
Overview	of	two-photon	and	
two-boson	exchange

Peter	Blunden†	

University	of	Manitoba

Electroweak	Box	Workshop,	September	28,	2017

†in collaboration with Wally Melnitchouk and AJM Collaboration



Outline

•Recent	advances	in	TPE	theory	(2008-present) 
			Review:			Afanasev,	PGB,	Hassell,	Raue,	Prog.	Nucl.	Part.	Phys.	(2017)	
– improved	hadronic	model	parameters	(fit	to	data)	

–use	of	dispersion	relaVons	and	connecVon	to	data	

–new	experimental	results 

•γZ	box	contribuVons	to	PV	electron	scaXering	
–amenable	to	dispersion	analysis	in	forward	limit	(Q²→ 0)	
–disVncVon	between	axial	and	vector	hadron	coupling	

–use	of	inelasVc	PV	data	in	resonance	and	DIS	regions
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Hadronic	Approach

PGB,	Melnitchouk,	&	Tjon,	PRL	91,	142304	(2003)
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Low	to	moderate	Q2:	

hadronic:	N + Δ + N*	etc.	
• as	Q2	increases	more	and  

more	parameters	

• Loop	integraVon	using	sum	of	monopole	
transiVon	form	factors	fit	to	spacelike	Q2
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FIG. 1: Two-photon exchange diagrams with ∆ excitation for elastic ep scattering.

amplitude for the box diagram in Fig. 1(a) is given as,

M (a,∆) = −i

∫

d4k

(2π)4
u(p3)(−ieγµ)

i(p/1 + p/2 − k/)

(p1 + p2 − k)2 −m2
e + iε

(−ieγν)u(p1)
−i

(p4 − k)2 + iε

×
−i

(k − p2)2 + iε
u(p4)Γ

µα
γ∆→N(k, p4 − k)

−i(k/+M∆)P
3/2
αβ (k)

k2 −M2
∆ + iε

Γνβ
γN→∆(k, k − p2)u(p2),

(4)

where

P 3/2
αβ (k) = gαβ −

γαγβ
3

−
(k/γαkβ + kαγβk/)

3k2
, (5)

is the spin-3/2 projector. Amplitude for the cross-box diagram Fig. 1(b) M (b,∆) can be

written down in similar manner. The amplitude in Eq. (4) is IR finite because when

the four-momentum of the photon approaches zero, the γN∆ vertex functions Γ′s also

approaches zero. Therefore we do not have to include an infinitesimal photon mass in the

photon propagators to regulate the IR divergence in Eq. (4). The vertex functions Γ′s

for γ∆ → N and γN → ∆ are defined by

u(p+ q)Γµα
γ∆→N(p, q)u

∆
α (p) = −ie⟨N(p + q)|Jµ

EM |∆(p)⟩, (6)

u∆
β (p)Γ

νβ
γN→∆(p, q)u(p− q) = −ie⟨∆(p)|Jν

EM |N(p− q)⟩, (7)

where the q′s in both Γµα
γ∆→N(p, q) and Γβν

γN→∆ refer to the incoming momentum of the

photon, as in [15].

We now elaborate, in the followings, on the three improvements over the previous

calculations we will carry out in this study.

•Include	all	3	N → Δ mulVpoles,	with	form	factors	fit	to	CLAS	data	
•Opposite	sign	to	nucleon	contribuVon	
•QualitaVvely	correct,	BUT	diverges	as	ε → 1,	implying	a	violaVon	of	
unitarity	(Froissart	bound)

Δ and N*	intermediate	states
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FIG. 3: δ∆ vs. ϵ at Q2 = 3 GeV2. The vertical (blue) dashed lines correspond to a value of

ϵ = 0.904 above which the predictions of our hadronic model could be questionable. See text

for explanation. (a) With ∆ form factors of Eq. (13) and coupling parameters g1 = 7, g2 = 9.

The (red) dotted and (black) solid curves correspond to g3 = 0 and g3 = ±2, respectively, using

vertex relation of Eq. (9). (Green) dashed and (olive) dash-doted curves correspond to g3 = -2

and 2, obtained with the correct vertex relation of Eq. (8). (b) Dependence of δ∆ on ϵ with

the use of correct vertex function but different coupling constants and form factors. The (red)

dotted and (olive) dash-doted curves, labelled by KBMT correspond to g1 = 7, g2 = 9, g3 = 0

and g1 = 6.59, g2 = 9.06, g3 = 7.16, respectively, both with the ∆ form factors of Eq. (13)

employed in [15]. The (blue) dashed and (black) solid curves, labelled by ZY, correspond to

g1 = 7, g2 = 9, g3 = 0 and g1 = 6.59, g2 = 9.06, g3 = 7.16 with the realistic ∆ form factors of Eq.

