Overview of two-photon and two-boson exchange

Peter Blunden ${ }^{\dagger}$
University of Manitoba

Electroweak Box Workshop, September 28, 2017

Outline

- Recent advances in TPE theory (2008-present)

Review: Afanasev, PGB, Hassell, Raue, Prog. Nucl. Part. Phys. (2017)
-improved hadronic model parameters (fit to data)
-use of dispersion relations and connection to data
-new experimental results

- γZ box contributions to PV electron scattering
-amenable to dispersion analysis in forward limit ($Q^{2} \rightarrow 0$)
-distinction between axial and vector hadron coupling
-use of inelastic PV data in resonance and DIS regions

Hadronic Approach

Low to moderate Q^{2} :
hadronic: $N+\Delta+N^{*}$ etc.

- as Q^{2} increases more and
 more parameters
- Loop integration using sum of monopole PGB, Melnitchouk, \& Tjon, PRL 91, 142304 (2003) transition form factors fit to spacelike Q^{2}

Nucleon (elastic) intermediate state

Δ and N^{*} intermediate states

Direct loop integration method
ondratyuk et al., PRL 95, 172503 (2005)
hou \& Yang, Eur. Phys. J. A. 51, 105 (2015)

Unphysical divergence

- Include all $3 N \rightarrow \Delta$ multipoles, with form factors fit to CLAS data
- Opposite sign to nucleon contribution
- Qualitatively correct, BUT diverges as $\varepsilon \rightarrow 1$, implying a violation of unitarity (Froissart bound)

Dispersive method

$$
\begin{aligned}
S & =1+i \mathcal{M} \\
S^{\dagger} & =1-i \mathcal{M}^{\dagger} \\
S S^{\dagger} & =1
\end{aligned}
$$

Unitarity $\rightarrow \quad-i\left(\mathcal{M}-\mathcal{M}^{\dagger}\right)=2 \Im m \mathcal{M}=\mathcal{M}^{\dagger} \mathcal{M}$

$$
\Im m\langle f| \mathcal{M}|i\rangle=\frac{1}{2} \int d \rho \sum_{n}\langle f| \mathcal{M}^{*}|n\rangle\langle n| \mathcal{M}|i\rangle
$$

$$
d \rho=\frac{d^{3} k_{1}}{(2 \pi)^{3} 2 E_{k_{1}}} \sim d W_{n} d Q_{1}^{2} d Q_{2}^{2}
$$

- Imaginary part determined by unitarity
- Uses only on-shell form factors
- Use form factors directly fit to data, not reparametrized by sum of monopoles
- Real part determined from dispersion relations

TPE using dispersion relations

Generalized form factors

$$
\begin{gathered}
\mathcal{M}_{\gamma \gamma} \rightarrow\left(\gamma_{\mu}\right)^{(e)} \otimes\left(F_{1}^{\prime}\left(Q^{2}, \nu\right) \gamma^{\mu}+F_{2}^{\prime}\left(Q^{2}, \nu\right) \frac{i \sigma^{\mu \nu} q_{\nu}}{2 M}\right)^{(p)} \\
+\left(\gamma_{\mu} \gamma_{5}\right)^{(e)} \otimes\left(G_{a}^{\prime}\left(Q^{2}, \nu\right) \gamma^{\mu} \gamma_{5}\right)^{(p)} \\
\delta_{\gamma \gamma}=2 \operatorname{Re} \frac{\varepsilon G_{E}\left(F_{1}^{\prime}-\tau F_{2}^{\prime}\right)+\tau G_{M}\left(F_{1}^{\prime}+F_{2}^{\prime}\right)+\nu(1-\varepsilon) G_{M} G_{a}^{\prime}}{\varepsilon G_{E}^{2}+\tau G_{M}^{2}}
\end{gathered}
$$

