[Affleck, PRL46,388 (1981)]

Band case:

≃14 GeV

≃0.42 ≃0.51

Ordinary case: 



Impact of band 
For simplicity, we use the band structure obtained before.

For T=100 GeV, Γ/ΓA = 1.06.
How about B-number preservation criteria?

blue: ordinary case
red: band case



Impact of band 
For simplicity, we use the band structure obtained before.

For T=100 GeV, Γ/ΓA = 1.06.
How about B-number preservation criteria?

blue: ordinary case

typical EWBG region

red: band case



Including the band effect, 

Baryon number preservation criteria

�(T ) < H(T )
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band effect

Including the band effect, 

Baryon number preservation criteria

Band effect has little effect on the B preservation criteria.

�(T ) < H(T )



• We have discussed the band effect on the sphaleron 
processes at T≠0.


• At T≃100 GeV, sphaleron process is virtually unaffected.                        
-> no impact on EWBG.

Summary of the 2nd part



Backup



Eigenvalue problem

Band energy is determined by solving

Hamiltonian:

with 3 connection formulas 

depending on energy.

[N.L.Balazs, Ann.Phys.53,421 (1969)]

linear potential

parabolic potential
over-barrier



Δ(B+L)≠0 process 

transition amplitude:

path integral using coherent state |φ,π>
∵ appropriate for describing classical configuration

[Funakubo, Otsuki, Takenaga, Toyoda, PTP87, 663 (1992), PTP89, 881 (1993)]

- tunneling suppression appears in the intermediate process.

- overlap issue: suppressions from <f|φ,π> and <φ,π|i>.

This point is not properly discussed in the work of  

Tye and Wong.
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overlap factor

100 200 300 400

0.2

0.4

0.6

0.8

1.0

- cross section ∝ |α1|2…|αn|2

inner product between n particle state and coherent state:

- |α|2 has a peak at k=mW.



Case1: 2 -> sphaleron

Creation of sphaleron from the 2 energetic particles is difficult.

Sphaleron
For |p1|=|p2|≃Esph/2

Sphaleron at colliders
W

W
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Creation of sphaleron from the 2 energetic particles is difficult.

Sphaleron
For |p1|=|p2|≃Esph/2

Sphaleron at colliders
W

W

Sphaleron

⫶

Case2: 2 -> n W -> sphaleron 80 W bosons

phase space 

factor:

difficult to produce about 80 W bosons.

n≃80 since Esph/√2mW

W

W