(14).

obtained with the realistic ∆ form factors Eq. (14), correspond to (g1 = 7, g2 = 9, g3 = 0)

and (g1 = 6.59, g2 = 9.06, g3 = 7.16), respectively. The large differences between (red)

dotted and (black) solid curves, and (green) dash-dotted and (blue) dashed curves, are

attributed to the different form factors used. However, one notes that the (black) solid

and (blue) dashed curves are very close to each other which implies that once the realistic

form factors are employed, the effect of Coulomb quadrupole coupling is greatly reduced.

Hereafter, all the results to be given are obtained with the use of correct γN∆ vertex

function, realistic form factors, and coupling constants, unless otherwise specified.

Recently, it has been assumed in [21] that for s = (p1 + p2)2 → ∞ (Regge limit),

Kondratyuk et al., PRL 95, 172503 (2005) 

Zhou & Yang, Eur. Phys. J. A. 51, 105 (2015)

Direct	loop	integraVon	method

Unphysical	
divergence



Dispersive	method

S = 1 + iM
S† = 1� iM†
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k₁

•Imaginary	part	determined	by	unitarity	
•Uses	only	on-shell	form	factors	

•Use	form	factors	directly	fit	to	data,	not	reparametrized	by	sum	of	monopoles	
•Real	part	determined	from	dispersion	relaVons
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Dispersion	relaVons

TPE	using	dispersion	relaVons
Generalized	form	factors
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2(Q
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⇡
P
Z 1

�⌧
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⌫
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�⌧
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⌫02 � ⌫2
Im G0
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2, ⌫0) .

Integral	extends	into	``unphysical	region’’	down	to	zero	energy	(cos θ < -1)



A	few	technical	details
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Z
d4q1

Im {L↵µ⌫H
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(q21 � �2)(q22 � �2)

•	L	and	H	are	leptonic	and	hadronic	tensors	
•	f	is	a	polynomial	in	photon	virtualiVes	Q12	and	Q22 

• Gi(Qi2) is	a	transiVon	form	factor	with	poles	in	the	complex Qi2 plane

Contours	are	concentric	ellipses	of	radial	parameter	r
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quasi-VCS, where the intermediate electron is collinear
with either the incoming or outgoing electrons, the TPE
process also has a near singularity when the intermedi-
ate electron momentum goes to zero |~l| ! 0 (i.e. the
intermediate electron is soft). In this case the first pho-
ton takes on the full momentum of the initial electron,
i.e. ~q1 ! ~k, whereas the second photon takes on the full
momentum of the final electron, i.e. ~q2 ! ~k0. One im-
mediately sees from Eq. (24) that this situation occurs
when the invariant mass of the hadronic state takes on
its maximal value W = W

max

⌘ p
s �m

e

. In this case,
the photon virtualities are given by :

Q2
1, RCS

=

m
ep
s

n

�p
s�m

e

�2 �M2
N

o

,

Q2
2, RCS

=

m
ep
s

n

�p
s�m

e

�2 �M2
�

o

. (28)

This kinematical situation with two quasi-real pho-
tons, corresponding with quasi-real Compton scattering
(quasi-RCS), also leads to an enhancement in the corre-
sponding integrand of AbsT2� .

In the upper panel of Fig. 3, we show the kinemat-
ical accessible regions for the virtualities Q2

1, Q
2
2 in the

phase space integral of Eq. (21) for a beam energy of
E

e

= 0.855 GeV corresponding with the A4@MAMI ex-
periment, for different values of the c.m. angle ✓

cm

. In
the lower panel we display these phase space regions for
three different values of W , corresponding with the N ,
�(1232), and S11(1535) intermediate states. We notice
from Fig. 3 that the largest possible photon virtualities
in the TPE amplitude occur for the nucleon intermediate
state, whereas for the S11(1535) intermediate state both
photons have very small virtualities.

Using Eq. (21) for the absorptive part of the TPE am-
plitude, we can then express the normal spin asymmetry
B

n

of Eq. (4) for the ep ! e� process in terms of a
3-dimensional phase-space integral:

B
n

= � e2

D1�(s,Q2
)

1

(2⇡)3

Z (
p
s�me)

2

M

2

dW 2

✓

s�W 2

8 s

◆

⇥
Z

d⌦1
1

Q2
1 Q

2
2

Im (L
µ⌫

Hµ⌫

) , (29)

where the denominator factor D1�(s,Q
2
) is originating

from the OPE process as given by Eq. (16), and d⌦1 =

d cos ✓1d�1.