Dispersion relations

$$
\begin{aligned}
\operatorname{Re} F_{1}^{\prime}\left(Q^{2}, \nu\right) & =\frac{2}{\pi} \mathcal{P} \int_{-\tau}^{\infty} d \nu^{\prime} \frac{\nu}{\nu^{\prime 2}-\nu^{2}} \operatorname{Im} F_{1}^{\prime}\left(Q^{2}, \nu^{\prime}\right) \\
\operatorname{Re} F_{2}^{\prime}\left(Q^{2}, \nu\right) & =\frac{2}{\pi} \mathcal{P} \int_{-\tau}^{\infty} d \nu^{\prime} \frac{\nu}{\nu^{\prime 2}-\nu^{2}} \operatorname{Im} F_{2}^{\prime}\left(Q^{2}, \nu^{\prime}\right) \\
\operatorname{Re} G_{a}^{\prime}\left(Q^{2}, \nu\right) & =\frac{2}{\pi} \mathcal{P} \int_{-\tau}^{\infty} d \nu^{\prime} \frac{\nu^{\prime}}{\nu^{\prime 2}-\nu^{2}} \operatorname{Im} G_{a}^{\prime}\left(Q^{2}, \nu^{\prime}\right) .
\end{aligned}
$$

Integral extends into "unphysical region" down to zero energy ($\cos \theta<-1$)

A few technical details

$$
\frac{\alpha}{4 \pi} Q^{2} \frac{1}{i \pi^{2}} \int d^{4} q_{1} \frac{\operatorname{Im}\left\{L_{\alpha \mu \nu} H^{\alpha \mu \nu}\right\}}{\left(q_{1}^{2}-\lambda^{2}\right)\left(q_{2}^{2}-\lambda^{2}\right)}
$$

$$
\longrightarrow \frac{s-W^{2}}{4 s} \int d \Omega_{k_{1}} \frac{f\left(Q_{1}^{2}, Q_{2}^{2}\right) G_{1}\left(Q_{1}^{2}\right) G_{2}\left(Q_{2}^{2}\right)}{\left(Q_{1}^{2}+\lambda^{2}\right)\left(Q_{2}^{2}+\lambda^{2}\right)}
$$

- L and H are leptonic and hadronic tensors
- f is a polynomial in photon virtualities $Q_{1}{ }^{2}$ and $Q_{2}{ }^{2}$
- $G_{i}\left(Q_{i}{ }^{2}\right)$ is a transition form factor with poles in the complex $Q_{i}{ }^{2}$ plane

Use numerical contour integration

\longrightarrow Allows for use of arbitrary functional forms for transition form factors $G_{i}\left(Q_{i}{ }^{2}\right)$

Contours are concentric ellipses of radial parameter r

Nucleon (elastic) intermediate state

$Q^{2}=3 \mathrm{GeV}^{2}$

Logarithmic divergence at low energies

Agrees with old loop integration method

No subtractions needed

Δ intermediate state (zero width approximation)

- Include all 3 multipoles, with form factors fit to recent CLAS data
- $G_{M}{ }^{*} \times G_{M}{ }^{*}$ dominates, but $G_{M}{ }^{*} \times G_{E}{ }^{*}$ interference is significant

No unphysical divergence at $\varepsilon \rightarrow 1$

changes sign at $Q^{2} \approx 0.6 \mathrm{GeV}^{2}$

Direct measurements of Im part

Target normal spin asymmetry

$$
E e=0.570 \mathrm{GeV}
$$

This is all in the physical region.

Polarization data

$R_{T L}$ indicates mild sensitivity to G_{E} form factor at low ε

TPE effect on ratio of $e^{+} p$ to $e^{-} p$ cross sections

TPE interference changes sign for positrons vs electrons

$$
R_{2 \gamma}=\frac{\sigma^{e^{+}}}{\sigma^{e^{-}}} \approx 1-2 \delta_{\gamma \gamma}
$$

VEPP-3 (Novosibirsk)

TPE effect on ratio of $e^{+} p$ to $e^{-} p$ cross sections
CLAS (Jefferson Lab)

TPE effect on ratio of $e^{+} p$ to e^{-p} cross sections

OLYMPUS (Doris ring @ DESY)

What is going on at low Q^{2} ?