Equivalently, the phase space integration in Eq. (29)
can be re-expressed in a Lorentz invariant way as an in-
tegral over photon virtualities Q2

1 and Q2
2 by using the

Jacobian

J =

�

�

�

�

@Q2
1

@ cos ✓1

@Q2
2

@�1

�

�

�

�

. (30)

Using Eq.(25) and an analogous expression for Q2
2, the
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Figure 3. Kinematical accessible region for the virtualities
Q2

1, Q
2
2 in the phase space integral of Eqs. (21, 29) entering

the ep ! e� process. The upper panel shows the phase
space regions for different c.m. angles ✓

cm

as indicated on
the ellipses for E

e

= 0.855 GeV (s = 2.485 GeV2), and for
W = 0.9383 GeV (i.e. for a nucleon intermediate state). The
lower panel shows the allowed values of the photon virtualities
for different intermediate states for ✓

cm

= 30o. We show three
cases corresponding with the contribution of N , �(1232) and
S11(1535) excitations. The accessible regions correspond with
the interior of the ellipses. The intersection with the axes
correspond with quasi-VCS, whereas the situation at W =p
s � m

e

where all ellipses shrink to the point Q2
1 = Q2

2 ' 0
corresponds with quasi-RCS.

Jacobian is given by

J =

⇥

(s�W 2
+m2

e

)

2 � 4m2
e

s
⇤

/(4s2)

⇥ ⇥

(s�M2
N

+m2
e

)

2 � 4m2
e

s
⇤1/2

⇥ ⇥

(s�M2
� +m2

e

)

2 � 4m2
e

s
⇤1/2

⇥ sin ✓
cm

sin ✓1 sin�1, (31)

Use	numerical	contour	integraVon	
Allows	for	use	of	arbitrary	funcVonal	
forms	for	transiVon	form	factors	Gi(Qi2)
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Logarithmic	divergence	
at	low	energies

Nucleon	(elasVc)	intermediate	state
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• Include	all	3	mulVpoles,	with	form	factors	fit	to	recent	CLAS	data	
•GM*	x	GM* dominates,	but	GM*	x	GE*	interference	is	significant

9

Δ	intermediate	state	(zero	width	approximaVon)

changes	sign	at	Q2 ≈ 0.6 GeV2

No	unphysical	
divergence	at	ε→1



π N 
(inelastic)

N (elastic)

total

Target normal spin asymmetry
Ee = 0.570  GeV

Proton Neutron

%

10

Direct	measurements	of	Im	part

This	is	all	in	the	physical	region.

(taken from Pasquini &          
Vanderhaeghen)
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FIG. 14: Ratio R
2� of e+p to e�p cross sections as a function of " for fixed energy (a) E =

1.594 GeV and (b) E = 0.998 GeV. The contributions with nucleon only (dashed blue curves) and

the sum of nucleon and � (solid red curves) intermediate states are compared with data from the

VEPP-3 experiment (triangles) [26], with the statistical and systematic uncertainties indicated by

the (black) inner and (gray) outer error bars, respectively.

aimed at providing measurements of R
2� over a larger range of " and Q2 with significantly

reduced uncertainties. In Fig. 13 the R
2� ratio from the CLAS experiment is shown as a

function of " at averaged Q2 values of hQ2i = 0.85 GeV2 and hQ2i = 1.45 GeV2 [Figs. 13(a)

and (b), respectively], and as a function of Q2 at averaged " values of h"i = 0.45 and

h"i = 0.88 GeV2 [Figs. 13(c) and (d), respectively]. Most of the data at the larger " values

are consistent with unity within the errors, but suggest a nonzero ratio, ⇡ 2% – 4% greater

than unity, at the lowest " value for the higher-Q2 set. The trend is consistent with the

ratio calculated here, which shows a rising R
2� with decreasing ". At these kinematics the

calculated TPE correction is dominated by the nucleon elastic intermediate state, with the

� contribution reducing the ratio slightly. Note that both the data and the calculated TPE

corrections here (and elsewhere, unless otherwise stated) are shown relative to the Mo-Tsai

infrared result.

The same trend is seen when the R
2� data are viewed as a function of Q2 for fixed ". At

the larger average " value, h"i = 0.88, the e↵ects are consistent with zero as well as with

the small predicted TPE correction. At the smaller value h"i = 0.45, on the other hand, the

larger predicted e↵ect is consistent with the larger R
2� values with increasing Q2. Again the

e↵ects of the � intermediate state are small at low Q2 values, but become visible at larger

Q2, where they improve the agreement between the theory and experiment.

33

TPE	effect	on	raVo	of	e+p to	e-p	cross	secVons

12

TPE	interference	changes	sign	for	positrons	vs	electrons

VEPP-3	(Novosibirsk)

R2� =
�e+

�e�
⇡ 1� 2���
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FIG. 13: Ratio R
2� of e+p to e�p cross sections as a function of " for (a) fixed hQ2i = 0.85 GeV2

and (b) fixed hQ2i = 1.45 GeV2, and as a function of Q2 for (c) fixed h"i = 0.45 and (d) fixed

h"i = 0.88. The contributions with nucleon only (dashed blue curves) and the sum of nucleon

and � (solid red curves) intermediate states are compared with data from CLAS at Je↵erson Lab

(circles) [25], with the statistical and systematic uncertainties indicated by the (black) inner and

(gray) outer error bars, respectively.

the ratio

R
2� =

�e+

�e�
⇡ 1 � 2 ���, (61)

where �e± ⌘ d�(e±p ! e±p)/d⌦, provides a direct measure of e↵ects beyond the Born

approximation. Earlier data from elastic e+p and e�p experiments in the 1960s from

SLAC [69, 70], Cornell [71], DESY [72] and Orsay [73] gave some hints of a small en-

hancement of R
2� at forward angles and low Q2, but were in the region (at large ") where

TPE is relatively small and were consistent within errors with R
2� = 1.

More recently, several dedicated e+p to e�p ratio experiments have been performed in

CLAS at Je↵erson Lab [25], VEPP-3 in Novosibirsk [26, 27] and OLYMPUS at DESY [28]

32

TPE	effect	on	raVo	of	e+p to	e-p	cross	secVons

13

CLAS	(Jefferson	Lab)



A comparison of the results from recent R2γ experiments
to Blunden’s newest calculation (N þ Δ) is shown in Fig. 3.
We plot the difference between the data and theory
calculated at the ϵ and Q2 for each data point to approx-
imately take into account that the data were taken at
different ϵ and Q2 values. This shows the data are largely
consistent with each other, but mostly below the calculation
by Blunden. A similar plot could be made versus Q2.

Comparison with the phenomenological prediction of
Bernauer (not shown) shows good agreement.
We do not agreewith the conclusions of the earlier Letters

[25,26]. The data shown in Fig. 3 clearly favor a smallerR2γ.
While the agreement with the phenomenological prediction
of Bernauer suggests that TPE is causing most of the
discrepancy in the form factor ratio in the measured range,
the theoretical calculation of Blunden, which shows roughly
enough strength to explain the discrepancy at larger Q2,
does not match the data in this regime. To clarify the
situation, the size of TPE at large Q2 has to be determined
in future measurements.

FIG. 3. Comparison of the recent results to the calculation by
Blunden. The data are in good agreement, but generally fall
below the prediction. Please note that data at similar ϵ values have
been measured at different Q2. Also note that the VEPP-3 data
have been normalized to the calculation at high ϵ.

TABLE II. OLYMPUS results for R2γ using the prescriptions: Mo-Tsai to order α3 (a) and to all orders (b); and
using Maximon-Tjon to order α3 (c) and to all orders (d).