Comparing theory and experiment

Allowing normalization to float

\square including one-loop radiative corrections

$$
Q_{W}^{p}=\rho\left(1-4 \kappa_{\mathrm{PT}}(0) \hat{s}^{2}+\Delta_{e}^{\prime}+\Delta_{W}\right)
$$

$$
+\square_{W W}+\square_{Z Z}+\square_{\gamma Z} \quad \longleftarrow \text { box diagrams }
$$

Box corrections

$\longrightarrow W W$ and $Z Z$ box diagrams large but dominated by short distances; can be evaluated perturbatively
$\longrightarrow \gamma Z$ box diagram sensitive to long distance physics, has two contributions:

$$
\begin{array}{cc}
\square_{\gamma Z}=\square_{\gamma Z}^{A}+\square_{\gamma}^{V} \\
\vee(e) \times \mathrm{A}(h) & \Sigma_{\mathrm{A}(e) \times \mathrm{V}(h)}^{V}
\end{array}
$$

$$
\text { (finite at } E=0 \text {) (inelastic vanishes at } E=0 \text {) }
$$

Axial h correction

\square axial h correction $\square_{\gamma Z}^{A}$ dominant γZ correction in atomic parity violation at very low (zero) energy
\longrightarrow computed by Marciano \& Sirlin in 1983 as sum of two parts:

* low-energy part approximated by Born contribution (elastic intermediate state)

\star high-energy part (above scale $\Lambda \sim 1 \mathrm{GeV}$) computed perturbatively in terms of scattering from free quarks

$$
\square_{\gamma Z}^{A}=\left(1-4 \hat{s}^{2}\right) \frac{5 \alpha}{2 \pi} \underbrace{\int_{\Lambda^{2}}^{\infty} \frac{d Q^{2}}{Q^{2}\left(1+Q^{2} / M_{Z}^{2}\right)}\left(1-\frac{\alpha_{s}\left(Q^{2}\right)}{\pi}\right)}_{\sim \log \frac{M_{2}^{2}}{\Lambda^{2}}+c}
$$

Forward angle dispersion method

Unitarity $\rightarrow \quad-i\left(\mathcal{M}-\mathcal{M}^{\dagger}\right)=2 \Im m \mathcal{M}=\mathcal{M}^{\dagger} \mathcal{M}$

$$
\Im m\langle f| \mathcal{M}|i\rangle=\frac{1}{2} \int d \rho \sum_{n}\langle f| \mathcal{M}^{*}|n\rangle\langle n| \mathcal{M}|i\rangle
$$

Forward scattering amplitude: $|f\rangle \approx|i\rangle$
$\left.\Im m\langle i| \mathcal{M}|i\rangle=\frac{1}{2} \int d \rho \sum_{n}|\langle n| \mathcal{M}| i\right\rangle\left.\right|^{2} \sim \int d^{3} k_{1} \frac{L_{\mu \nu} W^{\mu \nu}}{q^{2}\left(q^{2}-M_{Z}^{2}\right)}$
hadronic tensor:

Axial h correction

- At low energy, dominant $V_{e} \times A_{h}$ correction evaluated using forward dispersion relations

$$
\Re e \square_{\gamma Z}^{A}(E)=\frac{2}{\pi} \int_{0}^{\infty} d E^{\prime} \frac{E^{\prime}}{E^{\prime 2}-E^{2}} \Im m \square_{\gamma Z}^{A}\left(E^{\prime}\right)
$$

\rightarrow imaginary part given by $F_{3}^{\gamma Z}$ structure function

$$
\begin{aligned}
& \Im m \square_{\gamma Z}^{A}(E)=\frac{1}{(2 M E)^{2}} \int_{M^{2}}^{s} d W^{2} \int_{0}^{Q_{\max }^{2}} d Q^{2} \frac{v_{e}\left(Q^{2}\right) \alpha\left(Q^{2}\right)}{1+Q^{2} / M_{Z}^{2}} \\
& \times\left(\frac{2 M E}{W^{2}-M^{2}+Q^{2}}-\frac{1}{2}\right) F_{3}^{\gamma Z}
\end{aligned}
$$

$$
\text { with } v_{e}\left(Q^{2}\right)=1-4 \kappa\left(Q^{2}\right) \hat{s}^{2}
$$

Axial h correction DIS part (dominant contribution)

- DIS part dominated by leading twist PDFs at small x
(MSTW, CTEQ, Alekhin parametrizations)

$$
F_{3}^{\gamma Z(\mathrm{DIS})}\left(x, Q^{2}\right)=\sum_{q} 2 e_{q} g_{A}^{q}\left(q\left(x, Q^{2}\right)-\bar{q}\left(x, Q^{2}\right)\right)
$$