hϵi hQ2i GeV2=c2 R2γ (a) R2γ (b) R2γ (c) R2γ (d) δstat δuncorrsyst δcorrsyst

0.978 0.165 0.9971 0.9967 0.9979 0.9978 0.0003 0.0046 0.0036
0.898 0.624 0.9920 0.9948 0.9944 0.9958 0.0019 0.0037 0.0045
0.887 0.674 0.9888 0.9913 0.9912 0.9923 0.0021 0.0042 0.0045
0.876 0.724 0.9897 0.9927 0.9921 0.9935 0.0023 0.0060 0.0045
0.865 0.774 0.9883 0.9921 0.9907 0.9929 0.0026 0.0050 0.0045
0.853 0.824 0.9879 0.9918 0.9903 0.9926 0.0029 0.0039 0.0045
0.841 0.874 0.9907 0.9952 0.9931 0.9958 0.0032 0.0042 0.0045
0.829 0.924 0.9919 0.9967 0.9943 0.9972 0.0036 0.0033 0.0045
0.816 0.974 0.9950 0.9998 0.9973 1.0002 0.0039 0.0033 0.0045
0.803 1.024 0.9913 0.9969 0.9936 0.9971 0.0043 0.0040 0.0045
0.789 1.074 0.9905 0.9955 0.9927 0.9956 0.0047 0.0050 0.0045
0.775 1.124 0.9904 0.9960 0.9926 0.9960 0.0052 0.0041 0.0045
0.761 1.174 0.9950 1.0011 0.9971 1.0009 0.0057 0.0063 0.0045
0.739 1.246 0.9945 1.0007 0.9964 1.0002 0.0046 0.0056 0.0045
0.708 1.347 0.9915 0.9985 0.9930 0.9977 0.0054 0.0049 0.0046
0.676 1.447 0.9842 0.9912 0.9854 0.9899 0.0063 0.0050 0.0046
0.635 1.568 1.0043 1.0126 1.0049 1.0105 0.0063 0.0055 0.0046
0.581 1.718 0.9968 1.0063 0.9966 1.0032 0.0077 0.0096 0.0046
0.524 1.868 0.9953 1.0055 0.9941 1.0013 0.0095 0.0118 0.0046
0.456 2.038 1.0089 1.0212 1.0064 1.0154 0.0104 0.0108 0.0046

FIG. 2. OLYMPUS result for R2γ using the Mo-Tsai [21]
prescription for radiative corrections to all orders. Uncertainties
shown are statistical (inner bars), uncorrelated systematic (added
in quadrature, outer bars), and correlated systematic (gray band).
Note the 12° data point at ϵ ¼ 0.978 is completely dominated by
systematic uncertainties.
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Figure 3.15: Difference between R
2�

and model predictions as a function of ". The blue diamonds are VEPP-3, the black
boxes are from CLAS, and the red circles are from OLYMPUS. Error bars reflect the quadrature sum of statistical and
uncorrelated systematic uncertainties.

Figure 3.16: Difference between R
2�

and model predictions as a function of Q2. Data symbols are the same as in
Fig. 3.15.
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Comparing	theory	and	experiment
VEPP3

CLAS

OLYMPUS

About 1% below 
theory over all ε



Figure 3.17: Difference between normalized R
2�

and model predictions as a function of ". Data symbols are the same as
in Fig. 3.15.

proton and light nuclei, but disagree with the data on a high-Z target 208Pb both in sign and magnitude,
possibly due to Coulomb distortion effects. The measurements of single-spin target asymmetry [78] in
quasi-elastic scattering on a transversely polarized 3He target showed a TPE effect that agreed with
GPD predictions at high momentum transfer. The data both on target and beam SSA show evidence
of inelastic excitations of the intermediate hadronic state and provide valuable input for theoretical
constraints of TPE.

On the theoretical front, there has been significant progress in calculations of TPE based on the
use of dispersion relations [54, 58, 60]. The use of spin-1⁄2 and spin-3⁄2 helicity amplitudes from elec-
troproduction data throughout the resonance region is a notable advance [58]. At forward angles and
low Q2 the dispersive approach allows one to use total photonucleon cross section data to constrain
hadronic uncertainties [61, 63]. Connecting the low to moderate Q2 hadronic models with the high Q2

QCD-based models studied in Refs. [48–50, 66] remains an elusive goal.
Another area where progress might be made is regarding higher order radiative corrections. The

large difference between exponentiated and non-exponentiated radiative corrections that increase with
decreasing " suggests higher order corrections may be warranted. In addition, a reanalysis of the
existing form factor and polarization data to uniformly apply and update the radiative corrections
might provide further insight into the TPE process and the role it has in lepton-nucleon scattering.
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Allowing	normalizaVon	to	float
VEPP3

CLAS

OLYMPUS



X

WW	and	ZZ	box	diagrams	large	but	dominated	by	short	
distances;	can	be	evaluated	perturbaVvely

γZ	box	diagram	sensiVve	to	long	distance	physics,	has	
two	contribuVons: O �Z = O A

�Z + O V
�Z

V(e)	x	A(h) A(e)	x	V(h)
(inelastic vanishes at E=0)(finite at E=0)

Box corrections

box	diagrams

CorrecVon	to	proton	weak	charge

including	one-loop	radiaVve	correcVons						
e.w.	vertex	
correcVons

Qp
W =⇢

�
1� 4PT(0)ŝ

2 +�0
e +�W

�

+⇤WW +⇤ZZ +⇤�Z

17



high-energy	part	(above	scale		Λ ~ 1 GeV)	
computed	perturbaVvely	in	terms	of	
scaXering	from	free	quarks

low-energy	part	approximated	by	Born	
contribuVon	(elasVc	intermediate	state)

Marciano, Sirlin, PRD 29 (1984) 75; Erler et al., PRD 68 (2003) 016006

computed	by	Marciano	&	Sirlin	in	1983	as	sum	of	two	parts:

axial	h	correcVon												dominant	γZ	correcVon	in	
atomic	parity	violaVon	at	very	low	(zero)	energy

Axial	h	correcVon

q q
q q
q q

⇤A
�Z

18

⇤A
�Z =

�
1� 4ŝ2

� 5↵
2⇡

Z 1

⇤

2

dQ2

Q2(1 +Q2/M2

Z)

✓
1� ↵s(Q2)

⇡

◆

| {z }
⇠log
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Forward angle dispersion method

vector h

hadronic tensor: MWµ⇤
�Z = �gµ⇤F �Z

1 +
pµp⇤

p · q
F �Z

2 � i�µ⇤⇥⌅ p⇥q⌅

2p · q
F �Z

3

axial h

S = 1 + iM
S† = 1� iM†

SS† = 1

�i
�
M�M†� = 2⇥mM = M†M

�m ⇥f |M|i⇤ = 1

2

Z
d�

X

n

⇥f |M⇤|n⇤⇥n|M|i⇤

Unitarity →

Forward scattering amplitude:  | f 〉 ≈ | i 〉

⇤m⌅i|M|i⇧ =
1
2

Z
d�

X

n

|⌅n|M|i⇧|2 ⇥
Z

d3k1
Lµ�Wµ�

q2(q2 �M2
Z)

Gorchtein, Horowitz, PRL 102 (2009) 091806
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on-shell	states



<e⇤A
�Z(E) =

2

�

Z 1

0
dE0 E0

E02 � E2
=m⇤A

�Z(E
0)

At	low	energy,	dominant																	correcVon	evaluated	
using	forward	dispersion	relaVons

Ve ⇥Ah

Im A
�Z(E) =

1

(2ME)2

Z s

M2

dW 2

Z Q2

max

0
dQ2 ve(Q2)�(Q2)

1 +Q2/M2
Z

⇥
✓

2ME

W 2 �M2 +Q2
� 1

2

◆
F �Z
3

=m⇤A
�Z(E) =

imaginary	part	given	by										structure	funcVonF �Z
3

Axial	h	correcVon
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Axial	h	correcVon	DIS	part	(dominant	contribuVon)

in	DIS	region	(																										),	expand	integrand	in	powers	of	x Q2 & 1 GeV2

with	moments	

DIS	part	dominated	by	leading	twist	PDFs	at	small	x	
                                                                            (MSTW, CTEQ, Alekhin parametrizations)

<e⇤A(DIS)
�Z (E) =

3
2⇥

Z 1

Q2
0

dQ2 ve(Q2)�(Q2)
Q2(1 + Q2/M2

Z)

⇥

M (1)

3 (Q2) +
2M2

9Q4
(5E2 � 3Q2)M (3)

3 (Q2) + . . .

�

M

�Z(n)
3 =

Z 1

0
dxx

n�1
F

�Z
3 (x, Q

2)

F

�Z(DIS)
3 (x,Q

2) =
X

q

2 eq g

q
A

�
q(x, Q

2)� q̄(x, Q

2)
�
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Axial	h	correcVon

structure	funcVon	moments

γZ analog	of	Gross-Llewellyn	Smith	sum	rule

n = 1

n = 3

related	to	x2-weighted	moment	of	valence	quarks

Re A(DIS)
⇥Z ⇥ (1� 4ŝ2) 5�2⇤

1R

Q2
0

dQ2

Q2(1+Q2/M2
Z)

⇣
1� �s(Q

2)
⇤

⌘

precisely	result	from	Marciano	&	Sirlin!
(works	because	result	depends	on	lowest	moment	of	
	valence	PDF,	with	model-independent	normalizaVon!)