\rightarrow in DIS region ($Q^{2} \gtrsim 1 \mathrm{GeV}^{2}$), expand integrand in powers of x
$\Re e \square_{\gamma Z}^{\mathrm{A}(\mathrm{DIS})}(E)=\frac{3}{2 \pi} \int_{Q_{0}^{2}}^{\infty} d Q^{2} \frac{v_{e}\left(Q^{2}\right) \alpha\left(Q^{2}\right)}{Q^{2}\left(1+Q^{2} / M_{Z}^{2}\right)}$

$$
\times\left[M_{3}^{(1)}\left(Q^{2}\right)+\frac{2 M^{2}}{9 Q^{4}}\left(5 E^{2}-3 Q^{2}\right) M_{3}^{(3)}\left(Q^{2}\right)+\ldots\right]
$$

with moments $\quad M_{3}^{\gamma Z(n)}=\int_{0}^{1} d x x^{n-1} F_{3}^{\gamma Z}\left(x, Q^{2}\right)$

Axial h correction

- structure function moments
$\underline{n=1} \quad M_{3}^{\gamma Z(1)}\left(Q^{2}\right)=\frac{5}{3}\left(1-\frac{\alpha_{s}\left(Q^{2}\right)}{\pi}\right)$
$\longrightarrow \gamma Z$ analog of Gross-Llewellyn Smith sum rule

$$
\mathcal{R} e \square_{\gamma Z}^{A(\mathrm{DIS})} \approx\left(1-4 \hat{s}^{2}\right) \frac{5 \alpha}{2 \pi} \int_{Q_{0}^{2}}^{\infty} \frac{d Q^{2}}{Q^{2}\left(1+Q^{2} / M_{Z}^{2}\right)}\left(1-\frac{\alpha_{s}\left(Q^{2}\right)}{\pi}\right)
$$

\rightarrow precisely result from Marciano \& Sirlin! $\sim \log \frac{M_{Z}^{2}}{Q_{0}^{2}}$ (works because result depends on lowest moment of valence PDF, with model-independent normalization!)
$\underline{n=3} \quad M_{3}^{\gamma Z(3)}\left(Q^{2}\right)=\frac{1}{3}\left(2\left\langle x^{2}\right\rangle_{u}+\left\langle x^{2}\right\rangle_{d}\right)\left(1+\frac{5 \alpha_{s}\left(Q^{2}\right)}{12 \pi}\right)$
\longrightarrow related to x^{2}-weighted moment of valence quarks

Axial h elastic + resonance correction
\star elastic part: $\quad F_{3}^{\gamma Z(\mathrm{el})}\left(Q^{2}\right)=-Q^{2} G_{M}^{p}\left(Q^{2}\right) G_{A}^{Z}\left(Q^{2}\right) \delta\left(W^{2}-M^{2}\right)$
\star resonance part from parametrization of v scattering data; includes lowest four spin $1 / 2$ and $3 / 2$ states (Lalakulich-Paschos)
\longrightarrow Least well-constrained part of the calculation

Vector h correction

- vector h correction $\square_{\gamma Z}^{V}$ vanishes at $E=0$, but experiment has $E \sim 1 \mathrm{GeV}$ - what is energy dependence?
\rightarrow forward dispersion relation

$$
\Re e \square_{\gamma Z}^{V}(E)=\frac{2 E}{\pi} \int_{0}^{\infty} d E^{\prime} \frac{1}{E^{\prime 2}-E^{2}} \Im m \square_{\gamma Z}^{V}\left(E^{\prime}\right)
$$

\rightarrow imaginary part given by

$$
\Im m \square_{\gamma Z}^{V}(E)=\frac{\alpha}{\left(s-M^{2}\right)^{2}} \int_{W_{\pi}^{2}}^{s} d W^{2} \int_{0}^{Q_{\max }^{2}} \frac{d Q^{2}}{1+Q^{2} / M_{Z}^{2}}
$$

$$
\times\left(F_{1}^{\gamma 2}+F_{2}^{\gamma Z} \frac{s\left(Q_{\max }^{2}-Q^{2}\right)}{Q^{2}\left(W^{2}-M^{2}+Q^{2}\right)}\right)
$$