M�Z(3)
3 (Q2) =

1
3

�
2hx2iu + hx2id

� ✓
1 +

5�s(Q2)
12⇥

◆

M�Z(1)
3 (Q2) =

5
3

✓
1� �s(Q2)

⇥

◆

⇠ log

M2
Z

Q2
0
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Axial	h	elasVc	+	resonance	correcVon

elasVc	part:

resonance	part	from	parametrizaVon	of	ν	scaXering	data;	includes	
lowest	four	spin	1/2	and	3/2	states   (Lalakulich-Paschos)

F �Z(el)
3 (Q2) = �Q2Gp

M (Q2)GZ
A(Q2)�(W 2 �M2)
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Least	well-constrained	part	of	the	calculaVon



Vector	h	correcVon

forward	dispersion	relaVon

vector	h	correcVon												vanishes	at	E = 0,	but	experiment	

has	E ~ 1 GeV -	what	is	energy	dependence?				             

O V
�Z

�e OV
�Z(E) = 2E

⇥

R1
0 dE0 1

E02�E2 ⇥m OV
�Z(E

0)

imaginary	part	given	by

�mO V
�Z(E) =

�

(s�M2)2

� s

W 2
�

dW 2

� Q2
max
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1 + Q2/M2
Z

�
�

F �Z
1 + F �Z

2

s (Q2
max �Q2)
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3 groups doing independent analysesThe Vector Box Plots 

 

 

 

 

 

 

 

 

 

 

Hall et al. 
PRD 88, 013011 (2013) 

Carlson and Rislow 
PRD 83, 113007 (2011) 

Gorchtein et al. 
PRC 84, 015502 (2011) 
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• Differences come from the treatment of the 

structure functions. 

 

• Mainly different treatments of low Q², low W region background contributions 

• Agree on overall magnitude of 8% correction, but disagree on errors and details

Qweak energy: 8% correction!
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AJM	structure	funcVon	model

Accurate	knowledge	of	γγ	and	γZ	structure	funcVons	(at	all	
kinemaVcs)	vital	for	determinaVon	of	radiaVve	correcVons

Wealth	of	data	on									structure	funcVons	over	large	range	of	
kinemaVcs	in	Q2	and	W	(or	x)	–	with	some	gaps

RelaVvely	liXle	known	about											interference	structure	
funcVons	below	HERA	measurements,	with	

F ��
i

F �Z
i

Q2 � 1500 GeV2

26

Fit											over	all	kinemaVcs	in	Q2	and	W,	then	“rotate”	to	
using	available	theoreVcal/phenomenological	constraints	

F ��
i F �Z

i

e.g.	isospin	symmetry

hN⇤|Jµ
Z |pi = (1� 4 sin2 ✓W )hN⇤|Jµ

� |pi � hN⇤|Jµ
� |ni



1 4 9
0
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W2 �GeV2⇥

Q
2
�GeV

2 ⇥ III

I II

�

(quark-parton	model)

“elasVc”

“resonance”

“DIS”

“Regge”

IntegraVon	region	(structure	funcVon	map)

Bosted-Christy	γγ fit	

		+	isospin	rotaVon	to	γZ

Leading	twist	PDFs

Pomeron	and	
Reggeon	exchange
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Scaling	region	III

Basic	issue:	how	to	relate										to								?		F �Z
1,2 F �

1,2

F

�
2 =

X

q

e

2
qx(q + q̄)

F

�Z
2 =

X

q

2eqg
q
V x(q + q̄)

Resonance	region	I		largest	contribuVon	(unlike										)

�T,L = �T,L(res) + �T,L(bg)

For	γγ	use	Christy-Bosted	(CB)	fit	to	e-p	cross	secVons

�T,L(res) • Includes	7	most	prominent	N*	resonances	below	2 GeV. 
• Generally	agrees	with	data	to	~ 5% 
• For γZ modify	fit	by	raVo	of	weak	to	e.m.	transiVon	
amplitudes.

F �Z
3
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Background

Gorchtein et al. background fits

20

• Background estimated from VMD models 

p p
=

p p

Z Z

V V

• Got γZ from γγ by changing one coupling,

V
Z� coupling

�� coupling

= (2� 4 sin2 �
W

) = 1 + Q

p

W

Z� coupling

�� coupling

= �1 + Q

p

W

Z� coupling

�� coupling

= 2 + Q

p

W

�T,L(bg)

V = ρ, ω, φ + continuum

29

Use	Vector	Meson	Dominance	(VMD)	models	fit	to	high	
energy	data,	plus	isospin	rotaVons

conVnuum	parameter	κC	not	constrained	in	VMD

⇥�Z

⇥��
=

�⇥ + �⌅ R⌅ + �⇤ R⇤ + �C RC

1 +R⌅ +R⇤ +RC

� = 3� 4 sin2 ✓W⇥� = 2� 4 sin2 �W , ⇥� = �4 sin2 �W ,Isospin	rotaVon:

��Z
V = V ���

V

AJM	model:	constrain	conVnuum	(higher	Q²)	contribuVon	by	matching	
with	PDF	raVos	(γZ	to	γγ)	across	boundaries	of	Regions	I, II and	III.