3 groups doing independent analyses

Hall et al. PRD 88, 013011 (2013)

Carlson and Rislow PRD 83, 113007 (2011)

Gorchtein et al. PRC 84, 015502 (2011)

Qweak energy: $\quad \operatorname{Re} \square_{\gamma Z}^{V}(E=1.165 \mathrm{GeV}) \quad 8 \%$ correction!

$$
(5.6 \pm 0.36) \times 10^{-3} \quad(5.7 \pm 0.9) \times 10^{-3} \quad(5.4 \pm 2.0) \times 10^{-3}
$$

- Mainly different treatments of low Q^{2}, low W region background contributions
- Agree on overall magnitude of 8% correction, but disagree on errors and details

AJM structure function model

- Accurate knowledge of $\gamma \gamma$ and γZ structure functions (at all kinematics) vital for determination of radiative corrections
- Wealth of data on $F_{i}^{\gamma \gamma}$ structure functions over large range of kinematics in Q^{2} and W (or x) - with some gaps
- Relatively little known about $F_{i}^{\gamma Z}$ interference structure functions below HERA measurements, with $Q^{2} \geq 1500 \mathrm{GeV}^{2}$
- Fit $F_{i}^{\gamma \gamma}$ over all kinematics in Q^{2} and W, then "rotate" to $F_{i}^{\gamma Z}$ using available theoretical/phenomenological constraints
\longrightarrow e.g. isospin symmetry

$$
\left\langle N^{*}\right| J_{Z}^{\mu}|p\rangle=\left(1-4 \sin ^{2} \theta_{W}\right)\left\langle N^{*}\right| J_{\gamma}^{\mu}|p\rangle-\left\langle N^{*}\right| J_{\gamma}^{\mu}|n\rangle
$$

Integration region (structure function map)

Basic issue: how to relate $F_{1,2}^{\gamma Z}$ to $F_{1,2}^{\gamma}$?

Scaling region III

$$
\begin{aligned}
F_{2}^{\gamma} & =\sum_{q} e_{q}^{2} x(q+\bar{q}) \\
F_{2}^{\gamma Z} & =\sum_{q} 2 e_{q} g_{V}^{q} x(q+\bar{q})
\end{aligned}
$$

$$
x=\frac{Q^{2}}{W^{2}-M^{2}+Q^{2}}
$$

Resonance region I largest contribution (unlike $F_{3}^{\gamma Z}$)
For $\gamma \gamma$ use Christy-Bosted (CB) fit to $e-p$ cross sections

$$
\sigma_{T, L}=\sigma_{T, L}(\mathrm{res})+\sigma_{T, L}(\mathrm{bg})
$$

$\sigma_{T, L}(\mathrm{res})$ • Includes 7 most prominent N^{*} resonances below 2 GeV .

- Generally agrees with data to $\sim 5 \%$
- For γZ modify fit by ratio of weak to e.m. transition amplitudes.

Background $\sigma_{T, L}(\mathrm{bg})$

\square Use Vector Meson Dominance (VMD) models fit to high energy data, plus isospin rotations

$$
V=\rho, \omega, \varphi+\text { continuum }
$$

$\sigma_{V}^{\gamma Z}=\kappa_{V} \sigma_{V}^{\gamma \gamma}$

$$
\frac{\sigma^{\gamma Z}}{\sigma^{\gamma \gamma}}=\frac{\kappa_{\rho}+\kappa_{\omega} R_{\omega}+\kappa_{\phi} R_{\phi}+\kappa_{C} R_{C}}{1+R_{\omega}+R_{\phi}+R_{C}}
$$

Isospin rotation: $\quad \kappa_{\rho}=2-4 \sin ^{2} \theta_{W}, \quad \kappa_{\omega}=-4 \sin ^{2} \theta_{W}, \kappa_{\phi}=3-4 \sin ^{2} \theta_{W}$
\rightarrow continuum parameter κ_{C} not constrained in VMD
■ GHRM: assign 100\% uncertainty on continuum contribution (dominates errors)
\square AJM model: constrain continuum (higher Q^{2}) contribution by matching with PDF ratios (γZ to $\gamma \gamma$) across boundaries of Regions I, II and III.