GHRM:	assign	100%	uncertainty	on	conVnuum	contribuVon	
(dominates	errors)
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ContribuVon	from	different	regions	to O V
�Z

(relaVve	to	weak	charge	of	0.0713)
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AJM ABM11

Parity-violaVng	Deep	InelasVc	ScaXering	(PVDIS)	asymmetry	
allows	a	direct	measurement	of	the	γZ	structure	funcVons

APV = geA

✓
GFQ2

2
p
2⇥�

◆ xy2F �Z
1 + (1� y)F �Z

2 + ge
V

ge
A
(y � y2/2)xF �Z

3

xy2F ��
1 + (1� y)F ��

2

Q²=0.34 GeV², E=0.69 GeV

Androic et al. (G0 collaboration),  arXiv:1212.1637
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AJM	γZ	model	direct	test

Q² = 2.5 GeV², E = 6 GeV
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Potential impact of 
constraints from 
deuteron PV inelastic 
asymmetries 

100% uncertainty on 
continuum background
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Potential impact of 
constraints from 
deuteron PV inelastic 
asymmetries 

50% uncertainty on 
continuum background
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Potential impact of 
constraints from 
deuteron PV inelastic 
asymmetries 

25% uncertainty on 
continuum background
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AJM	model	asymmetries	and	uncertainVes	for	PV	
deuteron	asymmetry	constrained	by	fit	to	E08-011	data

Constraints	from	PV	inelasVc	asymmetries

Hall et al. (2013)

Wang et al. PRL 111, 082501 (2013)
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Prediction: Hall et al. (2013)

PredicVons	for	PV	deuteron	asymmetry	in	DIS	kinemaVcs

APV = �157.2± 12.2 ppm
APV = �92.4± 6.8 ppm
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E08-011: Wang et al. Nature 506, 67 (2014)
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Parity-violaVng	inelasVc	asymmetries
Expected	inelasVc	asymmetry	data	from	Qweak

Hall et al. (2013)
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Niculescu et al., PRL 85, 1182 (2000)
WM, Ent, Keppel, PRep. 406, 127 (2005)

≈
2

     average over 
 (strongly Q  dependent) 
      resonances  
     Q   independent 
     scaling function

2

� =
2x

1 +
�

1 + 4M2x2/Q2

“Nachtmann” scaling variable

deep inelastic
function

Duality in electron-nucleon scattering

Separates higher twist (HT) effects 
from target mass corrections to 
leading twist (LT)
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γγ Leading	Twist	(LT)	F1,2	moments	vs.	Nachtmann	moments
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• Compare	total	empirical	moments	of	structure	funcVons	to	leading	twist	
(LT)	contribuVons	down	to	low	Q2 

• Difference	indicaVve	of	highter	twist	(HT)	contribuVons	
• Sum	is	approximately	independent	of	Q2 

• Note isospin independence            Apply to γZ structure functions?
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γZ	Leading	Twist	(LT)	moments	vs.	Nachmann

Allows	us	to	extend	PDF	region	down	to	Q²=1 GeV²	(from	Q²=2.5)
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(5.4± 0.4)⇥ 10�3, 2015



Summary
• Lots	of	interesVng	new	theoreVcal	work	moVvated	by	new	experimental	
results	

• Dispersive	method	only	feasible	approach	for	TPE,	with	connecVon	to	data	
in	forward	angle	limit	

• Efforts	underway	to	incorporate	electroproducVon	data	throughout	the	
resonance	region,	including	background	

• Clear	need	for	definiVve	e+p measurements	at	high	Q2,	low	ε	  

• Dispersion	approach	significant	improvement	over	old	methods	

• PDF	region	provides	constraints	on	model-dependence	of	isospin	rotaVon	

• Direct	comparison	with	PV	inelasVc	data	in	resonance	and	DIS	regions	

• e-d	PVDIS	asymmetry	strongly	constrains	the	uncertainty	

• checking	Δ	region	at	Mainz	or	JLab	would	be	useful	

• quark-hadron	duality	approach	allows	further	constraints	on	uncertainVes
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