Contribution from different regions to $\square_{\gamma Z}^{V}$

(relative to weak charge of 0.0713)

AJM γZ model direct test

- Parity-violating Deep Inelastic Scattering (PVDIS) asymmetry allows a direct measurement of the γZ structure functions

$$
A_{\mathrm{PV}}=g_{A}^{e}\left(\frac{G_{F} Q^{2}}{2 \sqrt{2} \pi \alpha}\right) \frac{x y^{2} F_{1}^{\gamma Z}+(1-y) F_{2}^{\gamma Z}+\frac{g_{V}^{e}}{g_{A}^{e}}\left(y-y^{2} / 2\right) x F_{3}^{\gamma Z}}{x y^{2} F_{1}^{\gamma \gamma}+(1-y) F_{2}^{\gamma \gamma}}
$$

$$
Q^{2}=0.34 \mathrm{GeV}^{2}, E=0.69 \mathrm{GeV} \quad Q^{2}=2.5 \mathrm{GeV}^{2}, E=6 \mathrm{GeV}
$$

Potential impact of constraints from deuteron PV inelastic asymmetries
100% uncertainty on continuum background

Potential impact of

Potential impact of

Constraints from PV inelastic asymmetries

AJM model asymmetries and uncertainties for PV deuteron asymmetry constrained by fit to E08-011 data

Hall et al. (2013)

Predictions for PV deuteron asymmetry in DIS kinematics

Prediction: Hall et al. (2013)

$$
\begin{aligned}
& A_{\mathrm{PV}}=-92.4 \pm 6.8 \mathrm{ppm} \\
& A_{\mathrm{PV}}=-157.2 \pm 12.2 \mathrm{ppm}
\end{aligned}
$$

E08-011: Wang et al. Nature 506, 67 (2014)

$$
\begin{aligned}
& A_{\mathrm{PV}}=-91.1 \pm 4.3 \mathrm{ppm} \\
& A_{\mathrm{PV}}=-160.8 \pm 7.1 \mathrm{ppm}
\end{aligned}
$$

Parity-violating inelastic asymmetries

- Expected inelastic asymmetry data from Qweak

\rightarrow AJM model uncertainties compared with 100% on continuum contribution

Duality in electron-nucleon scattering

Niculescu et al., PRL 85, 1182 (2000)
WM, Ent, Keppel, PRep.406, 127 (2005)

average over

(strongly Q^{2} dependent) resonances
$\approx Q^{2}$ independent scaling function
"Nachtmann" scaling variable

$$
\xi=\frac{2 x}{1+\sqrt{1+4 M^{2} x^{2} / Q^{2}}}
$$

Separates higher twist (HT) effects from target mass corrections to leading twist (LT)

$\gamma \gamma$ Leading Twist (LT) $F_{1,2}$ moments vs. Nachtmann moments

- Compare total empirical moments of structure functions to leading twist (LT) contributions down to low Q^{2}
- Difference indicative of highter twist (HT) contributions
- Sum is approximately independent of Q^{2}
- Note isospin independence \longrightarrow Apply to γZ structure functions?
γZ Leading Twist (LT) moments vs. Nachmann

Allows us to extend PDF region down to $Q^{2}=1 \mathrm{GeV}^{2}$ (from $Q^{2}=2.5$)

$$
\begin{array}{rll}
\square_{\gamma Z}^{V} @ 1.165 \mathrm{GeV}: & (5.6 \pm 0.4) \times 10^{-3}, & 2013 \\
& (5.4 \pm 0.4) \times 10^{-3}, & 2015
\end{array}
$$

Summary

- Lots of interesting new theoretical work motivated by new experimental results
- Dispersive method only feasible approach for TPE, with connection to data in forward angle limit
- Efforts underway to incorporate electroproduction data throughout the resonance region, including background
- Clear need for definitive $e^{+} p$ measurements at high Q^{2}, low ε
- Dispersion approach significant improvement over old methods
- PDF region provides constraints on model-dependence of isospin rotation
- Direct comparison with PV inelastic data in resonance and DIS regions
- e-d PVDIS asymmetry strongly constrains the uncertainty
- checking Δ region at Mainz or JLab would be useful
- quark-hadron duality approach allows further constraints on uncertainties

